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Abstract— In this paper, we focus on formal synthesis of
control policies for finite Markov decision processes with
non-negative real-valued costs. We develop an algorithm to
automatically generate a policy that guarantees the satisfaction
of a correctness specification expressed as a formula of Linear
Temporal Logic, while at the same time minimizing the expected
average cost between two consecutive satisfactions of a desired
property. The existing solutions to this problem are sub-optimal.
By leveraging ideas from automata-based model checking and
game theory, we provide an optimal solution. We demonstrate
the approach on an illustrative example.

I. INTRODUCTION
Markov Decision Processes (MDP) are probabilistic mod-

els widely used in various areas, such as economics, biology,
and engineering. In robotics, they have been successfully
used to model the motion of systems with actuation and
sensing uncertainty, such as ground robots [17], unmanned
aircraft [22], and surgical steering needles [1]. MDPs are cen-
tral to control theory [4], probabilistic model checking and
synthesis in formal methods [3], [9], and game theory [13].

MDP control is a well studied area (see e.g., [4]). The
goal is usually to optimize the expected value of a cost
over a finite time (e.g., stochastic shortest path problem)
or an average expected cost in infinite time (e.g., average
cost per stage problem). Recently, there has been increasing
interest in developing MDP control strategies from rich
specifications given as formulas of probabilistic temporal
logics, such as Probabilistic Computation Tree Logic (PCTL)
and Probabilistic Linear Temporal Logic (PLTL) [12], [17].
It is important to note that both optimal control and temporal
logic control problems for MDPs have their counterpart in
automata game theory. Specifically, optimal control translates
to solving 11/2-player games with payoff functions, such
as discounted-payoff and mean-payoff games [6]. Temporal
logic control for MDPs corresponds to solving 11/2-player
games with parity objectives [2].

Our aim is to optimize the behavior of a system subject to
correctness (temporal logic) constraints. Such a connection
between optimal and temporal logic control is an intriguing
problem with potentially high impact in several applications.
Consider, for example, a mobile robot involved in a persistent
surveillance mission in a dangerous area under tight fuel or
time constraints. The correctness requirement is expressed as
a temporal logic specification, e.g., “Keep visiting A and then
B and always avoid C”. The resource constraints translate to
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minimizing a cost function over the feasible trajectories of
the robot. Motivated by such applications, in this paper we
focus on correctness specifications given as LTL formulae
and optimization objectives expressed as average expected
cumulative costs per surveillance cycle (ACPC).

The main contribution of this work is to provide a sound
and complete solution to the above problem. This paper can
be seen as an extension of [18], [20], [11], [8]. In [18], we
focused on deterministic transition systems and developed a
finite-horizon online planner to provably satisfy an LTL con-
straint while optimizing the behavior of the system between
every two consecutive satisfactions of a given proposition.
We extended this framework in [20], where we optimize
the long-term average behavior of deterministic transition
systems with time-varying events of known statistics. The
closest to this work is [11], where the authors focus on a
problem of optimal LTL control of MDPs with real-valued
costs on actions. The correctness specification is assumed to
include a persistent surveillance task and the goal is to mini-
mize the long-term expected average cost between successive
visits of the locations under surveillance. Using dynamic
programming techniques, the authors design a solution that
is sub-optimal in the general case. In [8], it is shown that,
for a certain fragment of LTL, the solution becomes optimal.
By using recent results from game theory [5], in this paper
we provide an optimal solution for full LTL. Due to space
limitations, we only include the main results and omit all the
proofs and complexity analysis. These can be found in the
technical report [19].

II. PRELIMINARIES

For a set S, we use Sω and S+ to denote the set of all
infinite and all non-empty finite sequences of elements of S,
respectively. For a sequence τ = a0 . . . an ∈ S+, |τ | = n+1
denotes the length of τ . For 0 ≤ i ≤ n, τ(i) = ai and
τ (i) = a0 . . . ai is the prefix of τ of length i+ 1. We use the
same notation for infinite sequences from Sω .

