
Online Learning of Temporal Logic Formulae for Signal Classification

Giuseppe Bombara and Calin Belta

Abstract— This paper introduces a method for online infe-
rence of temporal logic properties from data. Specifically, we
tackle the online supervised learning problem. In this setting,
the data is in form of a set of pairs of signals and labels and
it becomes available over time. We propose an approach for
efficiently processing the data incrementally. In particular, when
a new instance is presented, the proposed method updates a
binary tree that is linked with the inferred Signal Temporal
Logic (STL) formula. This approach presents several benefits.
Primarily, it allows the refinement of the current formula when
more data is acquired. Moreover, the incremental construction
offers insights on the trade-off between formula complexity
and classification accuracy. We present two case studies to
emphasize the characteristics of the proposed algorithm: 1) a
fault classification problem in an automotive system and 2) an
anomaly detection problem in the maritime environment.

I. INTRODUCTION

In recent years, there has been a great interest in applying
machine learning based techniques to the formal methods
field [1]–[6]. In particular, the research efforts have focused
on inferring formal descriptions of the behavior of a system
from its execution traces. The system behaviors are specified
using an appropriate temporal logic language, such as Signal
Temporal Logic (STL) [7]. This approach, named Temporal
Logic Inference (TLI) in [5], while retaining many qualities
of the traditional classifiers, presents several additional ad-
vantages. In particular, classical machine learning methods
are often over specific to the task. That is, they focus exclusi-
vely on solving the classification problem but offer no other
insight on the system where they have been applied. On the
contrary, temporal logic formulae have precise meaning and
allow for a rich specification of the behavior of a system that
is interpretable by human experts (knowledge discovery).
Moreover, the formulae learned with this approach can be
employed for monitoring the system.

In this research field, the initial work has focused on fin-
ding the optimal parameters for a formula when the formula
structure is given (fixed) [1]–[3]. Later, few attempts have
been made to tackle the so called two-class classification
problem [4]–[6]. In this setting, the goal is to build a temporal
logic formula that can distinguish traces belonging to one of
two possible classes. It is worth stressing that, in this case,
both the structure of the formula and its parameters have to
be learned from data. The dataset is given as a finite set of
pairs of system traces, also called signals, and labels. Each

G. Bombara is with the Department of Electrical and Computer Engineer-
ing, Boston University, Boston, MA 02215, USA gbombara@bu.edu

C. Belta is with the Department of Mechanical Engineering, Boston
University, Boston, MA 02215, USA cbelta@bu.edu

This work was supported by DENSO CORPORATION and by the Office
of Naval Research grant N00014-14-1-0554.

label indicates whether the respective trace exhibits some
desired system behavior, e.g., the engine is working correctly.

In this paper, we turn our attention to the online learning
problem. In this scenario, it is assumed that new data arrives
over time and the inference system should be updated to
accommodate it. This is in contrast with the classical (or
offline) approach, implicitly pursued by all the previous
works, where only a single batch of data is available at the
beginning and no further data can be considered. The online
learning scenario presents some major advantages. First, it
provides a formula early during the data collection process
and then is able to refine it progressively when more data
becomes available. Second, it removes the usual separation
between building phase and deployment phase of classifiers.

A trivial solution to the online learning problem would be,
every time a new instance arrives, to use an offline learner
from scratch on the whole data accumulated so far. Clearly,
this is highly inefficient as any formula discovered, and any
associated data structure, would be thrown away. Therefore,
the focus of this research is to devise a method that builds
and updates an STL formula in an efficient manner.

In [6], the authors established a connection between STL
inference and decision trees, where each node of a tree
contains a test associated with the satisfaction of a simple
formula, optimally tuned from a predefined set of primitive
formulae. Unfortunately, updating a decision tree when new
data arrives is not a trivial task. Specifically, if the arrival
of a new signal causes the change of the best primitive in
a node, then that node and all its children should be pruned
and reconstructed from scratch [8]. Recently, a different
prospective to tackle this problem has emerged from the
study of data streams [9]–[11]. The key insight is to create
a new node only when we can be reasonably sure that
the decision made for the node holds true for future data.
Following this idea, in this paper, we propose an algorithm
that creates a new node only when some conditions on
the best overall primitive to pick are attained. This strategy
completely avoids the inefficient reconstruction process as-
sociated with a wrong primitive selection and can offer some
probabilistic guarantees on the formula structure returned.

