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Abstract- In this paper we make the important observation 
that the attitude and angular velocity control systems for gas-jet 
aircraft and underwater vehicles are of a special form: they are 
affine control systems with constant control distributions and 
multi-affine drifts. For this general class of systems, we can 
construct (and check the existence of) bounded controls driving 
the system from initial to final regions of the state space. This can 
be used for tasks requiring repositioning or changing the velocity 
of the vehicle under constraints on both controls and state. We 
illustrate the procedure by solving the problem of changing the 
angular velocity of a parallelepiped aircraft under velocity and 
control constraints imposed by the task. The method should be 
seen as a "maneuver" procedure, allowing automatic generation 
of control laws for bringing the system in a desired region of its 
state space. If stabilization to a point is required, then locally 
stabilizing control laws can be used after the maneuver. 

I. INTRODUCTION 

There has been a lot of research in the area of attitude 
and velocity stabilization and planning of rotating rigid bodies 
[I]. Some of the existing works assume that three torques are 
available for control, through' gas jet actuators or momentum 
wheels. In this case the attitude stabilization problem can 
be solved by using linear [2] or nonlinear controllers [3]. If 
less than three control torques are available, then nonlinear 
control laws need to be employed [4], [5], [6]. Moreover, 
it can be proved that they are necessarily non-smooth [7]. 
The problem of reorientation of a rigid body can also be 
thought of as an interpolation problem in the special Euclidean 
group SO(3) of rotations in three dimensions. Most of the 
works in this area extend ideas from interpolation in Euclidean 
spaces [SI, [9] to curved spaces, by use of Bezier curves [lo], 
[ 1 1 J, Bernstein polynomials [ 121, spatial rational B-splines 
[13], Hermite interpolation [14], etc. In contrast with these 
works, which are based on particular parameterizations of the 
group, coordinate free formulations and invariant solutions are 
proposed in [ 151, [16], [17]. Invariant variational approaches 
are used to generate optimal motions on SO(3) in [ 181 and 
[191, [201, P11. 

In this paper, we approach the rigid body control problem 
from a totally different perspective, using ideas and some of 
our results from formal analysis of continuous and hybrid 
systems [22], [23]. Our approach is somewhere in between 
stabilization to a point and interpolation between two end 
positions in the configuration space. We propose a non-smooth 
(but possibly continuous) feedback law which allows for a 
"maneuvering" procedure, i.e., driving a rigid body attitude or 

angular velocity control system between arbitrary initial and 
final regions of the state space, while satisfying bounds on 
controls and state. An illustrative task that we can solve with 
this procedure is the following. Given an aircraft or underwater 
vehicle with gas jet actuators and physical bounds on the 
control torques, which is initially rotating at a certain angular 
velocity (not necessarily precisely known), we want to drive 
it towards a final, desired angular velocity. We also require 
that apriori given bounds on the velocity are satisfied during 
the transition. After the desired region of the state space is 
reached, we can use one of the locally stabilizing control laws 
in the works cited above, if convergence to a specific state is 
required. Of course we need to make sure that the local region 
of attraction includes the target region of our algorithm. Note 
that globally stabilizing controllers exist as well, but using 
those there is no way one can guarantee that the trajectories 
converging to a desired equilibrium satisfy certain properties. 
We believe that the satisfaction of bounds on controls and 
velocity makes the method very attractive in a large area of 
applications. 

The main motivation for this paper is the important observa- 
tion that a large class of mechanical control systems, including 
aircraft with gas-jet actuators and underwater vehicles, can be 
modelled as affine control systems 5 = f(z) + g(z)u, where 
the drift f(z) is multi-affine in the state z i.e., affine in each 
component zi of the state, and the control distribution g(z) 
does not depend on z, i.e., can be modelled as a constant 
matrix. Multi-affine functions have a very interesting property 
when restricted to hyper-rectangular regions of their domain 
[23]: they are uniquely determined by their values at the 
vertices and can be expressed as a convex combination of 
these values. This is the starting point towards our work on 
abstraction of multi-affine systems, which is the procedure 
of defining discrete transition systems with a finite number 
of states that can be used to decide their reachability and 
safety properties. In this paper, we provide a solution to a 
"maneuver" task by constructing a rectangular partition of the 
state space and solving the following control problem in each 
of the rectangles: drive all the states in the rectangle through an 
exit facet in finite time. The solution can be found by solving 
a set of linear inequalities in the controls at the vertices and it 
naturally arises as a multi-affine state feedback law satisfying 
the control bounds. The solution to the maneuver problem is 
a set of "stitched" rectangles connecting the initial to the final 
region and a non-smooth (but possibly continuous) feedback 
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control law, which guarantees that all initial states in the initial 
region are driven to the final region in finite time, and all the 
possible trajectories are contained in the tube formed by the 
rectangles, therefore bounds on the states are easy to satisfy. 

