
1528 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Optimal Temporal Logic Control for Deterministic
Transition Systems With Probabilistic Penalties

Mária Svoreňová, Student Member, IEEE, Ivana Černá, and Calin Belta, Senior Member, IEEE

Abstract—We consider an optimal control problem for a
weighted deterministic transition system required to satisfy a con-
straint expressed as a linear temporal logic (LTL) formula over its
labels. By assuming that the executions of the system incur time-
varying penalties modeled as Markov chains, our goal is to min-
imize the expected average cumulative penalty incurred between
consecutive satisfactions of a desired property. Using concepts
from theoretical computer science, we provide two solutions to
this problem. First, we derive a provably correct optimal strategy
within the class of strategies that do not exploit values of penalties
sensed in real time. Second, we show that by taking advantage of
locally sensing the penalties, we can construct heuristic strategies
leading to lower collected penalty. While still ensuring satisfaction
of the LTL constraint, we cannot guarantee optimality in the latter
case. We provide a user-friendly implementation of the proposed
algorithms and analysis of two case studies.

Index Terms—Linear temporal logic (LTL), optimal control.

I. INTRODUCTION

T EMPORAL logics, such as computation tree logic (CTL)
and linear temporal logic (LTL), have been customar-

ily used to specify correctness of computer programs and
digital circuits modeled as finite-state transition systems [1].
The problem of analyzing such a model against a temporal
logic formula, known as formal analysis or model checking,
has received a lot of attention during the past 30 years, and
efficient algorithms and software tools are available [2], [3].
On the other hand, the formal synthesis problem, in which the
goal is to design or control a system from a temporal logic
specification, has not been studied extensively until recently.
Latest results include the use of model checking techniques
in control of deterministic systems [4], games for controlling
nondeterministic systems [5], linear programming and value
iteration for controlling Markov decision processes [1], [6].

Manuscript received December 19, 2013; revised June 17, 2014 and
September 14, 2014; accepted November 24, 2014. Date of publication
December 18, 2014; date of current version May 21, 2015. This work was
supported in part by Masaryk University under Grants GAP202/11/0312 and
LH11065, in part by Boston University by the Office of Naval Research under
Grants MURI N00014-09-1051 and MURI N00014-10-10952, and in part by
the National Science Foundation under Grant CNS-1035588. Recommended
by Associate Editor S. Takai.

M. Svoreňová and I. Černá are with the Faculty of Informatics, Masaryk
University, 60200 Brno, Czech Republic (e-mail: svorenova@mail.muni.cz;
cerna@muni.cz).

C. Belta is with the Department of Mechanical Engineering and Division
of Systems Engineering, Boston University, Boston, MA 02215 USA (e-mail:
cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2014.2381451

Through the use of abstractions, such techniques have also
been used for infinite systems [7]–[12]. Alternatively, one can
construct a discrete model using, e.g., [13]–[16], to which the
above synthesis methods can be applied.

In formal synthesis, the connection between optimal and
temporal logic control is an intriguing problem with a poten-
tially high impact in applications. By combining the two areas,
the goal is to optimize the behavior of a system subject to
correctness constraints. For example, consider a mobile robot
involved in a surveillance mission in a dangerous area and under
tight fuel and time constraints. The correctness requirement is
a temporal logic specification, e.g., “alternately keep visiting
A and B and always avoid C,” while the resource constraints
translate to minimizing a cost function over the feasible trajec-
tories. While optimal control is a mature discipline and formal
synthesis is fairly well understood, optimal formal synthesis is
a largely open area.

In this paper, we focus on finite weighted deterministic tran-
sition systems with correctness constraints given as formulas of
LTL. We assume that every state of the system is associated
with a time-varying penalty. The penalties can be used to
encode dynamic features of the system such as energy or time
demands for the mobile robot that change according to traffic
load. The concept of such dynamic values is well adopted, e.g.,
in reinforcement learning [17] with applications in robotics,
games or economics. Here, we consider probabilistic penalties
defined as Markov chains that are used to model environmental
phenomena with known statistics such as the traffic load or the
value of a stock. Motivated by persistent surveillance robotic
missions, our goal is to minimize the expected average cumu-
lative penalty incurred between consecutive satisfactions of a
property associated with some states of the system, while at the
same time satisfying an additional temporal constraint. Also
from robotics comes our assumption that in executions of the
system, the penalty values can only be sensed locally in close
proximity from the current state. We design two algorithms that
bring together concepts from automata-based model checking,
graph theory, and game theory. The first computes an offline,
optimal control strategy that uses only the a priori known
transition probabilities of the penalties’ Markov chains, but
does not exploit their actual values in real time. Up to special
cases, the optimal strategy requires infinite memory. We show
that using simple feedback, the strategy can be implemented
efficiently. The second proposed algorithm shows that by taking
advantage of the local sensing, we can design an online control
strategy that, while still satisfying the temporal specification,
provides lower value of the optimization function. The online
strategy is a heuristic that locally improves the offline strategy

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1529

TABLE I
LIST OF THE MOST FREQUENTLY USED SYMBOLS AND THEIR MEANING

based on local sensing and simulation over a user-defined
planning horizon. While we can prove optimality of the offline
strategy among the strategies that disregard local sensing, it is
intractable to construct or use an optimal strategy among those
that utilize it. We also suggest a method to construct a whole
class of online strategies with good expected behaviors.

This paper is related to [4], [18]–[20], which also focus on
optimal control for weighted deterministic transition systems
with temporal constraints. In [4], the authors develop a control
strategy that minimizes the maximum weight between con-
secutive visits to a given set of states, subject to constraints
expressed as LTL formulas. In addition to weights, transitions
in [18] are assigned with costs and a strategy is constructed
that minimizes the weighted average cost, while satisfying an
LTL formula. The proposed solution is related to our offline
approach, where we disregard the local sensing of penalties
and consider only their expected, static value. We address this
correlation and our contribution over [18] in more detail in
the following sections. Finally, time-varying, locally sensed
rewards with unknown dynamics in the states of the system
were introduced in [19]. The authors present an online receding
horizon control strategy satisfying an LTL specification that is
designed to maximize rewards collected locally. However, the
solution does not have any global optimality guarantees. This
approach was generalized in [20], where the authors assume an
LTL specification that includes persistent surveillance. The ob-
jective is to maximize collected rewards between satisfactions
of the surveillance property. As in [19], there are no optimality
guarantees. Our contribution over [19], [20] is threefold. First,
in this work we consider expected average behavior in infinite
time instead of local finite horizon behavior. Second, we show
that optimal or effective strategies can be constructed. Finally,
we present two types of control strategies, offline and online,
that offer different guarantees and results.

Preliminary results of this work appeared in [21], where we
considered a particular penalty model that is only a special case
of the Markov chain considered here. In addition to [21], this
paper includes a detailed analysis between the offline and online
strategies, a class of heuristic online strategies, an improved
implementation, and several simulation results.

This paper is organized as follows. In Section II, we provide
the necessary definitions. For readers’ convenience, Table I lists
the most frequently used symbols. The problem is formally
stated in Section III and Section IV contains our main results.
Finally, in Section V, we discuss simulation results.

II. PRELIMINARIES

A. Deterministic Transition System

Definition 1: A weighted deterministic transition system
(TS) is a tuple T = (S, T,AP,L,w), where S is a nonempty
finite set of states, T ⊆ S × S is a transition relation, AP is
a nonempty finite set of atomic propositions, L : S → 2AP

is a labeling function and w : T → R
+ is a weight function.

We assume that for every s ∈ S there exists s′ ∈ S such
that (s, s′) ∈ T . An initialized transition system is a TS T =
(S, T,AP,L,w) with a distinctive initial state sinit ∈ S.

A run of a TS T is an infinite sequence ρ = s0s1 . . . ∈ Sω

such that for every i ≥ 0 it holds (si, si+1) ∈ T . We use inf(ρ)
to denote the set of all states visited infinitely many times
in the run ρ and RunT (s) for the set of all runs of T that
start in s ∈ S. Let RunT =

⋃
s∈S RunT (s). A finite run σ =

s0 . . . sn of T is a finite prefix of a run of T and RunTfin(s)
denotes the set of all finite runs of T that start in s ∈ S.
Let RunTfin =

⋃
s∈S RunTfin(s). The length |σ|, or number of

stages, of a finite run σ = s0 . . . sn is n+ 1 and last(σ) = sn
denotes the last state of σ. With slight abuse of notation, we
use w(σ) to denote the weight of a finite run σ = s0 . . . sn,
i.e., w(σ) =

∑n−1
i=0 w((si, si+1)). Moreover, w∗(s, s′) denotes

the minimum weight of a finite run from s to s′. Specifically,
w∗(s, s) = 0 for every s ∈ S and if there does not exist a run
from s to s′, then w∗(s, s′) = ∞. For a set S ′ ⊆ S we let
w∗(s, S ′) = min

s′∈S′
w∗(s, s′). We say that a state s′ and a set

S ′ is reachable from s, iff w∗(s, s′) 	= ∞ and w∗(s, S ′) 	= ∞,
respectively.

Every run ρ = s0s1 . . . ∈ RunT , resp. σ = s0 . . . sn ∈
RunTfin, induces a word z = L(s0)L(s1) . . . ∈ (2AP)

ω
, resp.

z = L(s0) . . . L(sn) ∈ (2AP)
+

, over the power set of AP .
A cycle of the TS T is a finite run cyc = c0 . . . cm of T for

which it holds that (cm, c0) ∈ T .
Definition 2: A subsystem of a TS T = (S, T,AP,L,w) is

a TS U = (SU , TU , AP, L|U , w|U), where SU ⊆ S and TU ⊆
T ∩ (SU × SU). We use L|U to denote the labeling function
L restricted to the set SU . Similarly, we use w|U with the
obvious meaning. If the context is clear, we use L,w instead
of L|U , w|U . A subsystem U of T is called strongly connected
if for every pair of states s, s′ ∈ SU , there exists a finite run
σ ∈ RunUfin(s) such that last(σ) = s′. A strongly connected
component (SCC) of T is a maximal strongly connected sub-
system of T . We use SCC(T) to denote the set of all strongly
connected components of T .