On top of the benefits provided by the online paradigm, the
incremental construction procedure that we propose provides
some additional advantages. First, it can potentially handle
very large datasets as it is necessary to store in memory only
the signals belonging to the leaf that is currently processed.
Second, we will show that the evolution of the classification
accuracy, as new data is processed by the algorithm, provides
useful insights on the trade-off between the complexity of
the formula inferred and its accuracy. This information can

2018 European Control Conference (ECC)
June 12-15, 2018. Limassol, Cyprus

978-3-9524-2699-9 ©2018 EUCA 2057

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

be exploited to halt the learning process when a satisfactory
solution has already been obtained and to avoid phenomena
such as overfitting.

II. SIGNAL TEMPORAL LOGIC

Let R≥t be the interval of real numbers [t,∞). We use
S = {s : R≥0 → Rn} with n ∈ N to denote the set of
all continuous parameterized curves in the n-dimensional
Euclidean space Rn. In this paper, an element of S is called a
signal and its parameter is interpreted as time. Given a signal
s, the components of s are denoted by si, i ∈ {1, . . . , n}. The
set F contains the projection operators from a signal s to one
of its components si, that is F = {fi : Rn → R, fi(s) = si}.
The suffix at time t ≥ 0 of a signal is denoted by s[t] and it
represents the signal s shifted forward in time by t units.

The syntax of Signal Temporal Logic (STL) is defined as:

φ ::= > | f(x) ∼ µ | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2

where > is the Boolean true constant (⊥ for false); f(x) ∼ µ
is a predicate over Rn defined by a function f ∈ F , a real
number µ ∈ R, and an order relation ∼∈ {≤, >}; ¬ and
∧ are the Boolean operators negation and conjunction; and
U[a,b) is the bounded temporal operator until.

The semantics of STL is defined over signals in S as [7]:

s[t] |= > ⇔ >
s[t] |= f(x) ∼ µ ⇔ f(s(t)) ∼ µ
s[t] |= ¬φ ⇔ ¬(s[t] |= φ)

s[t] |= (φ1 ∧ φ2) ⇔ (s[t] |= φ1) ∧ (s[t] |= φ2)

s[t] |= (φ1U[a,b)φ2) ⇔ ∃tu ∈ [t+ a, t+ b) s.t.
(
s[tu] |= φ2

)
∧
(
∀t1 ∈ [t, tu) s[t1] |= φ1

)
A signal s ∈ S is said to satisfy an STL formula φ if and only
if s[0] |= φ. The other Boolean operations (i.e., disjunction,
implication, equivalence) are defined in the usual way. Also,
the temporal operators eventually and globally are defined as
F[a,b)φ ≡ >U[a,b)φ and G[a,b)φ ≡ ¬F[a,b)¬φ, respectively.

Parametric Signal Temporal Logic (PSTL) was introduced
in [1] as an extension of STL where formulae are parameteri-
zed. A PSTL formula is similar to an STL formula, however
all the time bounds associated with the temporal operators
and all the constants in the inequality predicates are replaced
by free parameters. If ψ is a PSTL formula, then every
parameter assignment θ ∈ Θ (where Θ is the parameter space
of ψ) induces a corresponding STL formula φ = ψ(θ), where
the parameters of ψ have been fixed according to θ. This
assignment is referred to as valuation θ of ψ. For example,
given ψ = F[a,b)(s > π) and θ = [1, 2.5, 3.7], the following
STL formula is obtained ψ(θ) = F[1,2.5)(s > 3.7).