Definition 1: A Markov decision process (MDP) is a
tuple M = (S,A,P,AP, L, g), where S is a non-empty
finite set of states, A is a non-empty finite set of actions,
P : S × A × S → [0, 1] is a transition probability function
such that for every state s ∈ S and action α ∈ A it
holds that

∑
s′∈S P(s, α, s′) ∈ {0, 1}, AP is a finite set

of atomic propositions, L : S → 2AP is a labeling function,
and g : S ×A→ R+

0 is a cost function. An initialized MDP
is an MDP with a distinctive initial state sinit ∈ S.

An action α ∈ A is called enabled in a state s ∈ S if∑
s′∈S P(s, α, s′) = 1. With a slight abuse of notation, A(s)

denotes the set of all actions enabled in a state s. We assume
A(s) 6= ∅ for every s ∈ S.
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A run of an MDP M is an infinite sequence of states
ρ = s0s1 . . . ∈ Sω such that for every i ≥ 0, there exists
αi ∈ A(si), P(si, αi, si+1) > 0. We use RunM(s) to denote
the set of all runs of M that start in a state s ∈ S. Let
RunM =

⋃
s∈S RunM(s). A finite run σ = s0 . . . sn ∈ S+

ofM is a finite prefix of a run inM and RunMfin(s) denotes
the set of all finite runs of M starting in a state s ∈ S. Let
RunMfin =

⋃
s∈S RunMfin(s). The length |σ| = n+1 of a finite

run σ = s0 . . . sn is also referred to as the number of stages
of the run. The last state of σ is denoted by last(σ) = sn.

The word induced by a run ρ = s0s1 . . . ofM is an infinite
sequence L(s0)L(s1) . . . ∈ (2AP)ω . Similarly, a finite run of
M induces a finite word from the set (2AP)+.

Definition 2: Let M = (S,A,P,AP, L, g) be an MDP.
An end component (EC) of the MDP M is an MDP N =
(SN , AN ,P|N ,AP, L|N , g|N ) such that ∅ 6= SN ⊆ S,
∅ 6= AN ⊆ A. For every s ∈ SN and α ∈ AN (s) it holds
that {s′ ∈ S | P(s, α, s′) > 0} ⊆ SN . For every pair of
states s, s′ ∈ SN , there exists a finite run σ ∈ RunNfin(s)
such that last(σ) = s′. We use P|N to denote the function
P restricted to the sets SN and AN . Similarly, we use
L|N and g|N with the obvious meaning. If the context
is clear, we only use P, L, g instead of P|N , L|N , g|N .
EC N of M is called maximal (MEC) if there is no EC
N ′ = (SN ′ , AN ′ ,P,AP, L, g) of M such that N ′ 6= N ,
SN ⊆ SN ′ and AN (s) ⊆ AN ′(s) for every s ∈ SN . The set
of all end components and maximal end components of M
are denoted by EC(M) and MEC(M), respectively.

The number of ECs of an MDPM can be up to exponen-
tial in the number of states of M and they can intersect. On
the other hand, MECs are pairwise disjoint and every EC is
contained in a single MEC. Hence, the number of MECs of
M is bounded by the number of states of M.

Definition 3: Let M = (S,A,P,AP, L, g) be an MDP.
A control strategy forM is a function C : RunMfin → A such
that for every σ ∈ RunMfin it holds that C(σ) ∈ A(last(σ)).

A strategy C for which C(σ) = C(σ′) for all finite
runs σ, σ′ ∈ RunMfin with last(σ) = last(σ′) is called
memoryless. In that case, we consider C to be a function
C : S → A. A strategy is called finite-memory if it is defined
as a tuple C = (M, act,∆, start), where M is a finite
set of modes, ∆: M × S → M is a transition function,
act : M × S → A selects an action to be applied in M, and
start : S →M selects the starting mode for every s ∈ S.

A run ρ = s0s1 . . . ∈ RunM of an MDPM is called a run
under a strategy C for M if for every i ≥ 0, it holds that
P(si, C(ρ(i)), si+1) > 0. A finite run under C is a finite
prefix of a run under C. The set of all infinite and finite
runs of M under C starting in a state s ∈ S are denoted by
RunM,C(s) and RunM,C

fin (s), respectively. Let RunM,C =⋃
s∈S RunM,C(s) and RunM,C

fin =
⋃
s∈S RunM,C

fin (s).
Let M be an MDP, s a state of M, and C a strategy for

M. There exists a unique probability measure PrM,C
s such

that, given a subset X ⊆ RunM,C(s), PrM,C
s (X) is the

probability that a run of M under C that starts in s belongs
to the set X .