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1530 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Every state of a TS T belongs to at most one strongly
connected component of T . Hence, the cardinality of the set
SCC(T) is bounded by the number of states of T .

Definition 3: Let T = (S, T,AP,L,w) be a TS. A control
strategy for T is a function C : RunTfin → S such that for every
σ ∈ RunTfin, it holds that (last(σ), C(σ)) ∈ T .

A strategy C for which C(σ1) = C(σ2), for all finite runs
σ1, σ2 ∈ RunTfin with last(σ1) = last(σ2), is called memo-
ryless. In that case, C is a function C : S → S. A strategy
is called finite-memory if it can be defined as a tuple C =
(M, next, trans, start), where M is a finite set of modes, trans :
M × S → M is a transition function, next : M × S → S se-
lects a state of T to be visited next, and start : S → M selects
the starting mode. A strategy that is not finite-memory is called
infinite-memory.

A run induced by C is a run ρC = s0s1 . . . ∈ RunT for
which si+1 = C(ρ

(i)
C) for every i ≥ 0. For every s ∈ S, there

is exactly one run induced by C that starts in s. A finite run
induced by C is σC ∈ RunTfin, which is a finite prefix of some
ρC . Let C be a strategy, finite-memory or not, for a TS T . For
every state s ∈ S, the run ρC ∈ RunT (s) induced by C satisfies
inf(ρC) ⊆ SU for some U ∈ SCC(T) [1]. We say that C leads
T from the state s to the SCC U .

B. Linear Temporal Logic

Definition 4: Linear temporal logic (LTL) formulas over the
set AP are formed according to the following grammar:

φ ::= true | a | ¬φ | φ ∧ φ | Xφ | φ Uφ | Gφ | Fφ

where a ∈ AP is an atomic proposition, ¬ and ∧ are standard
Boolean connectives, and X (next), U (until), G (always) and
F (eventually) are temporal operators.

The semantics of LTL is defined over words over 2AP [1],
such as those generated by the runs of a TS T . For example, a
word w ∈ (2AP)

ω
satisfies Gφ and Fφ if φ holds in w always

and eventually, respectively. If the word induced by a run of T
satisfies φ, we say that the run satisfies φ. We call φ satisfiable
in T from s ∈ S if there exists ρ ∈ RunT (s) that satisfies φ.

Having an initialized TS T and an LTL formula φ over AP ,
the formal synthesis problem aims to find a strategy C for T
such that the run ρC ∈ RunT (sinit) induced by C satisfies φ.
In that case we also say that the strategy C satisfies φ. The
formal synthesis problem can be solved using principles from
automata-based model checking [1]. Specifically, φ is translated
to a Büchi automaton and the system combining the Büchi
automaton and the TS T is analyzed.

Definition 5: A Büchi automaton (BA) is a tuple B =
(Q, 2AP , δ, q0, F), where Q is a nonempty finite set of states,
2AP is the alphabet, δ ⊆ Q× 2AP ×Q is a transition relation
such that for every q ∈ Q, a ∈ 2AP , there exists q′ ∈ Q such
that (q, a, q′) ∈ δ, q0 ∈ Q is the initial state, and F ⊆ Q is a set
of accepting states.

A run q0q1 . . . Q
ω of B is an infinite sequence such that for

every i ≥ 0 there exists ai ∈ 2AP with (qi, ai, qi+1) ∈ δ. The
word a0a1 . . . ∈ (2AP)

ω
is called the word induced by the run

q0q1 A run q0q1 . . . of B is accepting if there exist infinitely
many i ≥ 0 such that qi ∈ F .

For every LTL formula φ over AP , one can construct a
Büchi automaton Bφ such that the accepting runs are all and
only words over 2AP satisfying φ [22]. The size of such an
automaton is in the worst case exponential in the size of the
formula [23], but in practice the BA is often quite small and
manageable. We refer readers to [23], [24] for algorithms and
to online implementations such as [25], to translate an LTL
formula to a BA.

Definition 6: Let T = (S, T,AP,L,w) be an initialized TS
and B = (Q, 2AP , δ, q0, F) be a Büchi automaton. The product
P of T and B is a tuple P = (SP , TP , sPinit, AP, LP , FP , wP),
where SP = S ×Q, TP ⊆ SP × SP is a transition relation such
that for every (s, q), (s′, q′) ∈ SP it holds that ((s, q), (s′, q′)) ∈
TP if and only if (s, s′) ∈ T and (q, L(s), q′) ∈ δ, sPinit =
(sinit, q0) is the initial state, LP((s, q)) = L(s) is a label-
ing function, FP = S × F is a set of accepting states, and
wP(((s, q), (s

′, q′))) = w((s, s′)) is a weight function.
The product P can be viewed as an initialized TS with a set of

accepting states. Therefore, we adopt the definitions of a run ρ,
a finite run σ, its weight wP(σ), and sets RunP((s, q)), RunP ,
RunPfin((s, q)) and RunPfin from above. Similarly, a cycle cyc of
P , a strategy CP for P and runs ρCP , σCP induced by CP are
defined in the same way as for TS. We also adopt the definitions
of a subsystem and a strongly connected component. On the
other hand, P can be viewed as a weighted BA over the trivial
alphabet with a labeling function, which gives us the definition
of an accepting run of P .

Every run (s0, q0)(s1, q1) . . . and finite run
(s0, q0) . . . (sn, qn) of P projects to a run s0s1 . . . and a
finite run s0 . . . sn of T , respectively. Vice versa, for every
run s0s1 . . . and finite run s0 . . . sn of T , there exists a run
(s0, q0)(s1, q1) . . . and finite run (s0, q0) . . . (sn, qn). Similarly,
every strategy for P projects to a strategy for T and for every
strategy for T there exists a strategy for P that projects to
it. The projection of a finite-memory strategy for P is also
finite-memory.

Definition 7: Let P = (SP , TP , sPinit, AP, LP , FP , wP) be
the product of an initialized TS T and a BA B. An accepting
strongly connected component (ASCC) of P is an SCC U =
(SU , TU , AP, LP , wP) such that the set SU ∩ FP is nonempty
and we refer to it as the set FU of accepting states of U . We
use ASCC(P) to denote the set of all ASCCs of P that are
reachable from the initial state sPinit.

C. Markov Chain

Definition 8: A Markov chain (MC) is a tuple M =
(G,P, pinit), where G is a nonempty finite set of states, P :
G×G → [0, 1] is a transition probability function such that∑

g′∈G P (g, g′) = 1 for all g ∈ G and pinit : G → [0, 1] is an
initial distribution, i.e.,

∑
g∈G pinit(g) = 1.

A run of a Markov chain M = (G,P, pinit) is an infinite
sequence g0g1g2 . . . ∈ Gω such that for every i ≥ 0 it holds
P (gi, gi+1) > 0. A finite run of M is a finite prefix of a run
of M. A Markov chain is called strongly connected if for every
pair g, g′ ∈ G of states there exists a finite run from g to g′. We
call a Markov chain nontrivial if |G| > 1 implies that there exist
g, g′ ∈ G such that P (g, g′) ∈ (0, 1).

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1531

In this paper, we only consider strongly connected nontrivial
Markov chains due to reasons explained later in Rem. 2 and
we interpret them as discrete stochastic processes [26], i.e.,
time series of values that involve probabilistic indeterminacy.
We assume that the set of states G = {g0, g1, . . . gn} is an
ordered finite set of nonnegative real numbers and we refer
to G as the set of values. We use M(t) to denote the value
(or state) of Markov chain M at time t ∈ N0. The function
P can be represented as a square matrix AM = {Aij}, where
Aij = P (gi, gj).

Definition 9: The invariant distribution of a (strongly con-
nected nontrivial) Markov chain M = (G,P, pinit), G =
{g0, . . . , gn}, is a vector νM of size n+ 1 such that for every
0 ≤ i ≤ n it holds 0 ≤ νM(i) ≤ 1,

∑n
i=0 νM(i) = 1, and νM ·

AM = νM.
Intuitively, νM(i) is the probability of the Markov chain M

being in state gi, at any point of an execution. Note that the
invariant distribution can be effectively computed using the
above definition. The expected value of M is then

ME =

n∑
i=0

νM(i) · gi.

Assume that M(t) = gi for some t ≥ 0, 0 ≤ i ≤ n, and let k ≥
0. The simulated expected value

Msim(t, gi, k) =

n∑
j=0

(
Ak

M
)
ij
· gj

is the expected value of M at time t+ k assuming that its value
is gi at time t.

III. PROBLEM FORMULATION

Consider an initialized weighted transition system T =
(S, T,AP,L,w). The weight w((s, s′)) represents the amount
of time that the transition (s, s′) ∈ T takes and the system starts
at time 0. We use tn to denote the point in time after the nth
transition of a run, i.e., initially t0 = 0 and after a finite run
σ ∈ RunTfin(sinit) of length n+ 1 the time is tn = w(σ).

