
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the  
copy submitted. Broken or indistinct print colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a  note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 

800-521-0600

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GEOMETRIC METHODS FOR MULTI-ROBOT 

PLANNING AND CONTROL

Calin Belta

A DISSERTATION 

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania in Partial 

Fulfillment of the Requirements for the Degree of Doctor of Philosophy.

2003

Professor Vijay Kumar

Supervisor of Dissertation

Professor SuresI__________________

Graduate Group Chairperson

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



UMI Number 3095859

Copyright 2003 by 
Belta, Calin Andrei

All rights reserved.

_ ___ (f t

UMI
UMI Microform 3095859 

Copyright 2003 by ProQuest Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



COPYRIGHT 

Calin Belta 

2003

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



In memoria Tatalui meu.

ni

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Acknowledgements

I would like first of all to express my admiration and gratitude to my advisor and 

mentor. Professor Vijay Kumar. Without his support, guidance, and encouragement, this 

work would have never been completed. And without his friendship and sense of humor, 

my stay in the GRASP Lab would not have been such a pleasant experience.

I also want to thank the remainder of my dissertation committee, Professors Naomi 

Leonard, George Pappas, and Jim Ostrovski for their comments and suggestions. I es

pecially want to express my appreciation to George Pappas for his advice and useful 

discussions on topics which go beyond the scope of this work.

During the past four years, GRASP lab was my second home and the graspees were 

my family. Many thanks to John Spletzer, Paulo Tabuada, Aveek Das, Peng Song, and 

Volkan Isler for their unconditional frienship and for being such fun companions. It is 

difficult to enumerate all the others who contributed to the genuinely friendly and sup

portive atmosphere in the lab: Joel, Sorangi, Ani, Bert, Lorenzo, Joao, Xenofon, Selcuk, 

Luiz, Guilherme. I also want to show my gratitude to the Starbucks people downstairs for 

making all the above possible.

Finally, I want to thank my family back home in Romania: my mother, my sister, and 

my brother-in-law. I could not have started and finished this journey without their love, 

support, and advice.

My last thought goes to Ruxandra. She gave me reason and hope all these years. 

Multumesc fomoase TTST.

iv

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



ABSTRACT

GEOMETRIC METHODS FOR MULTI-ROBOT PLANNING AND CONTROL

Calin Belta 

Vijay Kumar

Motion planning for a multi-robotic system refers to finding trajectories for each robot 

in a team so that a certain task is performed. In general, this problem is under-determined 

because of two main reasons. First, the tasks are usually specified in terms of reaching a 

final position starting from a given initial one. Mathematically, this translates to generat

ing interpolating curves with given boundary conditions in a certain configuration space, 

problem which usually admits several solutions. One of the main ideas of this dissertation 

is that a natural way to solve this indeterminacy is to find a solution which is optimal with 

respect to a performance criterion, e.g., energy consumption. Second, especially in the 

case when the team is composed of large numbers of robots, the task might be specified 

in high level terms of the type “the robots should gather in a certain region of the space”. 

Explicitly generating individual trajectories, though feasible, is highly under-determined 

and computationally unattractive. The second main idea of the dissertation is that, in this 

case, the motion generation and control problems should be solved in a lower dimensional 

space which captures the behavior of the group and the nature of the cooperative task.

First, we consider the problem of generating minimum kinetic energy motion for a 

rigid body in a 3D environment. We develop a computationally efficient method for in

terpolation on SE(3) that produces nearly optimal trajectories, which are also invariant

v
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to changes in the reference frame. Second, we study the rigidity condition and develop 

a method of optimal motion planning for groups of robots required to maintain a rigid 

formation. In the third part of this work, we propose a method to control a large num

ber of agents based on an abstraction of the configuration space of the robots to a lower 

dimensional manifold, which has a product structure of a Lie group, which captures the 

dependence of the ensemble on the world frame, and a shape manifold, which is an in

trinsic description of the team. Illustrative experimental results are included.
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Chapter 1

Introduction

There has been a lot of interest in cooperative robotics in the last few years, triggered 

mainly by the technological advances in control techniques for single vehicles and the 

explosion in computation and communication capabilities. The research in the held of 

control and coordination for multiple robots is currently progressing in areas like auto

mated highway systems [83, 79, 88], formation flight control [55, 2], unmanned under

water vehicles [73], satellite clustering [54], exploration [23], surveillance [34], search 

and rescue [48], mapping of unknown or partially known environments [44], distributed 

manipulation [53, 70] and transportation of large objects [75,76].

There are roughly three approaches to multi-vehicle coordination reported in litera

ture: leader-following, behavioral methods, and virtual structure techniques. In leader 

following, some robots are designated as leaders, while others are followers [28]. In 

behavior-based control [1, 24], several desired behaviors are prescribed for each agent,
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the final control being derived by weighting the relative importance of each behavior. In 

the virtual structure approach, the entire formation is treated as a rigid body [61, 62, 60], 

[31, 32], [89], [50]. Desired motion is assigned to the virtual structure which traces out 

trajectories for each member of the formation to follow. Virtual structures have been pro

posed in [81] and used for motion planning [39], coordination and control of space-crafts, 

etc. Maybe the most interesting application is in laser interferometry, which requires that 

several instruments, spaced up to a kilometer apart, maintain a fixed geometry within one 

centimeter.

Since energy consumption is an important issue, especially for deep space forma

tions, motion planning for virtual structures is often accomplished by posing the problem 

as an optimization problem. For example, satellite formation reconfiguration demands a 

fuel-optimal trajectory to preserve mission life and is constrained by the limited thrust 

available. Virtual structures, as rigid bodies, evolve on the Lie group of all translations 

and orientations in 3D, SE {3). With this in mind, the first part of this thesis is con

cerned with optimally interpolating trajectories on S E (3). The second part investigates 

the rigidity constraint and shows how individual motion plans can be constructed so that 

the overall energy of the formation is minimized. The methodology and results in these 

first two parts are organized around two main issues: optimality and invariance o f the 

generated trajectories. The price one has to pay to achieve these is, of course, a large 

amount of computation. We expect the methods developed in the second part to only find 

applications in areas where the number of agents is small and fuel consumption is critical,

2
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as satellite reconfiguration.