III. PROBLEM FORMULATION

We want to find an STL formula that separates traces
produced by a system that exhibit some desired property,
such as behaving correctly, from other traces of the same
system. The normal working conditions are referred to as
positives, whereas the non-conforming patterns are referred
to as negatives, or anomalies. Let C = {Cp, Cn} be the set

of classes, with Cp for the positive class and Cn for the
negative class. Let si ∈ S be an n-dimensional signal, and
let li ∈ C be its label, we consider the following problem:

Problem 1 (Two-Class Classification): Given a dataset of
labeled signals Sds = {(si, li)}Ni=1, we want to find an STL
formula φ∗ such that the misclassification rate MCR(φ, Sds)
is minimized, where the misclassification rate is defined as:

MCR(φ, Sds) :=
|{si |(si|=φ, li=Cn) or (si 6|=φ, li=Cp)}|

|Sds|
In the above formula, (si |= φ, li = Cn) represents a false
positive, while (si 6|= φ, li = Cp) represents a false negative.
To solve Prob. 1, we assume that the dataset Sds of labeled
signals generated by the system becomes progressively avai-
lable. This as opposed to all the previous approaches [4]–
[6], where Sds is supposed to be fully available from the
beginning and no further data can be considered.

IV. STL FORMULAE AND DECISION TREES

In this section, we briefly review the connection between
STL formulae and decision trees that was introduced in [6].
A decision tree is a tree-structured sequence of questions
about the data used to make predictions about the data’s
labels. In a tree, we define: the root as the initial node; the
depth of a node as the length of the path from the root to
that node; the parent of a node as the neighbor whose depth
is one less; the children of a node as the neighbors whose
depths are one more. A node with no children is called a leaf,
all other nodes are called non-terminal nodes. We focus on
binary trees, where every non-terminal node splits the data
in two children nodes and every leaf predicts a class.

Most decision-tree learning methods in the machine lear-
ning literature share a common algorithmic structure [12]. In
particular, each algorithm defines two core components: 1)
a list of possible ways to split the data reaching a node; and
2) a criterion to select the best split. In [6], it was proposed
to split the signals using a simple formula at each node,
chosen from a finite set of PSTL formulae, called primitives,
along with its optimal parameters. A binary tree with this
structure can be mapped to an equivalent STL formula using
a simple algorithm that recursively traverses the tree, starting
from its root, and only keeps track of the paths reaching
leaves associated with the positive class Cp. Specifically,
at each node the formula is obtained by (1) conjunction
of the node’s formula with its left subtree’s formula, (2)
conjunction of the negation of the node’s formula with its
right subtree’s formula, (3) disjunction of (1) and (2). Fig. 1
shows a decision tree and its corresponding STL formula.

A. PSTL primitives

Let S be the set of signals with values in Rn, a possible
set of primitives to split the signals in a node is defined as:

Definition 4.1 (First-Level Primitives):

P1 =
{
F[τ1,τ2)(fi(x) ∼ µ) or G[τ1,τ2)(fi(x) ∼ µ)

| i ∈ {1, . . . , n}, ∼∈ {≤, >}
}

The parameters of P1 are (µ, τ1, τ2) and the space of
parameters is Θ1 = {(a, b, c) | a ∈ R, b < c, b, c ∈ R≥0}.

2058

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

φ1

φ2

Cn Cp

φ3

φ4

Cp Cn

Cn

Fig. 1. Formula liked with this tree is φ =
(
φ1∧¬φ2

)
∨
(
¬φ1∧(φ3∧φ4)

)
.

The meaning of the primitives in P1 is straightforward.
F[τ1,τ2)(fi(x) ∼ µ) and G[τ1,τ2)(fi(x) ∼ µ) are used to
express that the predicate fi(x) ∼ µ must be true for at least
one time instance or for all time instances in the interval
[τ1, τ2), respectively.

Remark 4.1: It is important to stress that the set of pri-
mitives P1 is not the only possible one. A user may define
other primitives, for instance generic primitives using nested
operators (such as G[τ1,τ2)F[0,τ3)(fi(x) ∼ µ)), or specific
ones, guided by the particular nature of the problem. We do
not investigate other primitives here. However, the proposed
method works without modifications using any other set.