We assume there is a dynamic penalty associated with every
state of the transition system. The penalty in a state s ∈ S
is defined as a (strongly connected nontrivial) Markov chain
Ms. With slight abuse of notations, we use g(s, t) = Ms(t)
to denote the value of the penalty in a state s ∈ S at time
t ∈ N0 and gE(s) = MsE is the expected value of the penalty
in state s. Assuming that the penalty in state s is x at time t ∈
N0, gsim(s, t, x, k) = Mssim(t, x, k) is the simulated expected
value of the penalty in state s at time t+ k. We use gmax to
denote the maximum possible value of a penalty over all states.
Upon the visit of a state, the corresponding penalty is incurred.
The visit of the state does not affect the penalty’s value or
dynamics.

In every execution of the transition system T , the probabilis-
tic choices during the evolution of all penalties are resolved
in some particular way that we call penalty profile. A penalty
profile Δ determines, for a particular execution of the TS T ,
the value of penalty in every state at every time moment. The
penalty profile that is being followed in an execution is not

known to us. Nevertheless, we can compute the probability
Pr(Δ, k) that a penalty profile Δ will be followed in the first
k time units of an execution based on the Markov chains Ms,
s ∈ S.

Motivated by robotic applications, where various sensors
typically provide reasonable measurements only within certain
range, we assume that the penalties are sensed only locally
in close proximity from the current state. To be specific, we
assume a visibility range v ∈ N is given. If the system is in a
state s ∈ S at time t, the penalty g(s′, t) of a state s′ ∈ S is
observable if and only if s′ ∈ Vis(s) = {s′ ∈ S | w∗(s, s′) ≤
v}. The set Vis(s) is also called the set of states visible from
s. We consider the penalties to be an integral part of the TS
and thus, a strategy for the TS might consider in its decision
procedure not only the sequence of states that have been visited
in the past but also the penalties incurred and observed in the
meantime. Therefore, the run induced by a strategy C for T
may differ under different penalty profiles. We use ρC,Δ(s) to
denote the run induced by a strategy C under a penalty profile
Δ starting from a state s ∈ S.

The problem we consider in this paper combines the formal
synthesis problem with long-term optimization of the expected
amount of penalties incurred during the system’s execution. We
assume that the specification is given as an LTL formula φ of
the form

φ = ϕ ∧GFπsur (1)

where ϕ is an LTL formula over AP and πsur ∈ AP . This
formula requires that the system satisfies ϕ and surveys the
states satisfying the property πsur infinitely often. We say that
every visit of a state in Ssur = {s ∈ S | πsur ∈ L(s)} completes
a surveillance cycle. Specifically, starting from the initial state,
the first visit of Ssur at t > 0 completes the first surveillance
cycle of a run. Note that a surveillance cycle is not a cycle
in the sense of the definition of a cycle of a TS in Section II.
For a finite run σ such that last(σ) ∈ Ssur, 	(σ) denotes the
number of complete surveillance cycles in σ, otherwise 	(σ) is
the number of complete surveillance cycles plus one.

Remark 1: The form in (1) does not restrict the expressive-
ness of LTL since every LTL formula ϕ over AP is equivalent
to φ = ϕ ∧GFπsur, where πsur ∈ L(s) for every s ∈ S, i.e., it
holds that a run of the TS T satisfies φ if and only if it satisfies
ϕ. In this case, the long-term optimization objective minimizes
the expected average penalty incurred per stage [27].

The long-term optimization objective is defined as follows.
Let VT ,C : S → R

+
0 be a function such that VT ,C(s) is the

expected average cumulative penalty per surveillance cycle
(APPC) incurred under a strategy C for T starting from a state
s ∈ S:

Vτ,C(s) = lim sup
k→∞

∑
Δ

Pr(Δ, k) ·

k∑
i=0

g
(
ρC,Δ(i), w

(
ρ
(i)
C,Δ

))

	
(
ρ
(k)
C,Δ

)
(2)

where ρC,Δ ∈ RunT (s) is the run induced by C starting from
s under a penalty profile Δ.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1532 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Fig. 1. (a) Transition system modeling the robot (black dot) motion in a partitioned environment. There are two delivery locations shown in green, a base shown
in blue, and unsafe locations shown in red. (b) Transition matrix AMs of the Markov chain Ms that defines the penalty in a state s. (c) Graphical representation
of the function p : S → (0, 1). The values range over the set {0.1, . . . , 0.9}. Darker shades indicate higher values.

Problem 1: Let T = (S, T,AP,L,w) be an initialized TS,
with penalties defined by (strongly connected nontrivial)
Markov chains Ms, s ∈ S. Let v ∈ N be a visibility range and
φ an LTL formula over the set AP of the form in (1). Find a
strategy C for T such that C satisfies φ and among all strategies
satisfying φ, C minimizes the APPC value VT ,C(sinit) defined
in (2).

Note that a strategy that solves Problem 1 is dependent on
the penalty profiles and it defines an optimal control sequence
for each penalty profile separately. However, due to the prob-
abilistic nature of penalties, we are not able to predict their
values in the future precisely, i.e., we are not able to determine
the profile that is being followed during an execution. Hence,
even if we were able to construct the solution to Problem 1,
we do not have the means to use it. Therefore, we consider
the following relaxed version of Problem 1. Consider strategies
that are independent on the penalty profiles, i.e., ρC,Δ(s) =
ρC,Δ′(s) for any two penalty profiles Δ,Δ′ and a state s.
Note that such strategies may still consider the Markov chains
defining the penalties in states of the TS and their expected
values. For this type of strategies the value VT ,C(s) for a state
s ∈ S from (2) can be computed easily as follows:

Vτ,C(s) = lim sup
k→∞

k∑
i=0

gE (ρC(i))

	
(
ρ
(k)
C

) . (3)

Problem 2: Let T = (S, T,AP,L,w) be an initialized TS,
with penalties defined by (strongly connected nontrivial)
Markov chains Ms, s ∈ S. Let v ∈ N be a visibility range
and φ an LTL formula over the set AP of the form in (1).
Find a strategy C for T such that C is independent on penalty
profiles, it satisfies φ, and among all strategies independent on
penalty profiles and satisfying φ, it minimizes the APPC value
VT ,C(sinit) defined in (3).

In Section IV-C, we propose an algorithm to design a strategy
that solves Problem 2. Since the resulting strategy is inde-
pendent on penalty profiles, it does not take advantage of the
local sensing of penalties. It is computed in an offline manner
and we refer to it as the offline strategy or offline control.
While the offline strategy minimizes the APPC value among

strategies satisfying the formula that are independent on penalty
profiles, there may exist strategies that are dependent on penalty
profiles and while satisfying the formula, provide lower APPC
value than the offline control. We construct such a strategy
in Section IV-D. Since the strategy is dependent on penalty
profiles, it considers the penalties observed in real-time. This
online control is constructed by locally improving the offline
control according to the penalties observed from the current
state of the TS and their simulation over the next h time units,
where h ∈ N is a user-defined planning horizon. The online
strategy is a heuristic, and we also suggest a method to construct
a whole class of strategies with similar properties. In Section V,
we evaluate all designed control strategies on illustrative case
studies. All strategies synthesized in this work are infinite-
memory in general, but can be implemented efficiently using
simple technical improvements.

Example 1: Consider a robot whose motion in a grid-like
partitioned environment is modeled by the transition system
depicted in Fig. 1(a). The robot transports packages between
two delivery locations, marked green in Fig. 1(a). The blue state
marks the robot’s base location. There is a transition between
every two vertically, horizontally, and diagonally neighboring
states. The weight of a horizontal and vertical transition is 2,
for a diagonal transition it is 3. The Markov chain Ms

defining the penalty in a state s has the set of values G =
{0, 1/5, 2/5, 3/5, 4/5, 1}, the initial distribution is the uniform
distribution over G and the transition matrix is of the form
shown in Fig. 1(b). Intuitively, every penalty increases every
time unit by 1/5 and always when the penalty is 1, in the next
time unit the penalty remains 1 with nonzero probability p(s) or
it drops to 0 with nonzero probability 1− p(s), where p : S →
(0, 1) is a function over states of the system, defined in Fig. 1(c).
The visibility range v is 6. For example, in Fig. 1(a) the set
Vis(s) of states visible from the state s, with corresponding
penalties, is depicted as the blue-shaded area.

The mission for the robot is to transport packages between
the two delivery locations (labeled with propositions a and
b, respectively) and infinitely many times return to the base
(labeled with c), while avoiding unsafe locations (labeled with
u). At the same time, we wish to minimize the expected
average cumulative penalty incurred per transport. To model

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1533

this requirement, we add the property πsur to the label set of
both delivery locations. The corresponding LTL formula is

G (a ⇒ X(¬a U b)) ∧ G (b ⇒ X(¬b U a))

∧ GF c ∧ G(¬u) ∧ GF πsur. (4)

IV. SOLUTION

In this section, we present algorithms to construct the offline
control and online control strategies. We prove their correct-
ness, and discuss their complexity and usability.

A. Intuitive Description of the Approach

Both algorithms work with the product P =
(SP , TP , sPinit, AP, LP , FP , wP) of the initialized TS T
and a Büchi automaton Bφ for the LTL formula φ. We map
the penalties from T to P by defining M(s,q) = Ms for every
state (s, q) ∈ SP and g((s, q), t) = g(s, t) for every t ∈ N0.
We also adopt the visibility range v and the definition of the
set Vis((s, q)). We distinguish between control strategies for
P that are dependent on penalty profiles and those that are not,
i.e., between strategies for which the APPC value is computed
directly using the definition in (2) and those for which the
value can be computed easily using (3). The control strategies
for T are computed as projections of control strategies for P
with suitable properties.