When a large number of agents is required to be coordinated and controlled, some 

level of abstraction is necessary, dependent on the imposed task. The virtual structure 

approach, which can be seen as an abstraction, is not appropriate in many applications, 

including tunnel passing and obstacle avoidance. The third part of the thesis proposes 

a method for abstraction and control for large groups o f agents. The derived control 

architecture can be used to coordinate hundreds of small, inexpensive robots.

As suggested above, the contributions of the thesis are in three areas. In the following 

sections, we motivate these three topics and review the relevant literature.

1.1 Interpolation on SE(3)

The problem of finding a smooth interpolating curve is well understood in Euclidean 

spaces [33, 43, 35], but it is not clear how these techniques can be generalized to curved 

spaces. There are two main issues that need to be addressed, particularly on non-Euclidean 

spaces. First, it is desired that the computational scheme be independent of the descrip

tion of the space and invariant with respect to the choice of the coordinate systems used 

to describe the motion. Second, the smoothness properties and the optimality of the tra

jectories need to be considered.

Shoemake [71] proposed a scheme for interpolating rotations with Bezier curves based 

on the spherical analog of the de Casteljau algorithm. This idea was extended by Ge and 

Ravani [38] and Park and Ravani [65] to spatial motions. The focus in these articles is

3
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on the generalization of the notion of interpolation from the Euclidean space to a curved 

space.

Another class of methods is based on the representation of Bezier curves with Bern

stein polynomials. Ge and Ravani [37] used the dual unit quaternion representation of 

SE(Z) and subsequently applied Euclidean methods to interpolate in this space. Jiitler 

[46] formulated a more general version of the polynomial interpolation by using dual (in

stead of dual unit) quaternions to parameterize SE {3). In such a parameterization, an 

element of S E (3) corresponds to a whole equivalence class of dual quaternions. Srini- 

vasan [74] and Jiitler [49] propose the use of spatial rational B-splines for interpolation. 

Park and Kang [64] derived a rational interpolating scheme for the group of rotations 

50(3) by representing the group with Cayley parameters and using Euclidean methods 

in this parameter space. Marthinsen [52] suggests the use of Hermite interpolation and the 

use of truncated inverse of the differential of the exponential mapping and the truncated 

Baker-Campbell-Hausdorff formula to simplify the construction of interpolation polyno

mials. The advantage of these methods is that they produce rational curves.

It is worth noting that all these works (with the exception of [65]) use a particular 

parameterization of the group and do not discuss the invariance of their methods. In 

contrast, Noakes et al. [57] derived the necessary conditions for cubic splines on general 

manifolds without using a coordinate chart. These results are extended in [27] to the 

dynamic interpolation problem. Necessary conditions for higher-order splines are derived 

in Camarinha et al. [25]. A coordinate free formulation of the variational approach

4
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was used to generate shortest paths and minimum acceleration and jerk trajectories on 

SO (3) and SE(3) in [91]. However, analytical solutions are available only in the simplest 

of cases, and the procedure for solving optimal motions, in general, is computationally 

intensive. If optimality is sacrificed, it is possible to generate bi-invariant trajectories for 

interpolation and approximation using the exponential map on the Lie algebra [90]. While 

the solutions are of closed-form, the resulting trajectories have no optimality properties.

1.2 Motion planning and control for rigid formations

The literature on motion planning, stabilization and control of virtual structures is rather 

extensive. This section discusses some recent papers closely related to the approach in 

this thesis. Most of these works model formations using formation graphs, which are 

graphs whose nodes capture the individual agent kinematics or dynamics, and whose 

edges represent inter-agent constraints that must be satisfied.

Desai et.al. [28] propose that formations be modeled as a triple (g, r, H), where 

g € SE {3) represents the gross position and orientation of the team (for example, the 

pose of the leader), r  is a set of shape variables that describes the relative positions of the 

robots in the team, and H  is a control graph which describes the control strategy used by 

each robot.

The notions of graph rigidity and minimally rigid graphs are used by Olfati-Saber and 

Murray in [61, 62, 60]. In all these works, a graph is a triple Q =  (V, S, W ), where V 

is a set of vertices, S  is a set of edges and W  is a set of weights, indexed by S. Each

5
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vertex is an agent, whose position vector in some inertial frame evolves according to a 

dynamically fully-controlled system. Each weight gives the desired distance between a 

pair of robots connected in the graph. In [61], the shape variables are defined pairwise 

for connected agents, as being the error between the desired and the actual distance. Us

ing, the dynamics of the agents, the shape dynamics are straightforward to derive using 

the chain rule. Stabilization of the shape at zero is called structural stabilization. The 

authors approach the problem of a two agent system and, using a simple change of co

ordinates, show that shape dynamics can be controlled separately from translational and 

rotational dynamics. Then, they introduce a procedure called dynamic node augmenta

tion that allows construction of a larger formation of more agents that can be rendered 

structurally stable in a distributed manner from some initial formation that is structurally 

stable. Closely related to [61] is the work of the same authors [62]. The main contri

bution of this paper is introducing new properties of minimally rigid graphs that allow 

composition of smaller rigid subgraphs that construct a larger rigid graph. The authors 

construct an algebra over graphs that allows performing some basic operations on graphs 

including rejoining two graphs, node augmentation to a graph and splitting of a graph. 

The same formation graphs are used by the authors in [60] to design centralized and dis

tributed control laws to achieve structural stability. An equilibrium formation is defined 

as a zero of a (positive definite) structural potential function. Two types of structural 

potential functions are constructed in this paper, one giving rise to a centralized, and one 

to a decentralized controller, based on vertex neighbor definition. The desired controllers

6

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



achieving structural stabilization are guaranteed to work properly if the agents are in so- 

called c - neighborhoods of the formation graph induced by the potential function and if 

the initial velocities are small enough.