B. Impurity measures

Along with a set of primitives, it is also necessary to
define a criterion to select which primitive best splits the
data at each node. Intuitively, a good split leads to children
that are homogeneous, that is, they contain mostly signals
belonging to the same class. This concept has been for-
malized in literature with impurity measures [12], and the
goal is to obtain children purer than their parent. In [6],
some impurity measures were extended to explicitly handle
signals and STL formulae. In this paper, we consider only
the misclassification gain.

Definition 4.2 (Misclassification Gain MG): Let S be a
set of labeled signals and φ an STL formula, we define the
following partition weights to describe how the signals si

are distributed according to their labels li and the formula φ

p> =
|S>|
|S|

, p⊥ =
|S⊥|
|S|

, pc =
|Sc|
|S|

(1)

where S> = {(si, li) ∈ S | si |= φ}, S⊥ = {(si, li) ∈
S | si 6|= φ}, and Sc = {(si, li) ∈ S | li = c}.
The misclassification gain is defined as:

MG(S, φ) = MR(S, φ)−
∑

⊗∈{>,⊥}

p⊗ ·MR(S⊗, φ)

MR(S, φ) = min(pCp
, pCn

)

(2)

Intuitively, a positive value of MG(S, φ) means that we have
reduced the impurity by splitting the set S with the formula
φ (or, equivalently, we have gained purity).

Algorithm 1: Online Decision Tree Construction
Input: (s, l) – a new labeled signal
Data: T – a tree

1 if T does not exist then
2 T ← emptyLeaf ()

3 L, c, φpath ← locateLeaf (s, l)
4 if l 6= c then
5 updateLeaf (L, φpath)

V. ONLINE LEARNING

In the batch algorithm proposed in [6], a greedy recursive
procedure is followed to construct the tree, with all the data
available Sds, starting from the root. The data is partitioned
as new nodes are created using locally optimal decisions
on the signals reaching each node. The decision on which
primitive to pick and which parameters to use is made by
optimizing the impurity measure (2) on the set of primitives
P1 and its space of parameters Θ1 (see Def. 4.1).

As discussed in [8], updating a decision tree when new
data arrives is not an easy task. Specifically, if the arrival
of a new signal causes the change of the best primitive in a
node, in the sense of the impurity measure, then that node
and all its children should be pruned and reconstructed. A
different prospective to deal with this problem has emerged
from the research on data streams. Instead of creating a node
immediately, based on the data currently available, the key
idea is to defer its creation only when we can be reasonably
sure that the decision made will hold in the future [9].

A. Online learning algorithm

In Alg. 1 we report the online procedure for inferring
temporal logic formulae using high-level pseudocode. The
algorithm can be executed whenever new signals are availa-
ble. Alg. 1 operates on a data structure T representing the
tree and takes as input a new labelled signal (s, l) to be
processed. At the beginning, the algorithm checks if the tree
exists (line 1). If it does not, it creates a tree with a single
leaf at the root (line 2). When a tree exists, the new labelled
signal (s, l) is sorted through the tree to the leaf L where it
belongs and the label c ∈ C of this leaf is examined (line
3). The label c associated with a leaf is simply chosen using
the majority vote on the labels of the signals falling in that
leaf. If the new signal is misclassified (line 4), that is l 6= c,
the procedure updateLeaf () is invoked on leaf L (line 5).