In the offline algorithm presented in Section IV-C, we con-
struct a strategy C for T that solves Problem 2 as a projection of
a strategy Coff

P for P that is independent on penalty profiles. The
run induced by Coff

P visits the set FP infinitely many times and
at the same time, the APPC value VP,Coff

P
(sPinit) is minimal

among all strategies for P that are independent on penalty
profiles and visit the set FP infinitely many times. To construct
the strategy Coff

P , we leverage ideas from formal methods.
Using the automata-based approach to model checking, one can
construct a strategy Coff,φ

P for P that visits at least one of the
accepting states infinitely many times. On the other hand, using
graph theory, we can design a strategy Coff,V

P that achieves
the minimum APPC value among all strategies for P that are
independent on penalty profiles and do not cause an immediate,
unrepairable violation of φ, i.e., φ is satisfiable from every
state of the run induced by Coff,V

P . However, we would like
to have a strategy Coff

P satisfying both properties at the same
time. To achieve that, we draw inspiration from a game theoretic
technique in [28]. Intuitively, we combine two strategies Coff,φ

P
and Coff,V

P to create a new strategy Coff
P . The strategy Coff

P is
played in rounds, where each round consists of two phases. In
the first phase, we play the strategy Coff,φ

P until an accepting
state is reached. We say that the aim is to achieve the mission
subgoal. The second phase applies the strategy Coff,V

P . The
aim is to maintain the expected average cumulative penalty per
surveillance cycle in the current round, and we refer to it as
the average subgoal. The number of steps for which we apply
Coff,V

P is computed individually every time we enter the second
phase of a round. We prove the correctness of the proposed
algorithm, discuss its complexity and usability of the resulting
strategy for T . Most importantly, the resulting offline control

strategy is not a finite-memory strategy in general. Intuitively,
we need to perform more and more steps in every round of the
strategy. In Section IV-C, we discuss this matter in detail and
suggest technical improvements that reduce the number of steps
in every round and the usage of memory. The improvements
result in a strategy that is equivalent to the offline strategy in
the sense that it guarantees the satisfaction of the given LTL
formula and has the same APPC value as the offline control
strategy, but is no longer independent on penalty profiles.

The online algorithm described in Section IV-D constructs
a strategy for T that also provably guarantees the satisfaction
of given LTL formula but provides better or equal APPC than
the offline strategy. Hence, in the context of Problem 1 it is a
better solution than the offline control. It is however dependent
on penalty profiles, so it cannot be considered as a solution
to Problem 2. The online strategy is again computed as a
projection of a suitable strategy Con

P for the product P . We
obtain Con

P by locally improving the strategy Coff
P computed by

the offline algorithm. Intuitively, we compare applying Coff
P for

several steps to reach a specific state or set of states of P to
executing different local paths to reach the same state or set of
states. We consider a finite set of finite runs leading to the state
or set, containing the finite run induced by Coff

P . We then choose
the one that is expected to minimize the average cumulative
penalty per surveillance cycle incurred in the current round,
taking into account the currently observed penalties within the
visibility range, and apply the first transition of the chosen run.
The process continues until the state, or set, is reached, and
then it starts over again. For the same reasons as in the offline
algorithm, the resulting strategy for T is an infinite-memory
strategy. We again propose technical improvements to reduce
memory usage and computational cost that result in a strategy
for T that is equivalent to the online strategy, i.e., it guarantees
the satisfaction of the given formula and provides the same
APPC value. The online control strategy is a heuristic and we
suggest a procedure to design a whole class of heuristic online
strategies with similar properties.

B. Probability Measure

Let CP be a strategy for P that is independent on penalty pro-
files and let (s, q) ∈ SP . Let σCP ∈ RunPfin((s, q)) be a finite
run induced by CP starting from (s, q) and let τ ∈ [0, gmax]

+

be a sequence of length |σCP | such that there exists a penalty
profile for P for which the penalty

g
(
σCP (i), wP

(
σ
(i)
CP

))
= τ(i)

for every 0 ≤ i ≤ |σCP |. We call (σCP , τ) a finite pair. Anal-
ogously, an infinite pair (ρCP , κ) consists of the run ρCP ∈
RunP((s, q)) induced by the strategy CP and an infinite se-
quence κ ∈ [0, gmax]

ω such that there exists a penalty profile
for P for which the penalty

g
(
σCP (i), wP

(
σ
(i)
CP

))
= κ(i)

for every i ≥ 0. A cylinder set Cyl((σCP , τ)) of a finite pair
(σCP , τ) is the set of all infinite pairs (ρCP , κ) for which τ is a
prefix of κ.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1534 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Consider the σ-algebra generated by the set of cylinder sets
of all finite pairs (σCP , τ), where σCP ∈ RunPfin((s, q)). From
classical concepts in probability theory [29], there exists a
unique probability measure PrP,CP

(s,q) on the σ-algebra such that
for a finite pair (σCP , τ)

PrP,CP
(s,q) (Cyl ((σCP , τ)))

is the probability that the penalties incurred in the first |σCP |+
1 stages when applying the strategy CP in P from the state
(s, q) are given by the sequence τ , i.e.,

g
(
σCP (i), wP

(
σ
(i)
CP

))
= τ(i)

for every 0 ≤ i ≤ |σCP |. This probability can be computed
based on the Markov chains M(s,q), (s, q) ∈ SP and it is equal
to the sum of probabilities Pr(Δ, wP(σCP)) over all penalty
profiles Δ under which the above equation is satisfied. For a
set X of infinite pairs, an element of the above σ-algebra, the
probability PrP,CP

(s,q) (X) is the probability that under CP starting
from (s, q) the infinite sequence of penalties incurred in the
visited states is κ for some (ρCP , κ) ∈ X .

C. Offline Control

In this section, we construct a strategy Coff
P for P and prove

that its projection the offline control strategy C for T solves
Problem 2. All strategies in this subsection are independent
on penalty profiles, i.e., their APPC value can be computed
using (3).

The strategy Coff
P must visit the set FP infinitely many times

and hence, it must lead from sPinit to an ASCC. If the set
ASCC(P) is empty, the formula φ cannot be satisfied in T and
our algorithm terminates. Otherwise, for U ∈ ASCC(P), we
denote V ∗

U ((s, q)) the minimum expected average cumulative
penalty per surveillance cycle that can be achieved in U by a
strategy independent on penalty profiles starting from (s, q) ∈
SU . Since U is strongly connected, this value is the same for
all states in SU and is denoted by V ∗

U . It is associated with a
cycle cycVU = c0 . . . cm of U witnessing the value. We describe
the algorithm to compute V ∗

U and cycVU for U in the proof of Th.
1. In the remainder of this section, U = (SU , TU , AP, LP , wP)
is the ASCC of the product that minimizes V ∗

U and cycVU =
c0 . . . cm is the corresponding cycle.

Now, we design the strategies Coff,φ
P and Coff,V

P that are then
combined to create the strategy Coff

P . The strategy Coff,φ
P is

a memoryless strategy that from every (s, q) ∈ SP \ FU that
can reach the set FU , follows one of the finite runs with the
minimum weight from (s, q) to FU . Formally, for every (s, q) ∈
SP \ FU with w∗

P((s, q), FU) < ∞, we have Coff,φ
P ((s, q)) =

(s′, q′), where

wP ((s, q), (s′, q′)) = w∗
P ((s, q), FU)− w∗

P ((s′, q′), FU) .

The strategy Coff,V
P is a memoryless strategy given by the

cycle cycVU = c0 . . . cm. Similarly to the above strategy Coff,φ
P ,

for a state (s, q) ∈ SP \ cycVU with w∗
P((s, q), cyc

V
U) < ∞, the

strategy Coff,V
P follows one of the finite runs with the minimum

weight to cycVU . For a state ci ∈ cycVU , it holds Coff,V
P (ci) =

ci+1 mod (m+1). The strategy Coff,V
P has the following property.

Proposition 1: For the strategy Coff,V
P and every state

(s, q) ∈ SU it holds that for every ε > 0, there exists j(ε) ∈ N

such that if Coff,V
P is followed from the state (s, q) until at

least j(ε) surveillance cycles are completed, then the average
cumulative penalty per surveillance cycle incurred in the per-
formed finite run is at most V ∗

U + ε with probability at least
1− ε. Formally,

lim
k→∞

Pr
U,Coff,V

P
(s,q)

⎛
⎜⎜⎝
∑k

i=0 g

(
ρCoff,V

P
(i),wP

(
ρ
(i)

Coff,V
P

))

	

(
ρ
(k)

Coff,V
P

) ≤V ∗
U

⎞
⎟⎟⎠=1.

(5)

Proof: It holds that the product P with penalties defined
as MCs can be translated into a Markov decision process
(MDP) with static penalties. Together with the fact that the
cycle cyc∗U provides the minimum APPC value in the ASCC U ,
it implies that (5) is equivalent to the property of MDPs proved
in [28] regarding the minimum expected penalty per stage. �

Remark 2: Here we explain why we require that the Markov
chains defining the penalties of the TS T be nontrivial. Assume
there exists a state (s, q) ∈ SP with a trivial Markov chain
M(s,q), i.e., the penalty in (s, q) evolves deterministically,
not probabilistically. If we visit (s, q) infinitely many times
in different (not necessarily consequent) points in time, the
expected average penalty incurred in (s, q) might differ from
gE((s, q)). That can cause violation of Prop. 1.

Finally, we are ready to define the strategy Coff
P . It is played

in rounds, where each round consists of two phases, one for
each subgoal. The first round starts at the beginning of the
execution of the system in the initial state sPinit of P . Let i be
the current round. In the first phase of the round the strategy
Coff,φ

P is applied until an accepting state of the ASCC U is
reached. We use ki to denote the number of steps we played the
strategy Coff,φ

P in round i. Once the mission subgoal is fulfilled,
the average subgoal becomes the current subgoal. In this phase,
we play the strategy Coff,V

P until the number of completed
surveillance cycles in the second phase of the current round is
li = max{j(1/i), i · (ki + |SU |) · gmax}, where j(1/i) is from
Prop. 1.