The following properties hold for any MDP M (see, e.g.,
[3]). For every EC N of M, there exists a finite-memory

strategy C for M such that M under C starting from any
state of N never visits a state outside N and all states of N
are visited infinitely many times with probability 1. On the
other hand, having any, finite-memory or not, strategy C, a
state s of M and a run ρ of M under C that starts in s,
the set of states visited infinitely many times by ρ forms an
end component. Let ec ⊆ EC(M) be the set of all ECs of
M that correspond, in the above sense, to at least one run
under the strategy C that starts in the state s. We say that
the strategy C leads M from the state s to the set ec.

Definition 4: Linear Temporal Logic (LTL) formulae over
a set AP are formed according to the following grammar:

φ ::= true | a | ¬φ | φ ∧ φ | Xφ | φUφ | Gφ | Fφ,
where a ∈ AP, ¬, ∧ are standard Boolean connectives,
and X (next), U (until), G (always), and F (eventually) are
temporal operators.

Formulae of LTL are interpreted over the words from
(2AP)ω , such as those induced by runs of an MDP M (for
details see e.g., [3]). For example, a word w ∈ (2AP)

ω

satisfies Gφ and Fφ if φ holds in w always and eventually,
respectively. If the word induced by a run ρ ∈ RunM

satisfies a formula φ, we say that the run ρ satisfies φ. With
slight abuse of notation, we also use states or sets of states
of the MDP as propositions in LTL formulae.

For every LTL formula φ, the set of all runs of M that
satisfy φ is measurable in the probability measure PrM,C

s

for any C and s [3]. With slight abuse of notation, we use
LTL formulae as arguments of PrM,C

s . If for a state s ∈ S it
holds that PrM,C

s (φ) = 1, we say that the strategy C almost-
surely satisfies φ starting from s. IfM is an initialized MDP
and PrM,C

sinit (φ) = 1, we say that C almost-surely satisfies φ.
The LTL control synthesis problem for an initialized MDP

M and an LTL formula φ over AP aims to find a strategy for
M that almost-surely satisfies φ. This problem can be solved
using principles from probabilistic model checking [3], [12].
The algorithm itself is based on the translation of φ to a
Rabin automaton and the analysis of an MDP that combines
the Rabin automaton and the original MDP M.

Definition 5: A deterministic Rabin automaton (DRA) is
a tuple A = (Q, 2AP, δ, q0, Acc), where Q is a non-empty
finite set of states, 2AP is an alphabet, δ : Q× 2AP → Q is
a transition function, q0 ∈ Q is an initial state, and Acc ⊆
2Q × 2Q is an accepting condition.

A run of A is a sequence q0q1 . . . ∈ Qω such that for every
i ≥ 0, there exists Ai ∈ 2AP, δ(qi, Ai) = qi+1. We say that
the word A0A1 . . . ∈ (2AP)ω induces the run q0q1 . . .. A run
of A is called accepting if there exists a pair (B,G) ∈ Acc
such that the run visits every state from B only finitely many
times and at least one state from G infinitely many times.

For every LTL formula φ over AP, there exists a DRA Aφ
such that all and only words from (2AP )ω satisfying φ induce
an accepting run of Aφ [14]. For translation algorithms see
e.g., [16], and their online implementations, e.g., [15].

Definition 6: Let M = (S,A,P,AP, L, g) be an ini-
tialized MDP and A = (Q, 2AP, δ, q0, Acc) be a DRA.
The product of M and A is the initialized MDP
P = (SP , A,PP , APP , LP , gP), where SP = S × Q,
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PP((s, q), α, (s′, q′)) = P(s, α, s′) if q′ = δ(q, L(s)) and
0 otherwise, APP = Q, LP((s, q)) = q, gP((s, q), α) =
g(s, α). The initial state of P is sPinit = (sinit, q0).