The rest of this paper is organized as follows. In Section 
II, we note that both gas jet actuated aircraft and underwater 
vehicles are modelled as multi-affine control systems. A com- 
prehensive review of our results on controlling these kind of 
systems is given in Section III. A maneuver problem in the 
angular velocity space for a parallelepiped aircraft with gas jet 
actuators and bounds on both controls and velocity is solved 
in Section IV. The paper ends with concluding remarks. 

11. CONTROLLED AIRCRAFT AND UNDERWATER VEHICLES 

Consider an arbitrarily shaped aircraft with a body fixed 
frame {M} in motion with respect to a world frame {W}. 
Let G be the inertia matrix of the aircraft with respect to its 
body frame and m its mass. Let ( 1 ,  (2, . . . , Cm be the axes 
about which the corresponding control torques t l ,  . . . , t ,  are 
applied by means of opposing pairs of gas jets. Let w denote 
the angular velocity in body frame, U the translational velocity 
of the origin of the body in body coordinates, m the mass of 
the aircraft, and F the total force applied to the body at the 
center of mass expressed in body frame. Then, the kinematic 
equations of the aircraft can be written as 

mu = m v x w + F  (1) 
m 

G& = G w x w + C < a t a  (2) 
i=l 

Similarly, for an underwater vehicle modelled as a neutrally 
buoyant rigid body submerged in an ideal fluid, if the center of 
gravity of the vehicle coincides with the center of buoyancy, 
then the equations of motion can be written as [24]: 

MU = M v x w + F  (3) 
m 

where A4 is an added mass matrix which incorporates the mass 
of the body and the mass of the fluid replaced by the body 
[24] and all the remaining variables have the same significance 
as before. 

The position and orientation in the world frame {W} of 
both systems described above are identified with SE(3), the 
Lie group of rigid body displacements in Et3: 

S E ( 3 ) = { A / A =  [ R d  l ] , R ~ S O ( 3 ) , d ~ R 3 } .  (5) 

where d denotes the displacement of the origin of the body 
frame {AI} in {W} and R E SO(3) its rotation: 

(6)  SO(3) = {RI RRT = I ,  det(R) = 1 )  

The equations relating their positions and velocities are 

R = R c j  (7) 

d = Rv (8) 

where (i is the skew symmetric operator. 

nions 
sphere in Et4. Then, equation (7) can be written as: 

To parameterize the rotation R E SO(3) we choose quater- 
= (q1,42,  43, 44) E S3,  where S3 denotes the unit 

1’ w1 1 
(9) 

where 
[ 44 -43 42 -41 1 I (10) 93 44 -41 -92 

44 -q3 Q(q)  = I -42 41 
1 -41 -42 -43 -44 1 

and (w1 , w2. W Q )  are the componlents of the angular velocity 

There are situations, especially in space missions, in which 
one is not interested in controlling the pose (displacement and 
rotation) of a spacecraft of underwater vehicle in a reference 
frame, but rather in regulating the body velocities of translation 
and rotation. In this case, equations (1) and (2), respectively (3) 
and (4), can be seen as control systems with states z = (U, w )  
and controls U = (F. tl , . . . . tm) However, there are several 
situations in which one is interested in controlling only the 
attitude of a vehicle in a given world frame, and then equations 
(2) and (9) can be seen as a control system with state z = 
(9, w )  and control variables U = i(t1,. . . , tm).  

The motivation for this paper is the important observation 
that all the control systems mentioned above are affine control 
systems x = f(x) + g(z)u of a specific class: the drift vector 
field f is a sum of products of the state variables, and the 
control distribution g(z) is constant, i.e., g(z)u is the span 
of a constant matrix. Therefore, let us consider the following 
class of control systems 

W .  