Theorem 1: The offline control strategy C that results from
projecting the strategy Coff

P from P to T solves Problem 2 and
the APPC value VT ,C(sinit) = VP,Coff

P
(sPinit) = V ∗

U .
Proof: To prove that the offline strategy C satisfies the

LTL formula φ, we show that Coff
P guarantees infinite number of

visits of accepting states. Since the ASCC U is reachable from
the initial state sPinit and from the construction of Coff,φ

P , it
holds that every round of the strategy Coff

P finishes after a finite
number of steps and in every round an accepting state is visited.

To prove that the offline control strategy minimizes the APPC
value among all strategies that satisfy the LTL formula φ, we
first present the algorithm to compute the minimum APPC
value V ∗

U that can be achieved in an ASCC U and a cycle cycVU
of U witnessing the value. The idea is to reduce U to a TS
U that contains only the states labeled with the surveillance

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1535

Fig. 2. Algorithm for the reduction of an ASCC. We use . to denote the
concatenation of two finite sequences and

∑
gE(x) is the sum of expected

penalties gE(x(i)) for every state x(i) of a finite run x.

Fig. 3. Elimination of one state of an ASCC during the algorithm in Fig. 2.
The finite run run8 is the one of the runs run1 and run2.run4 that minimizes
the sum of expected penalties in the states of the run. Similarly, run9 is one
of the runs run7 and run5.run6.

proposition πsur and then apply Karp’s algorithm [30] that finds
a cycle with minimum value per edge also called the minimum
mean cycle for a directed graph with values on edges. The value
V ∗
U and cycle cycVU are synthesized from the minimum mean

cycle of U .
In Fig. 2, we present the algorithm that given an

ASCC U = (SU , TU , AP, LP , wP) of P returns a TS U =
(SUsur, TU , AP, LP , wU) and a function run : TU → RunUfin
with the following properties. For simplicity, we use singletons
such as u, ui to denote the states of P . For the TS U it holds
that (u, u′) ∈ TU if and only if there exists a finite run in
U from u ∈ SUsur to u′ ∈ SUsur with one surveillance cycle,
i.e., between u and u′ no state labeled with πsur is visited.
Moreover, the run run((u, u′)) = u0 . . . un is such that u = u0

and σ = u0 . . . unu
′ is the finite run in U from u to u′ with one

surveillance cycle that minimizes the sum of expected penalties
received during σ among all finite runs in U from u to u′ with
one surveillance cycle. The algorithm in Fig. 2 builds U and the
function run by eliminating the states from SU \SUsur one by
one, in arbitrary order. Fig. 3 demonstrates elimination of one
such state on an illustrative example.

We apply the Karp’s algorithm to the oriented graph
with vertices SUsur, edges TU and values on edges wU . Let

cycU = u0 . . . um be the minimum mean cycle of this graph.
We have

V ∗
U =

1

m+ 1

m∑
i=0

gE
(
run

(
(ui, ui+1 mod (m+1)

))

cycVU =run((u0,u1))run((um−1,um)) .run((um,u0)) .

It can be easily shown that all states of the cycle cycVU are
distinct. It follows that

1∣∣cycVU ∩ SUsur
∣∣

m∑
i=0

gE(ci) = V ∗
U .

When the APPC value and the corresponding cycle is computed
for every ASCC of P , we choose the ASCC that minimizes the
APPC value. We denote this ASCC U = (SU , TU , AP, LP , wP)
and cycVU = c0 . . . cm. Every strategy solving Problem 2 must
achieve APPC value V ∗

U .
Since the offline strategy C is a projection of the strat-

egy Coff
P , we have VT ,C(sinit) = VP,Coff

P
(sPinit). To show that

VP,Coff
P
(sPinit) = V ∗

U , let εi = 1/i for round i. From Prop. 1 and
the fact that li = max{j(1/i), i · (ki + |SU |) · gmax} it follows
that the average penalty per surveillance cycle in ith round after
its completion is at most

ki · gmax + |SU | · gmax + li (V
∗
U + εi)

li

≤ V ∗
U + εi +

1

i
(li ≥ i · (ki + |SU |) · gmax)

= V ∗
U +

2

i

with probability at least 1− (1/i). Therefore, in the limit,
the average cumulative penalty per surveillance cycle V ∗

U with
probability 1, independently on penalty profile. �

Complexity: The size of a BA for an LTL formula φ is in
2O(|φ|), where |φ| is the size of φ [23]. However, the actual
size of the BA is in practice often quite small. The size of
the product P is in O(|S| · 2O(|φ|)). To compute the minimum
weights w∗((s, q), (s′, q′)) between every two states of P we
use Floyd–Warshall algorithm taking O(|SP|3) time. Tarjan’s
algorithm [31] is used to compute the set SCC(P) in O(|SP|+
|TP|) time. The reduction of an ASCC U can be computed
in O(|SU | · |TU |2) time. The Karp’s algorithm [30] finds the
optimal APPC value and corresponding cycle in O(|SU | · |TU |)
time. The main pitfall of the algorithm is to compute the number
j(1/i) of surveillance cycles needed in the second phase of the
current round i according to Prop. 1. Intuitively, we need to con-
sider the finite run σCoff,V

P ,k induced by the strategy Coff,V
P from

the current state that contains k = 1 surveillance cycles, and
compute the sum of probabilities PrP,CP

(s,q) (Cyl((σCoff,V
P ,k, τ)))

for every τ with the average cumulative penalty per surveillance
cycle less or equal to V ∗

U + (2/i). If the total probability is at
least 1− (1/i), we set j(1/i) = k, otherwise we increase k
and repeat the process. For every k, there exist up to gmax to
the power of |σCoff,V

P ,k| sequences τ . This issue can be partially
overcome using the rule presented below.

Usability: The strategy Coff
P is not a finite-memory strategy

in general. The reason is that the number of surveillance cycles
that we need to perform in the second phase of round i is

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1536 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

increasing with i. Note that in the special case when there
exists a cycle cycVU of the SCC U corresponding to V ∗

U that
contains an accepting state, the memoryless strategy Coff,V

P for
the average subgoal maps to a strategy of T solving Problem 2,
which is therefore in the worst case finite-memory. To im-
prove the memory usage we suggest the following technical
improvements. Let Coff

P be the strategy for P that results from
applying the following rule to the strategy Coff

P . Let i be the
current round and ki the number of steps in the first phase
of the round. In the second phase we proceed as follows.
After completion of every surveillance cycle, check whether the
average penalty per surveillance cycle incurred in the current
round of the execution is above V ∗

U + (2/i), for the significance
of this value see the proof of Th. 1. If yes, continue with
the second phase of round i, otherwise start new round i+ 1.
Also, avoid performing the expensive computation of the value
j(1/i) until it is necessary, i.e., only compute the value once the
number of surveillance cycles performed in the second phase
of the round i is i · (ki + |SU |) · gmax and the average penalty
per surveillance cycle in the round i is still above V ∗

U + (2/i).

Note that the strategy Coff
P is dependent on penalty profiles

but it is equivalent to the strategy Coff
P in the meaning that it

provably guarantees infinite number of visits to the set FP of
accepting states and the APPC value of Coff

P is equal to the

APPC value of Coff
P , i.e., it is V ∗

U . Formally, the strategy Coff
P

may still require infinite memory. However, in our simulations
in Section V we demonstrate that the memory usage and the
amount of computation performed while using the strategy Coff

P
is significantly decreased comparing to the strategy Coff

P . More
specifically, the number of surveillance cycles performed in the
second phase of each round drops dramatically and the value
j(1/i) for round i needs to be computed only rarely, if ever.

Remark 3: By considering only the expected values of penal-
ties in states of the TS, the penalties can be seen as static in our
offline approach. This makes Problem 2 related to the problem
formulated in [18] for systems with static costs. In [18], the
optimality is achieved by persistently increasing the number of
visits to states under surveillance that leads to neglecting the
remaining part of the LTL specification over time. The authors
in [18] disregard such a strategy as undesirable. In our case,
the optimal strategy Coff

P performs only as many surveillance
cycles in every round as are needed for the expected average
penalty per surveillance cycle to be close enough to the optimal
value V ∗

U with probability 1, see Prop. 1 and the proof of Th. 1.
This allows us to efficiently implement Coff

P using feedback, see
the discussion on usability above. We demonstrate in Section V
that unlike the one in [18], our optimal strategy does not lead to
the undesirable, ever-increasing number of visits of surveillance
states.

Example 2: For the delivery system from Ex. 1, the Büchi
automaton generated for the LTL formula in (4) using [25]
has 16 states. The product P of the transition system and the
automaton contains 2 ASCCs and the chosen, optimal ASCC
U has 568 states. The projection of a cycle cycVU providing the
minimum expected average cumulative penalty per surveillance
cycle is depicted in magenta in Fig. 4 and the APPC value
associated with the cycle is V ∗

U = 4.35.

Fig. 4. Transition system for the delivery system example. The projection of
an optimal APPC cycle is shown in magenta.