Using the projection on the first component, every (finite)
run of P projects to a (finite) run of M and vice versa,
for every (finite) run of M, there exists a (finite) run of P
that projects to it. Analogous correspondence exists between
strategies for P and M. It holds that the projection of a
finite-memory strategy for P is also finite-memory. More
importantly, for the product P of an MDP M and a DRA
Aφ for an LTL formula φ, the probability of satisfying
the accepting condition Acc of Aφ under a strategy CP
for P starting from the initial state sPinit is equal to the
probability of satisfying the formula φ in the MDPM under
the projected strategy C starting from the initial state sinit.

Definition 7: Let P = (SP , A,PP ,APP , LP , gP) be the
product of an MDP M and a DRA A. An accepting end
component (AEC) of P is defined as an end component
N = (SN , AN ,PP ,APP , LP , gP) of P for which there
exists a pair (B,G) in the acceptance condition of A such
that LP(SN )∩B = ∅ and LP(SN )∩G 6= ∅. We say that N
is accepting with respect to the pair (B,G). An AEC N =
(SN , AN ,PP ,APP , LP , gP) is called maximal (MAEC) if
there is no AEC N ′ = (SN ′ , AN ′ ,PP ,APP , LP , gP) such
that N ′ 6= N , SN ⊆ SN ′ , AN ((s, q)) ⊆ AN ′((s, q))
for every (s, q) ∈ SP and N and N ′ are accepting with
respect to the same pair. We use AEC(P) and MAEC(P) to
denote the set of all accepting end components and maximal
accepting end components of P , respectively.

Note that MAECs that are accepting with respect to the
same pair are always disjoint. However, MAECs that are
accepting with respect to different pairs can intersect.

III. PROBLEM FORMULATION

Consider an initialized MDP M = (S,A,P,AP, L, g)
and an LTL formula φ over AP of the form

φ = ϕ ∧GFπsur, (1)

where πsur ∈ AP is an atomic proposition and ϕ is an
LTL formula over AP. Intuitively, a formula of such form
states two partial goals – mission goal ϕ and surveillance
goal GFπsur. To satisfy the whole formula the system
must accomplish the mission and visit the surveillance states
Ssur = {s ∈ S | πsur ∈ L(s)} infinitely many times.
The motivation for this form of specification comes from
applications in robotics, where persistent surveillance tasks
are often a part of the specification. Note that the form in
Eq. (1) does not restrict the full LTL expressivity since every
LTL formula φ1 can be translated into a formula φ2 of the
form in Eq. (1) that is associated with the same set of runs
of M. Explicitly, φ2 = φ1 ∧GFπsur, where πsur is such
that πsur ∈ L(s) for every state s ∈ S.

In this work, we focus on a control synthesis problem,
where the goal is to almost-surely satisfy a given LTL speci-
fication, while optimizing a long-term quantitative objective.
The objective is to minimize the average expected cumulative
cost between consecutive visits to surveillance states.

Formally, we say that every visit to a surveillance state
completes a surveillance cycle. In particular, starting from

the initial state, the first visit to Ssur completes the first
surveillance cycle of a run. We use ](σ) to denote the number
of completed surveillance cycles in a finite run σ plus one.
For a strategy C for M, the cumulative cost in the first n
stages of applying C to M starting from a state s ∈ S is

gM,C(s, n) =

n∑
i=0

g(σM,C
s,n (i), C(σM,C

s,n

(i)
)),

where σM,C
s,n is the random variable whose values are finite

runs of length n + 1 from the set RunM,C
fin (s) and the

probability of a finite run σ is PrM,C
s (Cyl(σ)). Note that

gM,C(s, n) is also a random variable. Finally, we define
the average expected cumulative cost per surveillance cycle
(ACPC) in the MDP M under a strategy C as a function
VM,C : S → R+

0 such that for a state s ∈ S

VM,C(s) = lim sup
n→∞

E
(gM,C(s, n)

](σM,C
s,n )

)
.

The problem we consider in this paper is then the following.
Problem 1: LetM = (S,A,P,AP, L, g) be an initialized

MDP, φ be an LTL formula over AP of the form in Eq. (1).
Find a strategy C for M such that C almost-surely satisfies
φ and, at the same time, C minimizes the ACPC value
VM,C(sinit) among all strategies almost-surely satisfying φ.