X = f ( ~ )  .t BU (1 1) 

The drift term f : BN +. B” is a multi-affine function 
consisting of products of state variables (formally defined in 
(12)) and B E W N x m  is a constant matrix whose columns give 
the directly controllable directions. Since in real applications 
there are always physical bounds on the control variables, the 
input U is assumed to take values in a polyhedral set U C Bm 
only. 

In the next section we review an important result we proved 
in [23]: to find a feedback control law U ( Z )  E U driving all 
initial states in a hyperrectangle in RN through a desired facet 
in finite time is equivalent to solving a set of linear inequalities 
in control variables at the vertices. Based on this result, one 
can design (and test the existence of) admissible control laws 
driving system (1 1) between given initial and final regions of 
the state space based on defining a rectangular partition of 
its state space and applying the above result several times. 
The initial region should be contained in the initial rectangle 
and the final region should conlain the final rectangle. The 
satisfaction of trajectory constraints during the transition can 
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be accommodated by choosing a certain sequence of adjacent 
rectangles connecting the initial to the final one. 

111. CONTROL OF MULTI-AFFINE SYSTEMS ON 
RECTANGLES 

Definition 1 (Multi-afJine function): A multi-affine func- 
tion f : PN - PN is a polynomial in the indeterminates 
21, . . . , Z N  with the property that the degree of f in any of the 
indeterminates XI,. . . , X N  is less than or equal to 1. Stated 
differently, ‘f has the form 

f(Zl,**.;ZN) = C i l ,  ...: i N x ?  **.x$, (12) 
i 1 ,  ..., i N G { O , l }  

with cil ,..., iN E BN for all 2 1 , .  . . , i N  E {0,1} and using the 
convention that if z k  = 0, then x: = 1. 

An N-dimensional rectangle in RN is characterized by two 
vectors a = ( a l , .  . . , U N )  E RN and b = ( b l , .  . . , b ~ )  E I t N ,  
with the property that ai < bi for all i E ( 1 , .  . . , N } :  

R N ( ~ ,  b)  = {X = (XI,. . . , X N )  E RN 1 
vi€{l ,  . . . , N }  : a i I x i < b i } .  (13) 

The set of vertices of RN(u, b) is denoted by VN(CZ, b), and 
may be characterized as 

N 

VN(a: b) = n{%; bi} (14) 

Let ( : { u I , . .  . , a ~ , b l , . .  . , b ~ }  - {0,1} be defined by 
i=l  

( ( U k )  0, ( ( b k )  = 1, k = 1,. . . , N  (15) 

Then RN(u, b) has 2 N  facets described by 

= R N ( ~ ,  b) n {x E B~ 1 xj = wj, 

wj E { U j ,  b j } ,  j = 1,N 
~ $ ( ~ j ) ( a ,  b)  

(16) 

The outer normal of facet F$(w’)(u, b) is given by 

njF(w’) N 

where ej, j = 1, . . . , N denote the Euclidean basis of BN.  
A rectangular partition of the state space ( X I , ,  . . , Z N )  is 

defined by dividing Oxi into ni 2 1 intervals by some points 
0 = Ob < 8; < . . . < O k i .  The j t h  interval on the Oxi, i = 
1,N axis is therefore defined as 5 xi < Oj,  j = E. 
By convention, Oh = 0 and r3ii is an upper bound giving a 
physical limit for x i .  The division of the axes determines a 
partition of the state space into ni rectangles. If we let 

= ( - l ) t ( w j ) + l e j ,  wj E { a j ,  bj}: j = 1;N (17) 

then following the notation in (13), (14), and (16), an arbitrary 
rectangle from the partition is given by R N ( u ~ ~ . . . ~ ~ ,  bkl ,  ... k N )  , 

and the facets by F $ ( W ’ l ( a k l . . . k N ,  b k l ,  ... k N ) .  Explicitly, 
the corresponding Set Of Vertices by V N ( a k  l . . . k N ,  b k l ,  ... k N ) ,  

Remark 1: A convenient way of representing a rectangular 
partition of the state space (19) is as a simple graph with flzl ni nodes. Node ( k 1 .  . . k ~ )  corresponds to rectangle 
R N ( u ~ ~ . . . ~ ~ ,  bkl ,... k N ) ,  An edge in the graph connects nodes 
corresponding to adjacent rectangles, i.e., there is an edge 
between any pair of nodes that differ by a Hamming distance 
of 1. 