The offline control has the following structure. In the first
phase of the first round, the aim of the strategy Coff

P for the
product is to reach an accepting state of the ASCC U using
a finite run of the minimum possible weight. When projected
to the TS, the robot starts from the base location and moves
to the top delivery location using a finite run of the minimum
possible weight. The first phase is completed one step after
the visit of the delivery location, when the product reaches an
accepting state, in total of k1 = 8 steps. The control proceeds
to the second phase of the first round. In the product, we first
reach the optimal APPC cycle cycVU as fast as possible and
then follow the cycle until l1 = max{576, j(1)} surveillance
cycles are completed. At the beginning of the second phase,
even though the robot might be in a state that lies on the cycle
shown in magenta in Fig. 4, the product is not yet on the cycle
cycVU . Therefore, in the TS the control does not yet follow the
cycle depicted in Fig. 4. In the product, the closest state of
the optimal APPC cycle that can be reached is the one that
projects to the bottom delivery location. That means, the robot
follows one of the shortest finite runs from the top to the bottom
delivery location. The round then proceeds with l1 alternative
visits of the two delivery locations by following the cycle shown
in magenta in Fig. 4. Once completed, the control proceeds to
the second round. Every round i ≥ 2 starts from either the top
or bottom delivery location. In the first phase of the round, the
robot first moves from the top, or bottom, delivery location to
the base location and then continues delivering the packages by
moving to the bottom, or top, delivery location, respectively. In
both cases the first phase of the round ends after 15 steps, i.e.,
li = 15 for every i ≥ 2. In the second phase, the robot keeps
delivering packages between the top and the bottom delivery
locations until the number of visits of the two locations is
li = max{i · 583, j(1/i)}.

Note that the robot follows a predetermined sequence of
transitions given by the strategy Coff

P , without considering the
penalties incurred or observed in real-time. Also, the robot
visits the base location only during the first phase of rounds

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1537

and as the number li grows very fast with i, the time between
consecutive visits to the base grows rapidly. By applying
the rule from the above discussion on the usability of the
offline control, we can visit the base more often by monitoring
the amount of penalties incurred in the current round and
decreasing the number of performed surveillance cycles. As
we demonstrate in Section V-B, the rule dramatically improves
the visit rate of the base while not affecting the convergence to
the optimal value V ∗

U .

D. Online Control

The online algorithm locally improves strategy Coff
P designed

in the previous section according to the values of penalties
observed from the current state and their simulation in the next
h time units, where h ∈ N is a user-defined planning horizon.
The resulting strategy Con

P as well as its projection to the TS T ,
the online control strategy, are therefore dependent on penalty
profiles. The strategy Con

P is again played in rounds. In each step
of the strategy Con

P , we consider a finite set of finite runs starting
from the current state, choose one according to an optimization
function, and apply its first transition.

In this section, we use the following notation. We use sin-
gletons such as u, ui to denote the states of P . Let σall ∈
RunPfin(sPinit) denote the finite run executed by P so far. Let i
be the current round of strategy Con

P and σi = ui,0 . . . ui,k the
finite run executed so far in this round, i.e., ui,k is the current
state of P . We use ti,0, . . . , ti,k to denote the points in time
when the states ui,0, . . . , ui,k were visited, respectively.

The optimization function f : RunPfin(ui,k) → R
+
0 assigns

every finite run σ = u0 . . . un starting from the current state
value f(σ) that is the expected average cumulative penalty per
surveillance cycle that would be incurred in round i, if run σ
was to be executed next, i.e.,

f(σ) =

k∑
j=0

g(ui,j , ti,j) +
n∑

j=1

g
(
uj , ti,k + wP

(
σ(j)

))
	 (σi.σ(1).last(σ))

(6)

where

g
(
uj , ti,k+wP

(
σ(j)

))
=

⎧⎪⎨
⎪⎩
gsim

(
uj , ti,k,g(uj , ti,k),wP

(
σ(j)

))
if uj ∈Vis(ui,k), wP

(
σ(j)

)
≤h

gE(uj)
otherwise.

Intuitively, if the penalty in state uj is visible in the current
time moment and uj would have been visited within the next
h time units in run σ, the value g(uj , ti,k + wP(σ

(j))) refers
to the simulated expected penalty in uj at the time of its visit,
as defined in Section II-C. Otherwise, we do not simulate the
penalty over time and consider only its expected value gE(uj).

For a set of states X ⊆ SP , we define a shortening
indicator function IX : TP → {0, 1} such that for tP =

((s1, q1), (s2, q2)) ∈ TP , we have

IX(tP) =
{
1 if w∗

P ((s1, q1), X) > w∗
P ((s2, q2), X),

0 otherwise.
(7)

In words, the indicator has value 1 if the transition leads strictly
closer to X , and 0 otherwise.

Now we are ready to formally define the strategy Con
P . In

the first phase of every round, we locally improve the strategy
Coff,φ

P computed in Section IV-C that aims to visit an accepting
state of the chosen ASCC U . In each step of the resulting
strategy Con,φ

P , we consider the set Runφ(ui,k) of all finite runs
that start in the current state ui,k and lead to an accepting state
from the set FU with all transitions shortening in the indicator
IFU defined according to (7), i.e.,

Runφ(ui,k) =
{
σ ∈ RunPfin(ui,k) | last(σ) ∈ FU , and

∀0 ≤ j ≤ |σ| − 1 : IFU ((σ(j), σ(j + 1))) = 1} .

Let σ ∈ Runφ(ui,k) be the run that minimizes the optimization
function f from (6). Then Con,φ

P (σall) = σ(1). Just like in the
offline algorithm, the strategy Con,φ

P is applied until a state from
the set FU is visited. In the second phase of strategy Con

P , we
locally improve the strategy Coff,V

P for the average subgoal
computed in Section IV-C and we use Con,V

P to denote the
resulting strategy. At the beginning of the second phase of the
current round i, we aim to reach the cycle cycVU = c0 . . . cm
of the ASCC U and we use the same idea that is used in the
first phase above. To be specific, we define Con,V

P (σall) = σ(1),
where σ is the run minimizing f from the set

RuninitV (ui,k) =
{
σ ∈ RunPfin(ui,k) | last(σ) ∈ cycVU , and

∀0 ≤ j ≤ |σ| − 1 : IcycVU ((σ(j), σ(j + 1))) = 1
}
.

Once a state caßcyc
V
U of the cycle is reached, we continue as

follows. Let cb ∈ cycVU be the first state labeled with πsur that is
visited from ca if we follow the cycle. Until we reach the state
cb, the optimal finite run σ is chosen from the set

RunV (ui,k)=
{
σ ∈ RunP

fin(ui,k) | last(σ) = cb, and

∀0≤j≤|σ| − 1 : Icb((σ(j), σ(j+1)))=1 or∣∣σca→ui,k

∣∣+ |σ| ≤ b− a+ 2 mod (m+1)
}

where σca→ui,k
is the finite run already executed in P from

state ca to the current state ui,k. Intuitively, the set contains
every finite run starting from the current state and leading to
cb that either has all transitions shortening in Icb or the length
of the finite run is such that if we were to perform the finite
run, the length of the performed run from ca to cb would not
be longer than following the cycle from ca to cb. When state cb
is reached, we restart the above procedure with ca = cb. The
strategy Con,V

P is performed until li = max{j(1/i), i · (ki +
|SU |) · gmax} surveillance cycles are completed in the second
phase of the current round i, where ki is the number of steps of
the first phase and j is from Prop. 1 (the value is given by the
strategy Coff

P).
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1538 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Theorem 2: The online control strategy C that results from
projecting strategy Con

P from P to T guarantees satisfaction
of the LTL specification φ. Moreover, it holds that the on-
line control strategy provides lower or equal expected average
cumulative penalty per surveillance cycle than the offline con-
trol strategy, i.e., VT ,C(sinit) = VP,Con

P
(sPinit) ≤ V ∗

U .
Proof: To prove that the online control strategy satisfies

the LTL specification, we show that under every penalty profile
Δ, the run ρCon

P ,Δ(sPinit) induced by strategy Con
P visits the

set FP of accepting states infinitely many times. From the
definitions of sets Runφ(ui,k), Run

init
V (ui,k) and RunV (ui,k)

it follows that every round of Con
P ends after a finite number of

steps and at least one accepting state is visited in every round.
The inequality VP,Con

P
(sPinit) ≤ V ∗

U follows directly from the
design of the strategy Con

P . �
As we show in Section V, computation of the APPC value

of the online strategy according to (2) is intractable even for
reasonably small examples. Nevertheless, we demonstrate that
in some cases, it can be computed based on the specifics of the
transition system, and in general, it can be estimated from statis-
tical results. The case studies also demonstrate that even though
the construction of the online strategy does not guarantee strict
decrease in APPC value in theory, these strategies often result
in a significant improvement.

Complexity: To design the online strategy Con
P , we first

compute the strategy Coff
P , see Section IV-C. The complexity of

one step of the online strategy is as follows. The cardinality of
the set of finite runs Runφ(ui,k) grows exponentially with the
minimum weight w∗

P(ui,k, FU). Analogously, the same holds
for sets RuninitV (ui,k) and RunV (ui,k), and the set cyc∗V or one
of its surveillance states. In the following discussion on the
usability of the online control, we propose a simple rule to
simplify the computations and effectively use the algorithm in
real time. Also, the complexity of one step of the strategy Con

P
grows exponentially with the user-defined planning horizon h
and the system-specific visibility range v. Hence, h should be
chosen wisely. One should also keep in mind that generally, the
higher the planning horizon, the better local improvement.