The above problem was recently investigated in [11].
However, the solution presented by the authors is guaranteed
to find an optimal strategy only if every MAEC N of the
product P of the MDPM and the DRA for the specification
satisfies certain conditions (for details see [11]). In this paper,
we present a solution to Problem 1 that always finds an
optimal strategy if one exists. The algorithm is based on
principles from probabilistic model checking [3] and game
theory [5], whereas the authors in [11] mainly use results
from dynamic programming [4].

In the special case when every state ofM is a surveillance
state, Problem 1 aims to find a strategy that minimizes
the average expected cost per stage among all strategies
almost-surely satisfying φ. The problem of minimizing the
average expected cost per stage (ACPS) in an MDP, without
considering any correctness specification, is a well studied
problem in optimal control, see e.g., [4]. It holds that
there always exists a stationary strategy that minimizes the
ACPS value starting from the initial state. In our approach to
Problem 1, we use techniques for solving the ACPS problem
to find a strategy that minimizes the ACPC value.

IV. SOLUTION

Let M = (S,A,P,AP, L, g) be an initialized MDP and
φ an LTL formula over AP of the form in Eq. (1). To
solve Problem 1 for M and φ we leverage ideas from
game theory [5] and construct an optimal strategy for M
as a combination of a strategy that ensures the almost-
sure satisfaction of the specification φ and a strategy that
guarantees the minimum ACPC value among all strategies
that do not cause immediate unrepairable violation of φ.

The algorithm we present in this section works with the
product P = (SP , A,PP ,APP , LP , gP) of the MDPM and
a deterministic Rabin automaton Aφ = (Q, 2AP, δ, q0, Acc)
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for the formula φ. We inherit the notion of a surveillance
cycle in P by adding the proposition πsur to the set APP
and to the set LP((s, q)) for every (s, q) ∈ SP such that
πsur ∈ L(s). Using the correspondence between strategies
for P and M, an optimal strategy C for M is found as
a projection of a strategy CP for P which almost-surely
satisfies the accepting condition Acc of Aφ and at the same
time, minimizes the ACPC value VP,CP (sPinit) among all
strategies for P that almost-surely satisfy Acc.

Since CP must almost-surely satisfy the accepting con-
dition Acc, it leads from the initial state of P to a set of
MAECs. For every MAEC N , the minimum ACPC value
V ∗N ((s, q)) that can be obtained in N starting from a state
(s, q) ∈ SN is equal for all the states of N and we denote
this value V ∗N . The strategy CP is constructed in two steps.

First, we find a set maec∗ of MAECs of P and a strategy
C0 that leads P from the initial state to the set maec∗. We
require that C0 and maec∗ minimize the weighted average
of the values V ∗N for N ∈ maec∗. The strategy CP applies
C0 from the initial state until P enters the set maec∗.

Second, we solve the problem of how to control the
product once a state of an MAEC N ∈ maec∗ is visited.
Intuitively, we combine two finite-memory strategies, CφN for
the almost-sure satisfaction of the accepting condition Acc
and CVN for maintaining the average expected cumulative
cost per surveillance cycle. To satisfy both objectives, the
strategy CP is played in rounds. In each round, we first
apply the strategy CφN and then the strategy CVN , each for a
specific (finite) number of steps.

A. Finding an optimal set of MAECs

Let MAEC(P) be the set of all MAECs of the product
P that can be computed as follows. For every pair (B,G) ∈
Acc, we create a new MDP from P by removing all its
states with label in B and the corresponding actions. For the
new MDP, we use one of the algorithms in [10], [9], [7] to
compute the set of all its MECs. Finally, for every MEC, we
check whether it contains a state with label in G.

In this section, the aim is to find a set maec∗ ⊆ MAEC(P)
and a strategy C0 for P that satisfy conditions formally stated
below. Since the strategy C0 will only be used to enter the
set maec∗, it is constructed as a partial function.

Definition 8: A partial strategy ζ for the MDP M is a
partial function ζ : RunPfin → A, where if ζ(σ) is defined for
σ ∈ RunPfin, then ζ(σ) ∈ A(last(σ)).