Very related to the approach described in the above paragraph is the work of Eren 

and Morse [31, 32]. The aim of these papers is mainly to draw attention to some results 

in the rigidity literature, as the ones described in [86, 69], and to develop some specific 

new results along the same lines. Minimally rigid graphs are now called isostatic graphs 

and very similar problems are approached. The closing rank problem, which is the prob

lem of designing rearrangements of maintenance links among vehicles in case of vehicle 

removals, so that remaining vehicles maintain a rigid formation, is approached in [31]. 

The 2D and 3D cases are considered separately. The removal of a node with two, three, 

four and higher maintenance links is solved for each case by determining the additional 

links to be added after removal so that isostasy of the graph is maintained. A rigidity 

condition, very similar to the one derived in a more geometrical framework in Chapter 5 

of this thesis, is presented in [32]. Also, two inductive methods for construction of rigid 

formations are included. The first generates an isostatic graph and is based on a Hen- 

nenberg construction. While this method creates rigid formations, it does not consider 

the lengths of maintenance links and the angles between them, and, therefore, it is not of 

much practical use. A way around this limitations is developed by the authors by use of a 

new construction method based on Delaunay triangulation.

An alternative to constructing natural structural potential functions from the formation

7
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graphs and a relaxation to the rigidity requirement as described in [61, 62, 60] is to use 

artificial potential functions, as Leonard and Fiorelli suggest in [50]. The use of artificial 

potentials in their work is based on the following elements inspired from biology: (1) 

attraction to distant neighbors up to a maximum distance, (2) repulsion from neighbors 

too close, and (3) alignment with neighbors. Besides the actual fully actuated vehicles, 

the formation is augmented with virtual leaders, used to introduce the mission: direct 

and manipulate the vehicle group bahaviour. The comrol law for each agent is derived as 

the sum of the gradients of two types of potential functions: inter-vehicle potential fields 

and potential fields associated with virtual leaders. A dissipative term is added to achieve 

asymptotic stability. The procedure provides the construction of a Lyapunov function 

to prove closed loop local asymptotic stabilitity using the system kinetic energy and the 

artificial potential energy. The global minimum is, in general, not unique. Since there is 

no ordering of the vehicles, any permutation in a given configuration that corresponds to 

a global minimum will also be a global minimum. Further, because the potentials only 

depend upon relative distance, the solution exhibits SE(l),  I =  1.2.3 symmetry and also 

expansion/contraction symmetries. These symmetries are further exploited by the authors 

in [59] to decouple the mission control problem into a formation keeping subproblem and 

a maneuver subproblem. The designed trajectories of the virtual leaders play a key role 

in both subproblems: the path is designed to satisfy the group mission while the speed 

along the path is limited to ensure convergence and stability of the formation. The latter 

is guaranteed by regulating the virtual leader speed according to a feedback measurement

8
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of a formation error function.

Virtual leaders and robots are also used for coordination and control in [58], [30]. The 

robots are modeled as affine control systems with outputs given by the position in plane 

or space. The formation constraint is modeled as the zero of a differentiable, positive 

definite and strictly convex formation function of the outputs. Desired trajectories for 

the robots are constructed along the steepest descent direction of the formation function. 

The novelty of this work is that the time is re-parameterized along these trajectories so 

that, while moving towards the desired configuration (zero of the formation function), the 

robots “wait” for each other if necessary

Along different lines, a geometric formulation of formation graphs is given in [80]. 

Centralized formations are modeled as undirected graphs and decentralized formations 

as directed graphs. Differential geometric conditions that guarantee formation feasibility 

given the individual agent kinematics are derived.

1.3 Abstraction and control for large groups of robots

When a large number of agents is required to be coordinated and controlled, some level of 

abstraction is necessary, dependent on the imposed task. The virtual structure approach, 

which can be seen as an abstraction, is not appropriate in many applications, including 

passing through narrow tunnels and obstacle avoidance.

It is believed that motion planning and control of large numbers of inexpensive robots 

can benefit from the understanding of behaviors and communication structures observed
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in fish, termites, ants, or bees. Mathematical biologists have been working on modeling of 

swarming behavior for a long time. The general understanding now is that the swarming 

behavior is a result of an interplay between a long range attraction and a short range 

repulsion between the individuals. For example, in [21] the authors propose a simple 

model consisting of a constant attraction term and a repulsion term proportional to the 

square of the distance between two members, whereas in [85] a whole family of attraction 

- repulsion functions is studied.

In parallel with the biologists, physicists have done interesting work on swarming be

havior. Their general approach is to model each individual as a particle and study the 

collective behavior due to their interactions. In [84], Vicsek et. al. propose a simple 

discrete-time model of n autonomous agents producing interesting flocking and school

ing behaviors. In [84], all agents are moving in the plane with the same speed but with 

different headings. Each agent’s heading is updated using a local rule based on the aver

age of its own heading plus the headings of the neighbors. Agent t's neighbors at time t 

are those agents for which are in a circle of a specified radius centered at agent’s i current 

position. The authors call this the nearest neighbor rule. A more sophisticated, almost 

similar model was developed by Reynolds [68] for simulating visually satisfying flocking 

and schooling-like behaviors for the animation industry. In both [84] and [68], it is proved 

by simulation that the nearest neighbor rule can cause all agents to eventually move in the 

same direction despite the absence of centralized coordination. A theoretical explanation 

for this observed interesting behavior is given by Jadbabaie et. al. in [47]. The neighbor
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relationships are modeled on undirected graphs: the nodes are agents and an edge be

tween two agents means that the agents are in each other’s neighborhood. The proof of 

convergence is based on the Wolfowitz Theorem on row stochastic matrices.