Usability: Just like the offline strategy, the online strategy
is not finite-memory in general. To reduce memory usage, we
construct new strategy Con

P from Con
P by applying the rule

to reduce the number of performed surveillance cycles in the
second phase of every round that was described in Section IV-C.
Moreover, to simplify the computation in one step of the
online control, we allow the user to define parameter Wmax ≥
max{wP((u, u

′))|(u, u′) ∈ TP} that serves as follows. In the
first phase of round i and at the beginning of the second phase,
when not yet on the optimal APPC cycle, we only consider pre-
fixes of the finite runs from the sets Runφ(ui,k), Run

init
V (ui,k)

or RunV (ui,k), and the set cyc∗V of weight at most Wmax. In
the second phase of a round, when the optimal cycle has already
been reached, if the weight of the fragment of the cycle from ca
to cb is more than Wmax, we first optimize the run from ca to
an intermediate state c′b for which it holds that the weight of
the fragment of the cycle from ca to c′b is at most Wmax but
highest possible. Finally, we postpone the computation of the
value j(1/i) for round i for as long as possible in the same
manner as for the offline strategy in Section IV-C. The strategy

Con
P is equivalent to Con

P in the meaning that it provably satisfies
the LTL formula φ and has the same APPC value as the strategy
Con

P . The improvement of the usability of the online control is
demonstrated in Section V.

Example 3: The online control for the delivery system from
Ex. 1 that locally improves the offline control described in
Ex. 2 works as follows. Consider planning horizon h = 9. In
every step of the first phase of every round, the robot considers
all finite runs that start in the current state, continue to the
base location and end in the delivery location that should be
visited next. The robot performs the first transition of the run
minimizing the function from (6). When computing the value
for a finite run, the penalties in states that are within the
visibility range and would be visited within nine time units
are simulated. In the second phase, the robot locally improves
the finite run leading from one delivery location to the other,
while visiting at most as many states as there are on the cycle
shown in Fig. 4 between the two delivery locations. The number
of surveillance cycles in the second phase of round i is li =
max{i · (ki + 576), j(1/i)}, where ki is the number of steps
in the first phase of the round. Unlike in the offline control in
Ex. 2, number ki might differ from round to round.

Note that the set of finite runs considered in one step of the
online control can be very large, especially in the first phases
of rounds when the finite runs are considerably long. We can
use the parameter Wmax introduced in the discussion on the
usability of the online control above to decrease the number and
weight of finite runs considered in every step of the control.
By applying the rest of the rules from the discussion, we can
also decrease the number of visits to delivery locations in every
round and thus visit the base location more often.

Remark 4: The online control introduced in this section is in
fact a heuristic. We can formulate other heuristics that would
construct a strategy satisfying Th. 2. For example, consider a
strategy that is constructed from Coff

P from Section IV-C in the
same way as the strategy Con

P , i.e., deploying sets Runφ(ui,k)
and RuninitV (ui,k), except in the second phase of every round,
once a state ca ∈ cycVU on the cycle is reached, the optimal finite
run is chosen from the set defined as

RunV (ui,k)=
{
σ ∈ RunP

fin(ui,k) | last(σ) = cb, and
∀0≤j≤|σ| − 1 : Icb ((σ(j), σ(j+1)))=1 or∣∣σca→ui,k

∣∣+|σ|≤2·(b− a+2 mod(m+1))
}

i.e., we consider all finite runs consisting only of transitions
shortening in Icb and all finite runs leading to the target state cb
with length at most twice the length of following the cycle from
ca to cb. We refer to the projection of this strategy from P to T
as the modified online control.

We can define other heuristics in a similar way by
changing only the definition of the sets of finite runs
Runφ(ui,k),RunV (ui,k). However in order to guarantee satis-
faction of Th. 2, the sets must satisfy the following conditions.
The definition of Runφ(ui,k) guarantees that an accepting state
from FU is always visited after a finite number of steps. The
definition of RunV (ui,k) guarantees a visit of the cycle cycVU
after at most |SU | steps and once a state ca ∈ cycVU on the cycle
is reached, the set RunV (ui,k) guarantees visit of the state cb in
a finite number of steps.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1539

Fig. 5. Evolution of the average penalty per surveillance cycle obtained in simulations of the offline, online and modified online control for the delivery system
case study. For each control, the statistics is built on 10 individual runs of 30 rounds each. The red line marks the optimal APPC value and the black line shows
the mean over executed runs.

V. IMPLEMENTATION AND CASE STUDIES

A. Implementation

The framework presented in this paper is implemented in our
simulation tool ConTool [32]. Input transition system can be de-
fined in DOT language and then visualized using Graphviz [33].
The MCs defining the penalties in states are loaded from a text
file. We use LTL2BA [25] to generate a Büchi automaton for
given LTL formula. The user can choose to simulate the offline,
online or modified online control from Rem. 4. All three control
strategies implement the rules introduced in Sections IV-C
and D to reduce memory usage and computational costs. After
specifying additional parameters such as visibility range, plan-
ning horizon and the parameter Wmax from Section IV-D, the
simulation tool allows to observe the control one transition at
a time.

B. Case Study 1: Delivery System

The offline and online control strategies for the delivery
system from Ex. 1 were described in Ex. 2 and 3, respectively.
Here we report on the results we obtained from executing
10 runs of 30 rounds for all three types of control strategies
using our implementation from Section V-A. In simulations
of the online and modified online controls, we used parameter
Wmax = 9. We present the analysis of the average penalty per
surveillance cycle at the end of every round in Fig. 5. For the
offline control, the value gradually converges to the (optimal)
APPC value 4.35 of the offline control, marked as a red line
in Fig. 5. On the other hand, for both online and modified
online control strategies, the average is below 4.35 due to the
local improvement based on local sensing. Due to the size and
density of the transition system, it is intractable to compute the
exact APPC value as defined in (2) for the online and modified
online control. Nevertheless, from Fig. 5 we can observe that
the average penalty per surveillance cycle stabilizes in timely
manner at approximately 4.16 for the online control and 4.05
for the modified online control.

The number of surveillance cycles performed in the second
phase of every round i using the rules from Sections IV-C
and D was always less than i · (ki + 568) for all three types
of control, i.e., the second phase always ended due to the fact
that the average incurred in the round was below the threshold
V ∗
U + (2/i). That means, we were never forced to compute

the value j(1/i). The maximum number of surveillance cycles
performed in the second phase of a round of offline control

strategy was 636, average was only 29 and median was 8. Using
online control strategy, the maximum number of surveillance
cycles performed in the second phase of a round was 10,
the average was 2 and the median was 1. Similarly for the
modified online strategy, the maximum was 9 and both average
and median were 1, i.e., for all three control strategies the
rules from Sections IV-C and IV-D reduced the number of
performed surveillance cycles in every round substantially from
thousands to only tens or few hundreds and thus allowed to
visit the base location much more often. Moreover, the number
of surveillance cycles in the second phase of a round did not
evolve monotonically, rather randomly.

We ran the simulations on a Lenovo laptop with Windows 7,
Intel Pentium CPU 2.00 GHz and 3 GB RAM. The offline
strategy was computed in 45 seconds on average. One step of
the online and modified online control took 150 milliseconds
and 7.5 seconds on average, with 100 milliseconds and
12 seconds deviation, respectively.

C. Case Study 2: Stock Market

The second case study we use to evaluate our framework
models a simple stock market and a broker that performs one
action on the market at a time. He can sell or buy stocks, or
decide to wait. We assume that the system can be modeled as
the transition system depicted in Fig. 6(a). The system starts in
state s0. The broker decides his next action in state s1 and he
can choose from five different buying and selling orders. All
transitions have weight 1. In Fig. 6(b), we list the transition ma-
trices of the Markov chains that define penalties in states of the
TS. The initial distribution is always the uniform distribution
over the possible values of the penalty in a given state. Only
the states s2, . . . , s6 can have nonzero penalty modeling the
fact that only buying and selling stocks has any value. Finally,
state s7, in blue, can be seen as an evaluation state, where the
gains and losses are counted. The visibility range v is 4, i.e., the
broker can always observe penalties in all states.

The mission for the broker is to make an infinite number of
orders and, at the same time, to minimize the penalty incurred
per order. We model this requirement with LTL formula

GF a ∧ GF πsur

where a and πsur are true in state s7. The Büchi automaton gen-
erated for the formula using [25] has four states, the product has
one ASCC with 25 states. The optimal APPC cycle projected to

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

1540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 6, JUNE 2015

Fig. 6. (a) Transition system that models a broker acting on a simple stock market. In state s1, in green, the broker chooses one of the five buying or selling
orders. All transitions have weight 1. The optimal cycle with respect to the expected average penalty per surveillance cycle is shown in magenta. (b) Matrices of
Markov chains that define penalties in states of the transition system. Matrix Ai describes penalty in state si.

Fig. 7. Evolution of the average penalty per surveillance cycle attained in simulations of the offline, online and modified online control for the stock market case
study. For each control strategy, the statistics is built on 10 individual runs of 30 rounds each. The red line marks the optimal APPC value and the black line shows
the mean over executed runs.

the transition system is shown in magenta in Fig. 6(a) and the
optimal APPC value is 1.4.

We present statistical results that we obtained by running
10 runs of 30 rounds for each of the offline, online and modified
online control strategies. In all simulations we used planning
horizon h = 9 and we did not use the parameter Wmax. In
Fig. 7, we plot the average penalty per surveillance cycle at
the end of every round. The red line marks the APPC value
of the offline control 1.4. For the offline control, the obtained
value converges to the optimal APPC value fairly fast. We
can observe considerable improvement for both online and
modified online control. The reason is the following. In the
offline control, when in the second phase of a round the broker
always chooses the action leading to state s4 that has the
minimum expected value gE . On the other hand, in the same
situation when using online control, the broker always chooses
the next action according to the simulated expected values of
penalties gsim rather than their expected values gE . Finally,
using the modified online control, the broker is allowed to wait
up to three time units in state s1 and only then decide to buy or
sell. Note that the penalty in state s6 gradually increases from
0 to 3 and then with probability 90% it drops to 0 again. The
broker waits in s1 until the penalty in state s6 has value 3 and
then moves to s6. Just like for the case study in Section V-B,
it is intractable to compute the APPC value for the online and
modified online control. However, from the discussion above,
we can conclude that the APPC value of the modified online
control is 0.3 and this fact can also be observed in Fig. 7. Based
on Fig. 7, the APPC value of the online control strategy is
approximately 0.64.