The procedure updateLeaf (), reported in Alg. 2, operates
on a single leaf of the tree and performs three major steps.
First, it finds the optimal parameters for each primitive in
the set P̃ ⊆ P1 according to the misclassification gain (line
1). This optimization can be performed using any nonlinear
solver. Second, it evaluates the status of the leaf to decide if
it should be kept as a leaf or if a new non-terminal node can
be created in its place (line 2). This part is discussed in the
next section. Third, if the conditions are met (line 3), the leaf
is transformed into a non-terminal node and it is associated

2059

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Update a Leaf – updateLeaf (·)
Input: L – a leaf of tree T
Input: φpath – formula associated with path to leaf L
Data: S – set of signals contained in leaf L
Data: P̃ – set of candidate primitives for leaf L

1 θi ← arg maxθ∈ΘMG(S, φpath ∧ ψi(θ)), ∀ψi ∈ P̃
2 P̃, φbst1, createNode←evalLeafStatus(S,P̃,{θi}|P̃|1)
3 if createNode == True then
4 N ← non terminal(φbst1)
5 N.left ← emptyLeaf ()
6 N.right ← emptyLeaf ()
7 S>, S⊥ ← partition(S, φbst1)
8 storeInLeaf (N.left , S>)
9 storeInLeaf (N.right , S⊥)

with the optimal formula φbst1 (line 4). Two empty leaves are
initially added as children of this new node (line 5-6). Finally,
the signals S are partitioned according to φbst1 (line 7), and
for each outcome of the split the corresponding partition is
passed to the appropriate leaf (lines 8-9).

Algs. 1 and 2 use several functions: a) emptyLeaf ()
creates a leaf with no signals in it and initializes the set of
primitives to analyze P̃ to P1; b) locateLeaf (s, l) locates and
stores a signal s with label l in the leaf L where it belongs
according to the decision tree. c) evalLeafStatus() evaluates
the status of the candidate primitives in the leaf under
analysis and checks the conditions to create a new node;
d) non terminal(φ) creates a non-terminal node associated
with the formula φ; e) partition(S, φ) splits the set of signals
S into satisfying and non-satisfying signals with respect to
φ; and f) storeInLeaf (L, S) stores the signals S in leaf L.

Remark 5.1: Alg. 2 operates on a single leaf of the tree at
the time and only the signals belonging to that specific leaf
are required to be in memory. Therefore, this approach can
potentially handle large datasets. Alternately, if all accumu-
lated signals can be stored in memory, the addition of new
signals can be parallelized over different leaves.

B. Primitive evaluation and node creation

Hypothetically, if an infinite set of signals S∞ was availa-
ble at a leaf, we would be able to pick the best formula
to split the signals, both in terms of primitive and its
parameters, with respect to the impurity measure (2). Assume
that φbst1 (= ψbst1(θbst1)) is this formula, corresponding
to the primitive ψbst1 with optimal valuation θbst1. Assume
also that φbst2 is the best formula obtainable with any other
primitive, say ψbst2, we would obviously have:

MG(S∞, φbst1)−MG(S∞, φbst2) > 0 (3)

That is, primitive ψbst1 provides an overall higher impurity
reduction (purity gain) than ψbst2. With a finite amount of
data, it is not possible to be sure about which formula is
the best. However, some probabilistic guarantees on the best
overall primitive to pick can be obtained using the finite set

of signals S collected so far in the leaf. Following the idea
initially proposed in [9], a bound is derived on the difference
of purity gains (using just the signals S available), such that,

if MG(S, φbst1)−MG(S, φbst2) > ε(S, δ) (4)

then Pr(∆MG(S∞, φbst1, φbst2) > 0) ≥ 1− δ (5)

In other terms, if, on the S signals available, the difference
between the misclassification gain of the best formula φbst1,
obtained with the best primitive ψbst1, and the misclassifi-
cation gain of the formula φbst2, obtained with the second
best primitive ψbst2, is greater than a certain ε then, with
probability greater than 1 − δ, ψbst1 is indeed better then
ψbst2 (as if we had access to infinite signals S∞). Moreover,
if (4) holds and since there are |P1| primitives, we have that
ψbst1 is the best primitive with probability (1− δ)(|P1|−1).