Problem 1 (Control): Consider a control system (1 1) with 
multi-affine drift (12) and a rectangular partition of its state 
space (19). Determine a feedback control law U = ~ ( x )  E U 
that drives all initial states from an initial rectangle through a 
given sequence of pairwise adjacent rectangles in finite time. 

Using the graph formalism (Remark I), Problem 1 requires 
that a given path in the graph be followed. To provide a 
solution to Problem 1, we first need to be able to design 
controls so that all initial states in a given rectangle are driven 
to an adjacent rectangle. 

We can prove an interesting property [23] of multi-affine 
functions on rectangles, which is the basis for solving Problem 
1: a multi-afine function dejned on a N-rectangle is uniquely 
determined by its values at the vertices. Moreovel; inside the 
rectangle, the function is a convex combination of its values 
ut the vertices. Formally, we have: 

Proposition I :  A multi-affine function f : RN(u,  b) - 
BN is a convex combination of its values at the vertices of 
R N ( %  b). 

1 =  
fi ( Z k  - a k ) ‘ ( v k )  (: - ””> l - F ( v k )  7 

bk - a k  k - a k  
(W 1 , .  . . , W N  )E VN (a, b )  k= 1 

(21) 
where (q , .  . . , U N )  E V~(a,b). 

The first step towards solving Problem 1 is designing 
a feedback controller so that all initial states in a given 
rectangle are driven through a desired facet in finite time. 
Let R N ( u , ~ )  be an N-dimensional rectangle in RN, and 
consider the control system (11) evolving in R ~ ( a , b ) .  The 
drift term f : R ~ ( a , b )  + RN is a multi-affine function (12), 
B E R N x m  is a constant matrix whose columns give the 
directly controllable directions, and the input U is assumed to 
take values in a polyhedral set U C R” only. 

Problem 2 (Control to a facet): Consider the multi-affine 
system (11) on the rectangle R ~ ( a , b ) ,  and let F be a facet 
of &(a,  b) with normal n pointing out of R N ( ~ ,  b). For any 
initial state xo E RN(u,  b), find a time instant TO 2 0 and an 
input function U : [O, TO] - U, such that 

(i) 
( i i )  

( i i i )  

vt E [o,TO] : x ( t )  E R N ( a , b ) ,  
x(T0) E F, and TO is the smallest time-instant in the 
interval [0, 00) for which the state reaches the exit facet 
F ,  
nTj.(To) > 0, i.e. the velocity vector k(T0) at the point 
x(T0) E F has a positive component in the direction of 
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n. This implies that in the point .(TO), the velocity vector 
k(T0) points out of the rectangle RN(u,  b). 

Furthermore, this input function u should be realized by the 
application of a continuous feedback law 

4 t )  = k ( s ( t ) ) ,  (22) 

with k : R ~ ( a , b )  -+ U a continuous function, that is 
independent of the initial state 50. 

Note that if the feedback law k ( z )  in (22) is multi-affine, 
the closed-loop system is also multi-affine. The solution to 
Problem 2 is given by the following Theorem [23]: 

Theorem 1: Let &(a, b) be an N-dimensional rectangle 
in PN, and consider the multi-affine system 

x = f(.) + Bu, x(0)  = 5 0  E R N ( a ,  b) 

on R ~ ( a , b ) ,  with B E W N x m ,  f : R N ( u , ~ )  + RN 
multi-affine, and U E U, with U C R" a polyhedral set. 
Let F$(wJ)(a,  b) be a facet of RN(u, b) for arbitrarily fixed 
wj  E { u j , b j }  and j E {1, . . . ,N} .  If in every vertex 
(211,. . . ,UN) E V~(u,b) there exists an input yvl? ,,., E U 
such that 

(1) n x ( 4 T  
N (f('1, ' '  7 + BU(7J1,...,VN)) > 

(2) V k E  {I, ..., N}\{j}, t/wk E { a k : b k } :  (23) 
n k E ( ~ ~  1 

N (f(vl , .  ' ' 1 + B U ( U 1 , . . . , t J N ) )  5 O; 

then there exists a multi-affine feedback solution to Problem 
2 with exit facet F$(Wj)(u,b) given by u = k ( x ) ,  where 
k : R ~ ( a , b )  + U is the multi-affine function uniquely 
determined by 

, 

v(V1.7 * * * : U N )  E vN(a, b) : k(Vl, * .  . i = u(wl , . . . , v~ ) i  

The function k can be constructed using formula (20). 
Corrolmy 1: If > in (23) (1) is replaced by I, i.e., the 

vector field is oriented towards the interior of the rectangle at 
all vertices, then the solution U guarantees that the closed loop 
system will never leave the rectangle RN(u,  b). 