A more practical approach can be found in [67], where the authors consider a dis

tributed control scheme for groups of robots, called social potential fields method, which 

is based on artificial force laws between individual robots and robot groups. The force 

laws are inverse power (inspired from molecular interactions) or spring force laws, in

corporating both attraction and repulsion. Interesting simulation results are included, but 

there are no rigorous proofs of convergence.

A continuous time model for swarm aggregation is presented in [36]. This work is 

based on the pairwise definition of a simple scalar function of relative positions of the 

robots which is attractive for large distances and repulsive for small distances. Each 

individual is applied a vector field which the sum of the attraction and repulsion of all the 

other members on this member. The authors show that, under this particular vector field, 

the agents will form a cohesive swarm and eventually come to rest. An explicit bound on 

the swarm size, which only depends on the parameters of the swarm model, is also given.

Partial differential equations are also used to model swarming behavior. In [82], the 

population density is shown to satisfy an advection equation and numerical simulation 

show that the population density is roughly constant in the region occupied by the swarm, 

results similar to the ones observed in nature. A finite difference approximation to the 

solution of the PDEs that arise from a gradient flow energy minimization are used for
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mobile robot path planning in [51].

The geometric pattern formation in swarms is approached in discrete time as well. In 

[77], the authors propose a simple distributed heuristic algorithm for convergence to a 

circle, while in [78], algorithms for converging to a single point are presented.

1.4 Organization of the dissertation

The remainder of this thesis is organized as follows. Chapter 2 is a short overview of the 

differential geometry tools that are used in this thesis. After introducing some useful Lie 

groups, invariance of both metrics and vector fields are reviewed. Geodesics and higher 

order optimal curves for a given metric are characterized and the parameterizations used 

in this thesis are defined.

One of the problems treated in this thesis is finding a trajectory of a rigid body between 

given starting and ending positions and orientations that minimizes a given cost function. 

Because the set of all positions and orientations (SE{3)) is not Euclidean, there is no 

obvious choice of a metric on this set. Chapter 3 is a detailed discussion on the existence 

of useful metrics, with emphasis on invariance.

Chapter 4 describes a method for generating smooth trajectories for a moving rigid 

body with specified boundary conditions. The method is based on first constructing opti

mal trajectories in a larger manifold and then project them on the Lie group of rigid body 

displacements. The overall procedure is invariant to the choice of the inertial frame and 

computationally less expensive than traditional methods.

12

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Smooth trajectories for a set of mobile robots satisfying constraints on relative posi

tions are generated in Chapter 5. It is shown that, given two end configurations of the set 

of robots, by tuning one parameter, the user can choose an interpolating trajectory from 

a continuum of curves varying from the trajectory corresponding to maintaining a rigid 

formation to trajectories that allow the formation to change and the robots to reconfigure 

while moving.

Chapter 6 approaches the problem of controlling a large number of agents required to 

accomplish a task. The specific task suggest a corresponding abstraction of the formation. 

The method proposed in this chapter involves the definition of a low-cardinality set of 

group variables and design a control system on the corresponding group manifold. The 

designed control vector field on the group manifold will determine a specific control law 

for each agent, dependent only on the group variables and its own state.

In Chapter 7, we show how the ideas developed in Chapter 6 can be easily extended 

to control teams of car-like robots. Illustrative experimental results are included, together 

with a succinct description of out experimental platform.

The thesis concludes with final remarks and directions of future work in Chapter 8 .
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Chapter 2

The geometry of rigid body motion

This chapter is a short review of the differential geometry tools necessary to understand 

our approach to the study of rigid body motion. It is not intended to provide complete 

definitions and characterizations, but merely to introduce notation. The reader is assumed 

to be familiar with the notions of differentiable manifolds, coordinate charts, and Lie 

groups. A nice review is given in the Appendix of [56]. Detailed definitions can be found 

in [29].

Section 2.1 introduces the Lie groups which are relevant for this work: GL(n) ,GL+{n), 

SO(n), GA(n), GA+{n), and SE(n).  Left invariant vector fields and metrics are defined 

in Sections 2.2 and 2.3, respectively. The geodesics and higher order optimal curves for a 

given metric can be characterized as in Section 2.4. Exponential coordinates and quater

nions, the two types of parameterizations of 50 (3 ) that are used in this thesis are defined 

in Sections 2.5 and 2.6.
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2.1 Matrix Lie groups

Let GL+(n) denote the set of ail n x n real matrices with positive determinant:

GL+(n) =  { M  | M  € R nxn, detM  > 0} (2.1)

SO(n)  is a subset of GL^,  defined as

SO(n) = { R \ R e  GL+(n), R R T =  /}  (2.2)

Let
r

M  d
G.4+(n) =  < B \ B  = . M  € GLT(n), d € R"

0 1
4

and t

R d
SE{n) =  < -4 | -4 = . R e  SO(n), d € R ”

0 1
4

GL+(n), SO{n), G.4+(n), and SE(n)  have the structure of a group under matrix mul

tiplication. Moreover, matrix multiplication and inversion are both smooth operations, 

which make all GL+(n), SO(n), G.4+(n), and SE(n)  Lie groups [29].

G £'r (n) and GA+(n) are subgroups of the general linear group GL(n ) (the set of all 

nonsingular n x n matrices) and of the affine group GA(n) = GL(n) x R n, respectively. 

SO(n ) is referred to as the special orthogonal group or the rotation group on R n. SE(n)  

is the special Euclidean group, and is the set of all rigid displacements in R n.