In literature [9]–[11], several approaches have been pur-
sued to obtain a value for ε in (4) in order to guarantee (5).
They vary on the impurity measure investigated and on
the concentration inequality (Hoeffding, McDiarmid, etc) or
probabilistic approximation used. In this paper, we employ
the bound recently derived in [11]:

ε(S, δ) = z1−δ
1√
2|S|

(6)

where z1−δ is (1− δ)-th quantile of the normal distribution.
In general, ε depends on the confidence threshold δ and on
the cardinality of S. ε grows as δ approaches 0 (i.e., we
want more confidence) and becomes smaller as the number of
signals acquired increases (i.e., we collected more evidence).

Remark 5.2: It may happen that two primitives are almost
equally good in terms of impurity reduction. In this scenario,
a large number of signals would be required to assess the best
one. To avoid a long decision time, the split of a leaf can
be forced when more than Nmax signals have been collected
(tie breaking). Even in this scenario, the probabilistic bound
is useful to speed up the computation because it can be
employed to progressively eliminate all the non-promising
primitives from further analysis, that is, the primitives that
compared with the current best satisfy the condition in (4).

The arguments previously discussed are used in the im-
plementation of the function evalLeafStatus() for Alg. 2.
This function takes as input arguments the set of signals
S collected so far in the leaf, the current set of candidate
PSTL primitives P̃ ⊆ P1, and the optimal parameters for
each primitive in P̃ , that is {θi}|P̃|1 . It returns the updated
set of PSTL primitives to consider in the future P̃ , the
best splitting formula φbst1, and a boolean createNode that
indicates whether the leaf should become a new non-terminal
node. evalLeafStatus() performs three major actions. First,
it finds the best primitive, that is, the one associated with the
highest misclassification gain. Second, it removes all the non-
promising primitives from set P̃ by checking them against
the best primitive using (4). Third, it sets createNode =
True if only one primitive is left in set P̃ , or if the number of
signals in the leaf has exceeded the maximum |S| > Nmax.

2060

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

Island

Land

Peninsula

Open
Sea

H
ar

b
o

r

Fig. 2. Naval Surveillance dataset. The vessels behaving normally are
shown in green. The magenta and blue trajectories represent two types of
anomalous paths (human trafficking and terrorist activity, respectively).

The specific values of the probability confidence threshold
δ in (5) and of the maximum number of signals Nmax are
meta-parameters of Alg. 2 and can be decided by the user.

Remark 5.3: Further considerations are possible during
the leaf evaluation. For example, even if a good primitive has
been found, a node creation can be deferred when the leaf
contains mostly signals belonging to the same class. These
considerations will be the subject of future work.

VI. CASE STUDIES

We present two case studies to illustrate the effectiveness
of the proposed algorithm and to analyze its behaviour. The
first case study is a maritime surveillance problem, which
was initially proposed in [5]. The second case study is a
fault detection problem in an automotive powertrain system.
This dataset was obtained by modifying a built-in Simulink
model for the purposes of our investigation.

We implemented the algorithms described in Sec. V
using MATLAB. The built-in Particle Swarm solver was
used for the parameter optimization problem. To assess the
performance of the proposed method we used a 5-fold cross-
validation scheme [12]. One round of cross-validation entails
partitioning the dataset into two subsets, performing the
training on one subset, and the evaluation of the error on the
other (testing). The training signals are presented to Alg. 1
one at the time. The results for each round are averaged to
obtain a single estimate of the misclassification rate (MCR)
and its standard deviation (STD). We ran our experiments
on a PC with an Intel 5930K CPU and 16 GB RAM.

A. Naval Surveillance

This dataset emulates a maritime surveillance problem,
where the goal is to detect suspicious vessels approaching
the harbor from sea by looking at their trajectories [5].

The trajectories are represented with planar coordinates
[x(t), y(t)] and were generated using a Dubins’ model with
additive Gaussian noise. Three types of scenarios were con-
sidered: one normal and two anomalous. In the normal sce-
nario, a vessel approaching from sea heads directly towards

the harbor. In the first anomalous scenario, compatible with
human trafficking, a ship veers to the island and heads to the
harbor next. In the second anomalous scenario, compatible
with terrorist activity, a boat tries to approach other vessels
in the passage between the peninsula and the island and then
veers back to the open sea.