Checking the sufficient conditions in formula (23) of The- 
orem 1 requires the solution of 2N systems of 2N - 1 linear 
inequalities in m unknowns: for each vertex of RN(u, b), one 
system of 2 N  - 1 linear inequalities in the unknown U E W". 
If a solution exists, construction of a multi-affine feedback is 
immediate, using formula (20). 

Remark 2: Conditions (1) and (2) in formula (23) of The- 
orem 1 provide-polyhedral sets U~zI1,...,,N) of controls at the 
vertices (VI, . . . , WN) E VN(U,  b) that solve Problem 2. If all 
the sets U(,,,,..,,,) are non-empty, then one can choose a rep- 
l-esentant U ( V 1 , .  . . , V N )  from each set and construct the feedback 
control using formula (20). Since each of u( ,~ , . , . , , ~ )  E U 
and U(.) is a convex combination of u ( ~ ~ , , , . , , ~ ) ,  then it is 
guaranteed that U(.) E U for all 2 E RN(u,  b). An interesting 
special case is when n,,, , . . . , V N  ) E V N  (a,b) U (vi,. . . ,UN # 8. An 

E E n ( V 1 ,  ..., v N ) € V N ( a , b )  U (7Jl,. . ,>WN) can be used as a 
constant (independent of the current state) control that solves 
Problem 2. Note that this is consistent with (20). Indeed, 
if ,..., ,,,,I = E for all (VI , .  . . ,UN) E V~(a,b), then 

U(.) = .ii due to (21). This case might be extremely useful for 
practical situations when the state is not available for feedback. 

Remark 3: A solution to Prob:lem 1 involves a choice of a 
sequence of adjacent rectangles (nodes in the corresponding 
graph) and the application of Theorem 1 (which is a solution 
to Problem 2) to drive all states in a rectangle to the adjacent 
facet with the next rectangle. The overall control law can 
be easily rendered continuous, by making sure that on the 
common facet, in both adjacent rectangles the same choice 
is made for the control at the vertices. Indeed, the common 
facet is a N - 1-dimensional rectangle and the control law 
everywhere on the facet is a convex combination of the 2N-1 
vertices of the facet. 

Remark 4: The controllability properties of (1 l), as far as 
Problems 1 and 2 are concerned, are buried in (23), which 
not only capture rank-type conditions on B,  but also physical 
bounds on controls. 

Iv .  EXAMPLE: AIRCRAFT ANGULAR VELOCITY CONTROL 

In this section we show how to control the angular velocity 
of an aircraft by using a multi-affine control system and a 
rectangular partition of the velocity space dictated by the 
task. Consider a parallelepiped .aircraft of mass rn with jet- 
gas actuators. Consider a frame {AI} fixed at the centroid of 
the aircraft and aligned with the: principal axis, so that G = 
diag{gl! 9 ~ ~ 9 3 ) .  Assume that diirnspan{<l, . . . Cm} = 3, i.e., 
the system is controllable. Withcut loss of generality, we will 
take the control directions as being the Euclidean basis vectors 
ei, i = 1 , 2 , 3  and the control will be reparameterized by ui 
along these directions. Then, thle angular control system (2) 
takes the form of the known controlled Euler's equations: 

W l  = y w 2 w 3  + U1 

w 2  = y w 1 w 3  + U2 (24) 
W 3  = y w 1 w 2  + U3 

g1 = -rn((bg - a2:12 + (b3 - a3)2), 

g3 = zm((b1 - a# + (b2 - a2)2).  

Assuming that the aircraft spans between ai and bi along the 
direction ei (i = 1,2,3) of the body frame {AI}, then we have 

(25) 

Finally, the controls ui are limited to take values in [-1,1]. 
The control system (24) is obviously of the form (1 1) with z = 
w, the multi-affine drift f(z) = (,22~3(gg -g3)/91, .1%3(g3 - 
gl)/gg, SlzZ(g1 - g2)/g3), control directions B = 13, and set 
of admissible controls U = [-1, lI3. 