Special consideration will be given to 50(3) and S E (3). Consider a rigid body mov

ing in free space. Assume any inertial reference frame {F}  fixed in space and a frame
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{M} fixed to the body at point O' as shown in Figure 2.1. At each instance, the config

uration (position and orientation) of the rigid body can be described by a homogeneous 

transformation matrix, .4. 6  SE{3), corresponding to the displacement from frame {F} 

to frame {M}.

y t m

{Mi z /

{ F }
a T

o

Figure 2.1: The inertial (fixed) frame and the moving frame attached to the rigid body

On any Lie group the tangent space at the group identity has the structure of a Lie 

algebra. The Lie algebras of 50(3) and S E (3), denoted by so(3) and se(3) respectively, 

are given by:

so(3) =  {o> | u  e  R 3x3, Cjt  =  —a)} ,

se(3) =  <

r

U) V
5  =

0 0
| uj € so(3), v € R 3 > ,

(2.5)

(2.6)

where () is the skew-symmetric operator.
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Given a curve

.4(f) : [—a, a] —> S E (3), .4(f) =
R(t) d(t)

0 1

an element S(t) of the Lie algebra se(3) can be identified with the tangent vector .4(f) at 

an arbitrary point f by:

where u(t) = R(t)TR(t) is the corresponding element from so(3).

A curve on S E ( 3) physically represents a motion of the rigid body. If {w(f), u(f)} 

is the vector pair corresponding to S{t), then ui physically corresponds to the angular 

velocity of the rigid body while v is the linear velocity of the origin O' of the frame {M}, 

both expressed in the frame {M}. In kinematics, elements of this form are called twists 

and se(3) thus corresponds to the space of twists. The twist S(t) computed from Equation 

(2.7) does not depend on the choice of the inertial frame {F}. The proof is given in the 

next chapter. For this reason, S(t) is called the left invariant representation of the tangent 

vector .4.

The standard basis for the vector space so(3) is:

S(t) = A~l (t)A(t) =
l{ t )  R Td

(2.7)
0 0

L\ = i i  L% =  e2 L% =  e3 (2.8)

where
T

0 0 » e2 =  0 1 0
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L°, L\  and L% represent instantaneous rotations about the Cartesian axes x, y and z, 

respectively. The components of a Cj € so(3) in this basis are given precisely by the 

angular velocity vector u j .

The standard basis for se(3) is:

- ■ ~

T °  ^ \ 0 L% 0 T ° 0

Li = Lo = l 3  =

0 0 0 0 0 0
b m b • b

0 Cl 0 £2 0 e 3
U  = l 5 = Le =

0 0 0 0 0 0

The twists L\, L5 and L6 represent instantaneous translations along the Cartesian 

axes x, y and z, respectively. The components of a twist 5  6  se(3) in this basis are given 

precisely by the velocity vector pair, s := {cj, u} € R 6.

2.2 Left invariant vector fields

A differentiable vector field is a smooth assignment of a tangent vector to each element 

of the manifold. An example of a differentiable vector field, -Y, on S E ( 3) is obtained by 

left translation of an element 5  6  se(3). The value of the vector field -Y at an arbitrary 

point .4 € S E ( 3) is given by:

JY (.4) =  S(A) =  .45. (2.10)

A vector field generated by Equation (2.10) is called a left invariant vector field and the 

notation 5  is used to indicate that the vector field was obtained by left translating the Lie
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algebra element 5.

Since the vectors L i ,L 2, . . . .  L& are a basis for the Lie algebra se(3), the vectors 

L i (A), . . . ,  Ls(A) form a basis of the tangent space at any point A  € S E (3). Therefore, 

any vector field X  can be expressed as

6

X  = J 2 X  'L i’ (2-n >
1 = 1

where the coefficients A'* vary over the manifold. If the coefficients are constants, then 

X  is left invariant. By defining:

ui =  [A1, AT2, A 3]t , v =  [A4, A 5, A 6]t ,

we can associate a vector pair of functions {u/, u} to an arbitrary vector field A . If a curve 

.4(f) describes a motion of the rigid body and V' =  dA/dt  is the vector field tangent 

to -4(f), the vector pair {u>. v) associated with V  corresponds to the instantaneous twist 

(screw axis) for the motion. In general, the twist {u/, u} changes with time.

2.3 Riemannian metrics on Lie groups

If a smoothly varying, positive definite, bilinear, symmetric form < ... > is defined on 

the tangent space at each point on the manifold, such a form is called a Riemannian 

metric and the manifold is Riemannian [29]. On a n dimensional manifold, the metric is 

locally characterized by a n x n matrix of C°° functions «/y = <  A*, A , > where A, are 

basis vector fields. If the basis vector fields can be defined globally, then the matrix [&7] 

completely defines the metric.
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On S E ( 3) (on any Lie group), an inner product on the Lie algebra can be extended 

to a Riemannian metric over the manifold using left (or right) translation. To see this, 

consider the inner product of two elements Si, S2  € se(3) defined by

< S i ,S 2  > /=  s fG s2, (2.12)

where si and s2 are the 6 x 1 vectors of components of Si and S2  with respect to some 

basis and G is a positive definite matrix. If \ \  and V2  are tangent vectors at an arbitrary 

group element .4 G SE{3), the inner product < V\, V2  >.4 in the tangent space TASE(3) 

can be defined by:

< Vl t V2  >A=< A~lVi,A~lV2  > 1  . (2.13)

The metric obtained in such a way is said to be left invariant [29]. A detailed description 

and characterization of invariant metrics on S E (3) is given in Chapter 3.

2.4 Affine connection, covariant derivative, geodesics and 

minimum acceleration curves

Any motion of a rigid body is described by a smooth curve A(t) 6  S E ( 3). The velocity 

is the tangent vector to the curve V(t) =  ^A{t).

An affine connection on SE{3) is a map that assigns to each pair of C°° vector fields 

X  and Y  on S E ( 3) another C°° vector field V * Y  which is R-bilinear in X  and Y  

and, for any smooth real function /  on S E (3) satisfies V / x Y  =  f V x Y  and X x f Y  =  

f V x Y  + X ( f ) Y .
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The Christoffel symbols T*fc of the connection at a point .4 € S E (3) are defined

by =  r*fcZ i, where I i ,  Z6 is the basis in TASE(3)  and the summation is

understood.