The number of surveillance cycles in the second phase of ev-
ery round using the rules in Sections IV-C and D was always be-
low i · (ki + 25) for all three strategies, i.e., every round ended
with the average penalty per surveillance cycle in the round
dropping below the threshold V ∗

U + (2/i) and we never needed
to compute the value j(1/i). The maximum number of surveil-
lance cycles performed in the second phase of a round was
288 for the offline control, 12 for the online control and 5 for
the modified online control, and the median was 1 in all three
cases. Hence, the improvement of the rules in Sections IV-C
and D is again remarkable. In all three cases, the number of
surveillance cycles in rounds did not evolve monotonically,
rather randomly.

We ran the simulations on a Lenovo laptop with Windows
7, Intel Pentium CPU 2.00 GHz and 3 GB RAM. The offline
strategy took 0.5 seconds on average to compute. One step of
the online and modified online control strategies always took
under one millisecond.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of synthesizing
an optimal control strategy for a deterministic transition sys-
tem under temporal logic constraints. We assumed real-valued
penalties with probabilistic behaviors in the states of the sys-
tem. We constructed a control strategy that, while guaranteeing
satisfaction of an LTL formula, minimizes the expected average
penalty per visit of a desired set of states. We also presented
(a class of) control strategies that use local sensing of the
penalties in real time and simulation of their values over finite

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

SVOREŇOVÁ et al.: OPTIMAL TEMPORAL LOGIC CONTROL FOR DETERMINISTIC TRANSITION SYSTEMS 1541

horizon to improve the average penalty per visit of the set of
states in every execution of the system.

The framework presented in this paper can be extended to
Markov decision processes (MDPs). Our preliminary results
on this topic can be found in [34], where we consider the
analogous problem for MDPs with static costs. This problem
was also investigated in [35]. The authors present a solution
that is optimal only in special cases. In [34], we prove that
our approach results in an optimal solution for any MDP and
LTL formula. We also strongly believe that a similar approach
can be used for nondeterministic transition systems but one first
needs to properly define the optimization objective APPC that
accounts for the nondeterminism of transitions.

REFERENCES

[1] C. Baier and J. Katoen, Principles of Model Checking. Cambridge, U.K.:
MIT Press, 2008.

[2] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A
tool for automatic verification of probabilistic systems,” in Proc. TACAS,
ser. LNCS, 2006, pp. 441–444.

[3] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P. Ročkai,
V. Štill, and J. Weiser, “DiVinE 3.0—An Explicit-State Model Checker
for Multithreaded C & C++ Programs,” in Proc. CAV , ser. LNCS, 2013,
pp. 863–868.

[4] S. L. Smith, J. Tmová, C. Belta, and D. Rus, “Optimal path planning for
surveillance with temporal-logic constraints,” Int. J. Rob. Res., vol. 30,
no. 14, pp. 1695–1708, 2011.

[5] J.-F. Raskin, K. Chatterjee, L. Doyen, and T. A. Henzinger, “Algorithms
for Omega-Regular Games with Imperfect Information,” Logical Meth.
Comput. Sci., vol. 3, no. 3:4, pp. 1–23, 2007.

[6] M. Kwiatkowska and D. Parker, “Automated verification and strategy
synthesis for probabilistic systems,” in Proc. ATVA, ser. LNCS, 2013,
pp. 5–22.

[7] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time
linear systems,” Trans. Autom. Control, vol. 51, no. 12, pp. 1862–1877,
Dec. 2006.

[8] E. A. Gol, M. Lazar, and C. Belta, “Language-guided controller synthesis
for discrete-time linear systems,” in Proc. HSCC, 2012, pp. 95–104.

[9] T. Wongpiromsarn, U. Topcu, and R. R. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. CDC, 2009,
pp. 5997–6004.

[10] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” Trans. Autom. Control,
vol. 53, no. 1, pp. 287–297, Jan. 2008.

[11] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal logic
control of discrete-time piecewise affine systems,” Trans. Autom. Control,
vol. 57, no. 6, pp. 1491–1504, Jun. 2012.

[12] J. Ding, M. Kamgarpour, S. Summers, A. Abate, J. Lygeros, and
C. Tomlin, “A stochastic games framework for verification and control
of discrete time stochastic hybrid systems,” Automatica, vol. 49, no. 9,
pp. 2665–2674, 2013.

[13] Y. Tazaki and J. Imura, “Discrete abstractions of nonlinear systems based
on error propagation analysis,” Trans. Autom. Control, vol. 57, no. 3,
pp. 550–564, Mar. 2012.

[14] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10,
pp. 2508–2516, 2008.

[15] G. Reissig, “Computing Abstractions of Nonlinear Systems,” Trans.
Autom. Control, vol. 56, no. 11, pp. 2583–2598, Nov. 2011.

[16] M. Zamani, G. Pola, M. Mazo, and P. Tabuada, “Symbolic models for
nonlinear control systems without stability assumptions,” Trans. Autom.
Control, vol. 57, no. 7, pp. 1804–1809, Jul. 2012.

[17] C. Szepesvari, Algorithms for Reinforcement Learning. San Rafael, CA,
USA: Morgan & Claypool, 2010.

[18] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control with weighted
average costs and temporal logic specifications,” in Proc. RSS, 2012.

[19] X. C. Ding, M. Lazar, and C. Belta, “Receding horizon temporal
logic control for finite deterministic systems,” in Proc. ACC, 2012,
pp. 715–720.

[20] M. Svoreňová, J. Tmová, J. Barnat, and I. Černá, “Attraction-based reced-
ing horizon path planning with temporal logic constraints,” in Proc. CDC,
2012, pp. 6749–6754.

[21] M. Svoreňová, I. Černá, and C. Belta, “Optimal receding horizon control
for finite deterministic systems with temporal logic constraints,” in Proc.
ACC, 2013, pp. 4399–4404.

[22] M. Y. Vardi and P. Wolper, “Reasoning about infinite computations,” Inf.
Comput., vol. 115, no. 1, pp. 1–37, 1994.

[23] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Proc. CAV , 2001, pp. 53–65.

[24] F. Somenzi and R. Bloem, “Efficient Büchi automata from LTL formulae,”
in Proc. CAV , 2000, pp. 248–263.

[25] P. Gastin and D. Oddoux, LTL 2 BA: Fast translation from LTL formulae
to Büchi automata, 2001. [Online]. Available: http://www.lsv.ens-cachan.
fr/~gastin/ltl2ba/

[26] J. R. Norris, Markov Chains. Cambridge, U.K.: Cambridge Univ. Press,
1998.

[27] D. Bertsekas, Dynamic Programming and Optimal Control, vol. II.
Nashua, NH, USA: Athena Scientific, 2007.

[28] K. Chatterjee and L. Doyen, “Energy and mean-payoff parity Markov
decision processes,” in Proc. MFCS, 2011, pp. 206–218.

[29] R. Ash and C. Doléans-Dade, Probability & Measure Theory.
New York, NY, USA: Academic, 2000.

[30] R. M. Karp, “A characterization of the minimum cycle mean in a digraph,”
Discrete Math., vol. 23, no. 3, pp. 309–311, 1978.

[31] R. Tarjan, “Depth-first search and linear graph algorithms,” in Proc.
SWAT , 1971, pp. 114–121.

[32] M. Svoreňová, L. Mařica, and I. Černá, ConTool—Tool for simulation
of control algorithms, 2013. [Online]. Available: http://www.fi.muni.cz/
~x175388/contool.html

[33] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software—Practice Exper.,
vol. 30, no. 11, pp. 1203–1233, 2000.

[34] M. Svoreňová, I. Černá, and C. Belta, “Optimal control of MDPs with
temporal logic constraints,” in Proc. CDC, 2013, pp. 3938–3943.

[35] X. C. Ding, S. Smith, C. Belta, and D. Rus, “MDP optimal control under
temporal logic constraints,” in Proc. CDC, 2011, pp. 532–538.

Mária Svoreňová (S’14) received the B.S. and
M.Sc. degrees in discrete mathematics and alge-
bra and the B.S. degree in computer science from
Masaryk University, Brno, Czech Republic, in 2008,
2011, and 2010, respectively. She is currently pursu-
ing the Ph.D. degree in computer science at Masaryk
University.

Her research interests include formal methods,
temporal logics, model checking, game theory, and
controller synthesis.

Ivana Černá received the M.Sc. and Ph.D. de-
grees in computer science from Comenius Univer-
sity, Bratislava, Slovak Republic, in 1986 and 1992,
respectively.

She is a Professor at Faculty of Informatics,
Masaryk University, Brno, Czech Republic. Her re-
search interests include theory of communicating
and parallel systems, formal verification and verifi-
cation tools, algorithm design, and analysis. She is a
coauthor of algorithms implemented in a parallel and
distributed verification tool DiVinE.

Calin Belta (SM’11) received M.Sc and Ph.D. de-
grees in mechanical engineering from the University
of Pennsylvania.

He is an Associate Professor in the Department
of Mechanical Engineering, Department of Electrical
and Computer Engineering, and the Division of Sys-
tems Engineering, Boston University, Boston, MA,
USA. He is an Associate Editor for the SIAM Journal
on Control and Optimization (SICON). His research
focuses on dynamics and control theory, with partic-
ular emphasis on hybrid and cyber-physical systems,

formal synthesis and verification, and applications in robotics and systems
biology.

Dr. Belta received the Air Force Office of Scientific Research Young Investi-
gator Award and the National Science Foundation CAREER Award.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:57:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