Consider the following control scenario. Assume that the 
aircraft is initially rotating arountd the z-axis of its body frame 
{ A l }  at speed ws. The goal is to control the aircraft so that 
it eventually rotates around its x-axis at the same speed and 
remains in this state for all times. Moreover, while transiting 
from the initial to the final states, the aircraft is forbidden to 
develop rotational speed wg around its y-axis. 

To capture the uncertainty on Icnowledge of the state as well 
as sensor noise, we allow for deviations of amplitude E > 0 
in all directions. Under this as:sumption, the initial state of 

1 

5'2 = -m((b3 ?* - U3;l2 f (bl - 2;1 
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rotation is assumed to be the collection of all states in a small 
cube centered at w = (0, 0,  U,) and with side 2 ~ .  The amount 
of allowed speed of rotation around the y-axis is assumed to be 
E and the goal is to drive and keep the system in a small cube 
centered at w = (U,, 0, 0), where E > 0 is a small number. 
Using the procedure presented in Section III, we can provide 
a solution to this problem in terms of a feedback control law 
by defining a set of rectangles in the velocity space and solve 
a control problem of the type 1. 

Explicitly, according to the specifications of the task, con- 
sider a set of five pairwise adjacent rectangles. The task 
is accomplished if the following controllers (solutions of 
Problems of type 2) are designed: 

Controller 1 - “drive” the system down along the WS-axis 
from w3 = W J  + E to w3 = E while keeping the absolute 
values of w1 and w3 less than 2 ~ .  The solution to this 
problem is found by applying Theorem 1 to the rectangle 
[ - E .  E] x [--E, E ]  x [ E ,  w,  + E ]  with exit facet w3 = E .  

Controller 2 - “take the turn” around origin. This con- 
trol law can be derived by applying Theorem 1 to the 
rectangle [ - E ,  E ]  x [ - E ,  E ]  x [ - E ,  E ]  with exit facet w1 = E .  
Controller 3 - drive the system along the wl-axis from 
w1 = E to w1 = wf - E while keeping the absolute 
values of w2 and w3 less than 2 ~ .  The solution is found by 
applying Theorem 1 to the rectangle [ E ,  w ,  - E ]  x [ - E ,  E ]  x 
[ - E ,  E ]  with exit facet w1 = w, - E .  

Controller 4 - keeps the system in a cubic box centered 
at (wi,O,O) and side 2 ~ .  The controller is designed by 
applying Corollary 1 to the rectangle [w, - E ,  w, + E ]  x 
[ - E ,  E ]  x [--E + E ] .  

We used the following numerical data: 

w, = 3, m = 1, a1 = -4,  bl = 4 ,  a2 = -4, 
b2 = 4, a3 = -1, b3 = 1: E = 0.1. 

A possible choice of Controllers 1, 2, 3, and 4 is given 
below. For each of the rectangles, the controls at the vertices 
were obtained as solutions of the set of linear inequalities 
(23) intersected with the admissible set U. ut, i = 1 , .  . . , 4 
is the feedback control valid everywhere in the corresponding 
rectangle, uniquely determined by its values at the vertices. 

a) Controller I :  

b) Controller 2: 

c)  Controller 3: 

0.25 + 25x223 
U3(x )  = [ -2.522 - 2.523 ] 

-5x3 

d)  Controller 4: 

A closed loop system trajectory in the velocity space starting 
from (0,0,3) is shown for illustration in Figure 1. It can 
be seen that all the specifications are satisfied. Figure 1 (b) 
shows the amounts of time spent by the system in each of the 
rectangles. The values on the y-axis correspond to controller 
index (1,2,3,4). 

V. CONCLUSION 
In this paper we approach the problem of controlling gas- 

jet aircraft and underwater vehicles from a formal analysis 
perspective. We start from the observation that these control 
systems are of a particular form, which allows the application 
of a powerful and computationally efficient algorithm to 
automatically generate feedback controls to drive all the states 
from an initial region to a final region of the state space. This 
method can be used for repositioning or changing the velocity 
profile under control and state constraints. If stabilization to a 
particular state inside the final region is desired, then one of 
the many locally stabilizing controllers presented in literature 
can be used. An example of controlling the angular velocity 
of a gas-jet aircraft is presented for illustration. 
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