The dataset is made of 2000 total traces, with 61 sample
points per trace. There are 1000 normal traces and 1000
anomalous. Some sample traces are shown in Fig. 2. Using
the cross-validation procedure, we obtained a mean MCR of
1.45% (STD 0.88%). The mean runtime (to process all the
signals in the training set) was about 140 seconds per cross-
validation round. A sample formula, obtained in one of the
rounds after processing 1600 signals, is:

φ = (φ1 ∧ φ2) ∨ (¬φ1 ∧ (φ3 ∨ (¬φ3 ∧ φ4))) (7)
φ1 = G[211,295)(x ≤ 18.6) φ2 = G[69.7,158)(y > 23.7)

φ3 = G[97.9,299)(y ≤ 32.4) φ4 = F[61,178)(x ≤ 22.2)

B. Fuel Control System

We also investigated a fuel control system for a gasoline
engine. The key quantity in the system is the air-to-fuel
ratio, that is, the ratio between the mass of air and the
mass of fuel in the combustion process. The system has
one main output, the air-to-fuel ratio, one control variable,
the fuel rate, and two inputs, the engine speed and the
throttle command. The system estimates the correct fuel
rate to achieve the target stoichiometric ratio by taking into
account four sensor readings. Two sensors are related directly
to the inputs: the engine speed and the throttle angle. The
remaining two sensors provide feedback information: the
EGO sensor reports the amount of residual oxygen present
in the exhaust gas, and the MAP sensor reports the (intake)
manifold absolute pressure.

Faults were artificially injected in both the EGO and MAP
sensors with a random arrival time and with a random value.
A total of 1200 simulations were performed, obtaining 600
normal traces and 600 anomalous, that is, with at least one
faulty sensor. For every trace, we collected 200 samples
from the EGO and MAP sensors. Using the cross-validation
procedure, we obtained a mean MCR of 2.17% (STD 1.26%).
The mean runtime was 115 seconds per round. A sample
formula obtained during one round is reported in (9).

VII. DISCUSSION

The maritime surveillance case study was also investigated
in [5], with their batch SVM-based TLI approach, and
in [6], using a batch decision tree algorithm. Therefore,
some comparisons can be made. In terms of classification
performance, the accuracy of the online algorithm presented
here outperforms the results obtained in [5], improving the
misclassification rate by a factor of 20, and is on par with
the results of the offline algorithm in [6]. The execution
time is not easily comparable because the problem setting
is different. Specifically, both [5] and [6] present offline
algorithms, that is, they process the whole dataset in a
single batch and produce a formula, whereas the algorithm

2061

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200 1400 1600

Number of training signals

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
M

C
R

)

Train Set (Incremental)

Test Set (Full)

Fig. 3. MCR as function of the number of signal processed (Naval dataset).
In blue, evolution of MCR computed on training signals (as seen by the
algorithm). In red, evolution of MCR computed on an independent test set.

proposed here processes the dataset one signal at a time and
produces a new formula after each addition. To elaborate
the whole naval surveillance dataset, Alg. 1 is around 6 times
faster than [5], and is roughly 2.5 times slower than the batch
decision-tree algorithm in [6].

It is interesting to analyze how Alg. 1 performs as signals
are incrementally processed. Fig. 3 displays how two error
rates evolve as training signals from the naval dataset are
presented to the algorithm. The first, in blue, is the misclas-
sification rate on the set of training signals seen so far by the
algorithm, while the second, in red, is the misclassification
rate respect an independent (fixed) test set. As expected, the
functions are flat for ample intervals with jumps at the points
where the algorithm creates a new node in the tree. At these
points, the corresponding formula becomes more complex
(longer) and, generally, the misclassification rate decreases.