If .4(f) is a curve and X  is a vector field, the covariant derivative of .V along .4 is 

defined by

D X =  V7 V
dt V-«‘>A

A' is said to be auto-parallel along .4 if D X /d t  = 0. A curve .4 is a geodesic if .4 is

auto-parallel along .4. An equivalent characterization of a geodesic is the following set of

equations:

a1 +  r ijkaJak =  0 (2.14)

where a*, i =  1........ 6 is an arbitrary set of local coordinates on S E (3). Geodesics are

also minimum length curves. The length of a curve .4(f) between the points .4(a) and 

.4(6) is defined to be:

rb
L(A)  =  I < V '.V '> 5 d f (2.15)

J  a

where V' =  It can be shown [29], that if there exists a curve that minimizes the 

functional L, this curve also minimizes the so called energy functional:

E(A)  =  f  < v; V' > dt (2.16)
J  a

For a manifold with a Riemannian (or pseudo-Riemannian) metric, there exists a
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unique symmetric connection which is compatible with the metric [29]. Given a con

nection, the acceleration and higher derivatives of the velocity can be defined. The accel

eration, ,4(i), is the covariant derivative of the velocity along the curve:

Minimum acceleration curves are defined as curves minimizing the square of the L 2  

norm of the acceleration:

where V(t) =  ^ p ,  A(t) is a curve on the manifold, and V is the unique symmetric 

connection compatible with the given metric. The initial and final point as well as the 

initial and final velocity for the motion are prescribed.

2.5 Exponential map and local parameterization of SE(3)

If M  is a manifold with a connection V, the exponential map at an arbitrary q € M  is 

defined as follows. Let 7y(t) be the unique geodesic passing through q at t =  0 with 

velocity V', i.e. 7v(0 ) =  q and 7v(0) =  V'. Then, by definition, exp, maps V' 6  TqM  

to the point 7v (l) € M.  Using homogeneity of geodesics, it is easy to prove [29] that 

7tv(s) =  7v(is) which gives expq(tV) =  Also, exp, is a diffeomorphism of a

neighborhood of 0 € TqM  to a neighborhood of q G M.  This gives a local chart for M  

called normal coordinates. These coordinates are convenient for computations (as in this 

work) because rays through 0 are geodesics.

(2.17)

(2.18)
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The exponential map on 50(3) with metric G =  a l  is given special consideration in 

this thesis. For R  € 50(3) and V  € TRSO (3), one can define expfl(Vr) =  ReRTy. If 

v =  [ui v2 U3] is the expansion of V  in the local basis of TRS O (3) (i.e. V  =  viL°+V2 L%+ 

V3 L 3 ), it is easy to see that expK(V') =  Rev. As a special case, for 5  € so(3), expf (S) = 

ea, where a  =  [<jx o2  <73] is the expansion of 5  in the basis L°, L%. This gives a local

parameterization of 50(3) around identity known as exponential coordinates.

A parameterization of SE{3) induced by the product structure 50 (3 ) x R3 can be 

chosen. In other words, a set of coordinates <7lt a2, a3, dx, d2, d3  for an arbitrary element 

.4 =  (R ,d ) 6  5 £ ’(3) is defined so that dx, d2, d3  are the coordinates of d in R3 and 

R  =  e°, o e  R3. Exponential coordinates are valid for R  € 50(3) sufficiently close 

to the identity (i.e., excluding the points Tr(R)  =  — 1 (Tr(.4) =  0), or, equivalently, 

rotations through angles 0 < d < tt).

The time derivative of a  can be expressed in terms of the body velocity as [22]:

where a(y) = (y / 2 )cot(y/2 ).

2.6 Quaternions as parameterization of 50(3)

Consider the Euclidean R4 with coordinates ( x i ,x 2 , x 3 , x A). Following the usual notation, 

the basis vectors in the tangent space TxR4 at an arbitrary point i  6  R4 are denoted by

(2.19)
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i =  1 , . . . ,  4. For x  ^  0, define a linear mapping

Q(x) : r j t 1 ->■ TxR4, Q(x) =

x4 ~ X 3 X2 -X i

X3 X4 - X i - x 2

—X2 X i X4 - X 3

- X i - x 2 -■r3 —x4

(2.20)

It is easy to see that Q{x) is orthonormal (QQT =  QTQ =  U) when restricted to the unit 

sphere S3. Using Q, we define a change of basis at each TxR4. The new basis vectors 

>j(x) are defined by:

=  J - ,  j  =  1........ 4 (2.21)

The coordinates of the vectors Y] in the basis ^  j  = 1 , . . . ,  4 are given by the columns 

of Q multiplied by 2, respectively. Therefore, V}, j  = 1, . . . .  4 are orthogonal. Moreover, 

y'2. >3 form a orthogonal basis of TXS 3. Indeed, for x  € S3, it is easy to see that, in 

coordinates, x TY) =  0, j  =  1,2,3 and x TY\ =  -2 , where x  is the vector drawn from the 

origin to x € S3. The vector field

* = ^Q(x)

UJ1 

LJo 

LJ$ 

0

(2.22)

evolves on a sphere in i?4. In the particular case when the initial x(0) is at distance 1 

from the origin, the system evolves on the unit sphere S3. The coordinates (xx, x2, x3, x4) 

restricted to S3 are called unit quaternions. They can be used to parameterize any rotation
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matrix R  G S 0 (3 ):

R  =

xf — x\  — x§ 4- x\  2(xiX 2  — £ 3 X4 ) 2(xxx3 +  x2x4)

2(xix2 +  x3x4) — x \ + x \  — X5 +  X5 2(x2x3 — XiX4)

2(xxx3 — x2x4) 2 (xix4 +  x2x3) —xf — x , +  x§ +  x\

with the advantage that this parameterization does not have singularities. cj„ i =  1. 2,3 

from (2.22) are exactly the components of the angular body velocity u j  =  (u/j, u;2, u;3) as 

defined in Section 2.1. Finally, the connection with the exponential coordinates a  defined 

in Section 2.5 can be easily seen if a  is written in the form o  =  9u, where u e  R3 is a 

unit vector giving the axis of rotation and 6  is the amount of rotation around u:

x  =
usin ?

cos I
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Chapter 3

Metric properties of SE(3)

One of the problems treated in this thesis is finding a trajectory of a rigid body between 

given starting and ending positions and orientations that minimizes a given cost function. 