A partial stationary strategy forM can also be considered
as a partial function ζ : S → A or a subset ζ ⊆ S×A. The set
RunM,ζ of runs of M under ζ contains all infinite runs of
M that follow ζ and all those finite runs σ ofM under ζ for
which ζ(last(σ)) is not defined. A finite run ofM under ζ is
then a finite prefix of a run under ζ. The probability measure
PrM,ζ

s is defined in the same manner as in Sec. II. We also
extend the semantics of LTL formulas to finite words. For
example, a formula FGφ is satisfied by a finite word if in
some non-empty suffix of the word φ always holds.

The conditions on maec∗ and C0 are as follows. The
partial strategy C0 leads P to the set maec∗, and we require

that maec∗ and C0 minimize the value∑
N∈maec∗

PrP,C0
sPinit(FGSN ) · V ∗N .

The procedure to compute the optimal ACPC value V ∗N
for an MAEC N of P is presented in the next section.
Assume we already computed this value for each MAEC.
The algorithm to find the set maec∗ and partial strategy C0

is a straightforward reduction to one of the basic optimization
problems for MDPs, the stochastic shortest path problem, see
e.g., [4].

B. Optimizing ACPC value in an MAEC
In this section, we compute the minimum ACPC value

V ∗N that can be attained in an MAEC N ∈ MAEC(P) and
construct the corresponding strategy for N .

Essentially, we reduce the problem of computing the
minimum ACPC value to the problem of computing the
minimum ACPS value by reducing N to an MDP such
that every state of the reduced MDP is labeled with the
surveillance proposition πsur.

Let N = (SN , AN ,PP ,APP , LP , gP) be an MAEC of
P . Since it is an MAEC, there exists a state (s, q) ∈ SN
with πsur ∈ LP((s, q)). Let SNsur

denote the set of all such
states in SN . We reduce N to an MDP

Nsur = (SNsur ,Asur,Psur,APP , LP , gsur)

using Alg. 1. For the sake of readability, we use singletons
such as v instead of pairs such as (s, q) to denote the states
of N . The MDP Nsur is constructed from N by eliminating
states from SN \SNsur

one by one in arbitrary order. The
actions Asur are partial stationary strategies for N in which
we remember all the states and actions we eliminated. Later
we prove that the transition probability Psur(v, ζ, v

′) for
states v, v′ ∈ SNsur

and an action ζ ∈ Asur(v) is the
probability that in N under the partial stationary strategy ζ,
if we start from the state v, the next state that will be visited
from the set SNsur is the state v′, i.e., the first surveillance
cycle is completed by visiting v′. The cost gsur(v, ζ) is the
expected cumulative cost gained inN using partial stationary
strategy ζ from v until we reach a state in SNsur

.
Proposition 1: Let N = (SN , AN ,PP ,APP , LP , gP) be

an MAEC and Nsur = (SNsur
,Asur,Psur,APP , LP , gsur)

its reduction resulting from Alg. 1. The minimum ACPC
value that can be attained in Nsur starting from any of its
states is the same and we denote it V ∗Nsur

. There exists a
stationary strategy CVNsur

for Nsur that attains this value
regardless of the starting state in Nsur. Both V ∗Nsur

and CVNsur

can be computed as a solution to the ACPS problem forNsur.
It holds that V ∗N = V ∗Nsur

and from CVNsur
, one can construct

a finite-memory strategy CVN for N which regardless of the
starting state in N attains the optimal ACPC value V ∗N .

The following property of the strategy CVN is crucial for
the correctness of our approach to Problem 1.

Proposition 2: For every (s, q) ∈ SN , it holds that

lim
n→∞

Pr
N ,CVN
(s,q) ({ρ | gP(ρ(]n))

n
≤ V ∗N }) = 1,

where gP(ρ(]n)) denotes the cumulative cost gained in the
first n surveillance cycles of a run ρ ∈ RunN ((s, q)). Hence,
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Algorithm 1 Reduction of an MAEC N to Nsur

Input: N = (SN , AN ,PP ,APP , LP , gP )
Output: Nsur = (SN sur,Asur,Psur,APP , LP , gsur)
1: let X = (SX ,AX ,PX ,APP , LP , gX) be an MDP where