The evolution of the errors on the training and test data
provides valuable information. For instance, if the training er-
ror decreases while the test error remains stable or increases,
the formula inferred is getting overly specific to the training
data and will not generalize well on unseen data (overfitting).
From Fig. 3, it also clear that after a certain number of
signals has been processed, adding more signals, while still
increasing the complexity of the formula, does not improve
the classification accuracy significantly. This information can
be exploited to stop early the learning process (that is, before
the whole dataset is processed) and focus on a reasonably
accurate and more interpretable formula. For example in the
naval case study, by looking at Fig. 3, if we stop after 420
signals have been processed (after around 30 seconds), we
obtain a simpler formula (compare with (7)):

φ = (φ1 ∧ φ2) ∨ (¬φ1 ∧ φ3) (8)
φ1 = G[211,295)(x ≤ 18.6) φ2 = G[69.7,158)(y > 23.7)

φ3 = G[97.9,299)(y ≤ 32.4)

with an associated MCR of 2.5%. Notice also the insight we
can gain from the English translation of (8): “Normal vessels’
x coordinate is below 18.6 during the last 80 minutes, i.e.,

they approach and remain at the port”, and “normal vessels’
y coordinate never go below 23.7 in the time interval between
69.7 and 158 minutes, i.e., they do not approach the island”.

Likewise, for the automotive case study, by stopping the
learning process after 522 signals, we get the formula (x1

corresponds to the EGO sensor):

φ = F[59.4,59.7)(x1 > .394) ∧G[24.2,59.5)(x1 ≤ .896) (9)

with an associated MCR of 2.9%.

VIII. CONCLUSION

We presented a method for learning signal classifiers in
form of STL formulae incrementally from data. We exploited
the connection between decision trees and STL formulae. In
our algorithm, a new node is created only when some condi-
tions on the overall best primitive to pick are attained. This
strategy avoids any pruning and can handle large datasets.
Finally, we argued that the evolution of the misclassification
rate provides information on the trade-off between formula
complexity and its accuracy.

REFERENCES

[1] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric iden-
tification of temporal properties,” in Runtime Verification. Springer,
2012, pp. 147–160.

[2] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric
temporal logic properties in model-based design for cyber-physical
systems,” International Journal on Software Tools for Technology
Transfer, pp. 1–15, Feb. 2017.

[3] X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia, “Mining Requi-
rements from Closed-Loop Control Models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. PP,
no. 99, pp. 1–1, 2015.

[4] S. Bufo, E. Bartocci, G. Sanguinetti, M. Borelli, U. Lucangelo,
and L. Bortolussi, “Temporal Logic Based Monitoring of Assisted
Ventilation in Intensive Care Patients,” in Leveraging Applications of
Formal Methods, Verification and Validation, ser. Lecture Notes in
Computer Science. Springer, Oct. 2014, no. 8803, pp. 391–403.

[5] Z. Kong, A. Jones, and C. Belta, “Temporal Logics for Learning and
Detection of Anomalous Behavior,” IEEE Transactions on Automatic
Control, vol. 62, no. 3, pp. 1210–1222, Mar. 2017.

[6] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
Decision Tree Approach to Data Classification Using Signal Temporal
Logic,” in Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’16. New York, NY,
USA: ACM, 2016, pp. 1–10.

[7] A. Donzé and O. Maler, “Robust Satisfaction of Temporal Logic over
Real-Valued Signals,” in Formal Modeling and Analysis of Timed
Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, no. 6246, pp. 92–106.

[8] P. E. Utgoff, N. C. Berkman, and J. A. Clouse, “Decision Tree
Induction Based on Efficient Tree Restructuring,” Machine Learning,
vol. 29, no. 1, pp. 5–44, Oct. 1997.

[9] P. Domingos and G. Hulten, “Mining High-speed Data Streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’00. New York,
NY, USA: ACM, 2000, pp. 71–80.

[10] R. Jin and G. Agrawal, “Efficient Decision Tree Construction on Stre-
aming Data,” in Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’03.
New York, NY, USA: ACM, 2003, pp. 571–576.

[11] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “A New
Method for Data Stream Mining Based on the Misclassification Error,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 5, pp. 1048–1059, May 2015.

[12] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge
university press, 1996.

2062

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:06:41 UTC from IEEE Xplore. Restrictions apply.