Because the set of all positions and orientations (SE(3)) is not Euclidean, there is no ob

vious choice of a metric on this set. This chapter is a detailed discussion on the existence 

of useful metrics, with emphasis on invariance. Most of the results in this chapter can be 

found, in a slightly different form, in [56]. The adjoint action of S E ( 3) on its Lie algebra 

se(3), the basic tool for transforming twists for one frame to the other, together with the 

corresponding transformation rules, are given in Section 3.1. The notion of invariance of 

metrics on S E ( 3) and 5 0 (3 ) is described and characterized in Section 3.2. The kinetic 

energy metric together with some corresponding optimal curves is analyzed in Section 

3.3. The last section of this chapter is a discussion on screw motions, mostly to clarify 

the distinction between geodesics and one parameter subgroups.
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3.1 Adjoint action of SE(3) on se(3) and frame transfor

mation rules

Definition 1. Let M  be a smooth manifold and G a Lie group. A left action o f G on M  is 

a smooth map <$9 : M  —» M, g G G such that

•  $ e(x) =  x, fo r any x  G M;

•  For every g, h G G and x  G M, =  $ gh{x).

Definition 2. Let G be a Lie group. The map I 9  : G —► G. g G G given by I 9 {h) =  ghg~1 

is called the conjugation map.

It is easy to see that the map I 9  defines a left action of G on itself.

Definition 3. The tangent map of I9  at identity e, Ad9  =  TeIg is called the adjoint action 

o f G on g, its Lie algebra.

If G is a subgroup of GL{n, R) (like SO(3) and S E (3)), then AdgS  =  gS# -1 where 

5  G g is written in matrix form [56]. In this work, we are interested in the actions of the 

groups SO(3) and S E (3) on their Lie algebras so(3) and se(3), respectively. The adjoint

G SE{3) on S  e  se(3) is given by:action of A =
R d 

0 1

U! V Ruj Rv — Rjjjd
5  = e  se{3), AdAS =  A S A -1 =

0 0 0 0
G ae(3) (3.1)
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If the twist is written in vector form, the adjoint action AdA can be represented by a 6 x 6 

matrix [.4d 4]:

U1 R  0
s = £ se(3), AdAs — [.4d_4]s £ se(3), [.4d.4] —

V

-----,

■3
1

The adjoint action of S E (3) on se(3) can be used to write transformation rules for trajec

tories and twists when the inertial or the body frame are displaced.

Assume we have a rigid body moving in 3D space. Let {F}  be an inertial (fixed) 

frame and {A/} be a frame fixed to the body (body frame). The motion of the body in the 

inertial frame can be uniquely described by a curve A(t) = gF.w{t) € SE {3) giving the 

rotation of {A/} in {F} and the position of the center of {A/} in {.F}. For each curve 

.4(t) from S E ( 3), consider the twist S(t) =  .4- l (t).4(f) 6  se(3).

Proposition 1 gives the transformation rule for displacements of body frames.

Proposition 1. Assume the body frame is displaced by (a constant) gM M' to {AT} (see 

Figure 3.1). Let A'(t) =  gFM'{t) € SE{3) describe the motion o f {M '}  in {F} and S'{t) 

be the corresponding twist. Then, the following are true:

•  -^(f) =  A{t)gMM’

•  S'(f) =  -4d9M,M5(f)

Proof. The first part follows immediately from composition rule for elements in S E (3). 

For the second part from the composition rule gpM' =  gFM9 MM' . the definition of adjoint 

map and the definition of twists we have

S'(t) =  A' l (t)A'(t) =  gpM>gFM’ =  9\iM’9FM9FMgMM’ =  -4^-1^ S(t) =  Adgu,MS{t)
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or, if the twists are written in vector form.

s'(t) =  [,4d9M, J s ( t )

where the 6 x 6 matrix form of the adjoint action is given by (3.2). □

Figure 3.1: Displacement of body frame

Proposition 2 describes the transformation rules for changes in the inertial frame.

Proposition 2. Assume that the inertial frame {F} is displaced by a constant gpp- to a 

new {F'} as the body fixed frame {M } is left unchanged (see Figure 3.2). Let A'(t) = 

9 f ' m  € SF(3) denote the motion o f { M }  as seen from {F'}. The following describe the 

relation between curves and twists when the inertial frame is displaced:

•  -^(t) =  9F'FA(t);

•  S'(t) = S(t).
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Proof. For the first part, A'(t) = gF'\i{t) =  9ff '9fm{1)  =  9 F'FA(t). For the second 

part, we can write:

S'(t) =  .4' l (t)A'(t) = 9p}MgF'M =  9f m9f''fSff '9fm =  9f m 9fm =  S(t)

□

f*r

I F|

Figure 3.2: Displacement of inertial frame

Corollary 1. The twist S{t) = A~l (t)A(t) is invariant to changes in the pose o f the 

inertial frame. The adjoint o f the transformation o f body frame relates the twists when 

the body frame is displaced.