• SX := SN ,
• for v ∈ SX :
AX(v) := {ζα | ζα = {(v, α)}, α ∈ AN (v)},

• for v, v′ ∈ SX , ζ ∈ AX :
PX(v, ζ, v′) := PP (v, ζ(v), v

′),
• for v ∈ SX , ζ ∈ AX :
gX(v, ζ) := gP (v, ζ(v))

2: while SX\SN sur 6= ∅ do
3: let v ∈ SX\SN sur
4: for all ζ ∈ AX(v) do
5: if PX(v, ζ, v) < 1 then
6: for all vfrom ∈ SX , ζold ∈ AX(vfrom) do
7: if PX(vfrom, ζold, v) > 0 and ζold, ζ do not conflict for

any state from SX then
8: ζnew := ζold ∪ ζ
9: add ζnew to AX(vfrom)

10: for every vto ∈ SX :

PX(vfrom, ζnew, vto) :=PX(vfrom, ζold, vto) +

+ PX(vfrom, ζold, v) ·
PX(v, ζ, vto)

1−PX(v, ζ, v)

gX(vfrom, ζnew) := gX(vfrom, ζold) +

+ PX(vfrom, ζold, v) ·
gX(v, ζ)

1−PX(v, ζ, v)

11: remove ζold from AX(vfrom)
12: end if
13: end for
14: end if
15: remove ζ from AX(v)
16: end for
17: remove v from SX
18: end while
19: return X

for every ε > 0, there exists j(ε) ∈ N such that if the strategy
CVN is applied from a state (s, q) ∈ SN for any l ≥ j(ε)
surveillance cycles, then the average expected cumulative
cost per surveillance cycle in these l surveillance cycles is
at most V ∗N + ε with probability at least 1− ε, i.e.,

Pr
N ,CVN
(s,q) ({ρ | gP(ρ(]l))

l
≤ V ∗N + ε}) ≥ 1− ε.

C. Almost-sure acceptance in an MAEC

Here we design a strategy for an N ∈ MAEC(P)
that guarantees almost-sure satisfaction of the acceptance
condition Acc of Aφ. Let (B,G) be a pair in Acc such that
N is accepting with respect to (B,G), i.e., LP(SN )∩B = ∅
and LP(SN )∩G 6= ∅. There exists a stationary strategy CφN
for N under which a state with label in G is reached with
probability 1 regardless of the starting state, i.e.,

Pr
N ,CφN
(s,q) (FG) = 1

for every (s, q) ∈ SN . The existence of such a strategy
follows from the fact that N is an EC [3]. Moreover, we
construct CφN to minimize the expected cumulative cost
before reaching a state in SN ∩ S × G. Similar to strategy
C0 from Sec. IV-A, strategy CφN can be computed using a
reduction to the stochastic shortest path problem. For the full
description of the reduction and proof of its correctness, we
refer to the full version of this paper [19].

D. Optimal strategy for P
Finally, we are ready to construct the strategy CP for the

product P that projects to an optimal solution for M.
First, starting from the initial state sPinit, CP applies the

strategy C0 resulting from the algorithm described in Sec. IV-
A until a state of an MAEC in the set maec∗ is reached. Let
N ∈ maec∗ denote the MAEC and let (B,G) ∈ Acc be
a pair from the accepting condition of Aφ such that N is
accepting with respect to (B,G).

Now, the strategy CP starts to play the rounds. Each round
consists of two phases. First, play the strategy CφN from
Sec. IV-C until a state with label in G is reached. Let us
denote ki the number of steps we play CφN in i-th round.
The second phase applies the strategy CVN from Sec. IV-
B until the number of completed surveillance cycles in the
second phase of the current round is li. The number li is any
natural number for which

li ≥ max{j( 1
i ), i · ki · gPmax},

where j( 1
i ) is from Prop. 2 and gPmax is the maximum

value of the costs gP . After applying the strategy CVN for li
surveillance cycles, we proceed to the next round i+ 1.

Theorem 1: The strategy CP almost-surely satisfies the
accepting condition Acc of Aφ and at the same time,
CP minimizes the ACPC value VP,CP (sPinit) among all
strategies for P almost-surely satisfying Acc.

It is important to note that the resulting strategy CP for
P , and hence the projected strategy C for M are not finite-
memory strategies in general. The reason is that in the second
phase of every round i, the strategy CVN is applied for li
surveillance cycles and li is generally growing with i. This,
however, does not prevent the solution to be effectively
used. We introduce a simple rule to avoid performing all
li ≥ max{i · ki · gPmax, j( 1

i )} surveillance cycles in every
round i. Intuitively, once the average cumulative cost per
surveillance cycle in the second phase of a round is below a
certain threshold, we can proceed in the computation to the
next round. As the simulation results in Sec. V show, the
use of this simple rule dramatically decreases the number of
performed surveillance cycles in almost every round.

V. CASE STUDY

We implemented the framework from Sec. IV in Java and
applied it to a persistent surveillance robotics example [21].
In this section, we report on the simulation results.

Consider a mobile robot moving in a partitioned en-
vironment. The motion of the robot is modeled by the
initialized MDPM shown in Fig. 1a. The set AP of atomic
propositions contains two propositions base and job. As
depicted in Fig. 1a, state 0 is the base location and state 8
is the job location. At the job location, the robot performs
some work, and at the base, it reports on its job activity.

The robot’s mission is to visit both base and job location
infinitely many times. In addition, at least one job must be
performed between every two visits of the base:
φ = GF base ∧GF job ∧G

(
base⇒ X(¬baseU job)

)
.

While satisfying the formula, we want to minimize the
expected average cost between two consecutive jobs, i.e.,
the surveillance proposition πsur = job.
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Cinit α – – – – – – – – –
Cp1 before job α β α α α γ γ α α γ

after job α α α α α γ γ α α γ

Cp2 α β α α α γ γ α α γ

(a) (b)
Fig. 1: (a) Initialized MDPM with initial state 0. The costs of applying α, β, γ in any states are 5, 10, 1, respectively, e.g., g(1, α) = 5. (b) Definitions of
strategies Cinit, Cp1, Cp2 forM, the projections of strategies C0, C

φ
N , CVN for P , respectively. The condition “before job” means that the corresponding

prescription is used if the job location has not yet been visited since the last visit of the base. Similarly, the prescription with condition “after job” is used
if the job location was visited at least once since the last visit of the base.

The Rabin automaton Aφ used in the simulation has 5
states and 1 pair in the accepting condition. The product P
of M and Aφ has 50 states and one MAEC N of 19 states.
The optimal set of MAECs maec∗ = {N}. The optimal
ACPC value V ∗N = 40.5. In Fig. 1b, we list the projections
of strategies C0, C

φ
N , CVN for P to strategies Cinit, Cp1, Cp2

for M, respectively. The optimal strategy C for M is then
defined as follows. Starting from the initial state 0, apply
strategy Cinit until a state is reached, where Cinit is no
longer defined. Start round number 1. In i-th round, proceed
as follows. In the first phase, apply strategy Cp1 (for ki steps)
until the base is reached and then for one more step (the
product P has to reach a state from the Rabin pair). In the
second phase, use strategy Cp2 for li = max{i ·ki ·10, j( 1

i )}
surveillance cycles, i.e., until the number of jobs performed
by the robot is li. We also apply the rule described in Sec. IV-
D to shorten the second phase, if possible.

Let us summarize the statistical results we obtained for 5
executions of the strategy C forM, each of 100 rounds. The
number ki of steps in the first phase of a round i > 1 was
always 5 because in such case, the first phase starts at the job
location and the strategy Cp1 needs to be applied for exactly
4 steps to reach the base. Therefore, in every round i > 1,
the number li is at least 50 · i, e.g., in round 100, li ≥ 5000.
However, using the rule described in Sec. IV-D, the average
number of jobs per round was 130 and the median was only
14. In particular, the number was not increasing with the
round. On the contrary, it appears to be independent from
the history of the execution. In addition, at most 2 rounds
in each of the executions finished only at the point, when
the number of jobs performed by the robot in the second
phase reached li. The average ACPC value attained after
100 rounds was 40.56.

In contrast to our solution, the algorithm from [11] does
not find an optimal strategy forM. Regardless of the initial-
ization, it always results in a sub-optimal strategy, namely
the strategy Cp1 from Fig. 1b that has ACPC value 50.5.
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