3.2 Invariant metrics on SE{3)

Assume that the inner product of two elements Si, S 2  €  se(3) is defined by

< 5 i ,5 2 > /=  W  =  [tify-], Wij = <  Li,L j  > /
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where L ly i =  1 , . . . ,6 is the basis of se(3) as defined in (2.9) and W  is a positive 

definite symmetric matrix. If V\ and V2  are tangent vectors at an arbitrary group element 

A e  SE {3), the inner product < Vi, V2  >A in the tangent space TASE(3) can be defined 

by extending the metric at identity through left invariance:

< Vi, V2  > 4= <  -4- I Vi, A~lV2  > / . (3.4)

If the basis L\, L2, ..., L6 is extended through left invariance throughout the manifold to 

L it L2. ..., Ls, then we can write

v\ = y . v?£. = a Y  v̂ .. v> = y  v?l - = a T , vi l >
X X  X  i

and the metric at .4 € S E (3) becomes:

< V\, V2 > A= <  A~lVu A - lV2 >i= Y ,  Vi v2 < U ,L 3 > /=  ^  V’IV ’wij
».j ‘j

So a left invariant inner product of two vectors at an arbitrary point on S E ( 3) can be 

written using the local coordinates of the vectors and the matrix of the metric defined at 

identity.

Proposition 3. A left invariant metric is independent o f the choice o f the inertial frame.

Proof. Let any .4 6  SE{3) and any Vi, V2  6  TASE{3).  We can always find two curves 

Ai{ t) ,A 2 (t) € SE{3) so that .4^0) =  A2(0) =  .4 and Vi =  ^ ( 0 ) ,  V2  =  ^ ( 0 ) .  Then,

< V-,,Vi > ,,= <  ^ i ( 0 ) , ^ i ( 0 )  >.4=< .4r‘( 0 ) ^ 1(0)>.42- 1( 0 ) ^ ( 0 )  > ,

where left invariance of the metric has been used. But the twists inside < , > / are invariant 

to change of inertial frame by Proposition 2, and the proposition is proved. □
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The following Lemma gives a description of bi-invariant quadratic forms in terms of 

adjoint actions.

Lemma 1. Let <, > be a quadratic form (bilinear and symmetric) defined at identity 

o f SE {3) and extended through left invariance throughout the manifold. Then, <, > is 

bi-invariant i f  and only i f

< S \ ,S i  Ad_\S\,Ad^S2  >/• V.4 £ SE (3), VSi, So £ se(3) (3.5)

Proof To prove necessity, because < . > is both left and right invariant, for any Si, S2 € 

se(3) and any .4 6 SE(3), we have:

< Si,So > /= <  .4Si,.4 S2  >.4 = <  -4Si-4 l ,.4So.4 * >.4 .4 - 1  = < .4Si.4 *,.4S2-4 * > /

For sufficiency, we only need to prove that the quadratic form is right invariant. Let V'i (B) 

and V'2(B) be two vectors from TBSE{Z) where B  is an arbitrary element of SE(3). 

Then, for any .4 € SE(3), we have

< V\(B)A, V2 {B)A > b a= <  ( B A ) - xVx{ B ) A , ( B A ) - 1 V2 {B)A > {Ba ) - ' b a =

< A - lB - lVl {B)A,A~ 1 B - lV2 {B)A  > ,=

< A A - lB - lV i { B ) A A - \A A - lB ~ lV2(B )A A -1 > /=

< B - l l \ ( B ) , B - lV2 (B)r = <  V\(B),V 2 (B) >B

which proves right invariance. Left invariance has been used twice and equation (3.5) 

once. □
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It is interesting to note that Lemma 1 is not only valid for SE(3), but also for a generic 

Lie group G and its Lie algebra g.

Theorem 1. Let W  be the matrix representation o f a quadratic form  < . >  defined at 

identity o f S E (3) and extended through left invariance throughout the manifold. Then the 

quadratic is bi~invariant if and only i fW  has the form:

W  = (3.6)

W  =

a l  31 

31 0

Proof By Lemma 1, <, > is bi-invariant if and only if (3.5) is valid for all S i, S2 6  se(3) 

and A  6  SE {3). Let

M  N  

N T P

where M, N, P  € R 3*3 and M, P  are symmetric. If we write (3.5) with the twists in 

vector form (and consequently the adjoint map AdA in matrix form) we get:

sJW si  = sf[.4d4]TW'[.4d4]s2, V.4 € S E ( 3), VSl,s 2 €  R 6

which is true if and only if

W  =  [.4d4]TH*[.4d4], V.4 € S E (3)

Let a generic element .4 e  S E (3). Then, by (3.1),

R  d R  0
.4 = =► [-4<f 4] =

0 1 dR R
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M N

N 7 P

Then the condition for bi-invariance becomes:

R T - R Td M  N  R  0

0 R T N T P  dR R

which is equivalent to:

M  =  P J M R  -  R TdNTR  +  RTN dR  -  RTdPdR

N  =  Rt N R  -  R TdPR  (3.7)

P  =  r t p r

The third equation from (3.7) is equivalent to finding a symmetric P  6  R 3x3 which 

commutes with all R  € SO (3). Let v be an eigenvector of P  corresponding to eigenvalue 

7 . Then Pv  =  yv and R Pv  =  PRv,  from which P{Rv) =  7 (Rv), VP € SO(3). 

Therefore, Pw  =  jw .  Vw on the unit sphere in R 3. By taking w as the standard Euclidean 

basis in R 3 it follows that

P  =  7 /

Now let d =  0 in the first and second equations from (3.7). By the same argument earlier,

-V =  j3I. M  =  a l

If P , N  and M  are replaced in the first equation of (3.7), it follows that 7 (d)2 =  0. V<f 6  

R 3 from which 7 =  0. □

Note that the matrix in (3.6) is not definite. Indeed, it has two distinct eigenvalues

Ai =  ^ (a  +  y /a 2  +  4/S2) A2 =  ^ (a  -  y /a 2  -I-4/32),
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both of multiplicity 3. Their product is AiA2 =  —32. If /3 =  0, then A2 =  0. If 3  #  0 

then A2 < 0. In both cases, the matrix cannot be positive definite. Hence we have the 

following:

Corollary 2. There does not exist a bi-invariant metric on SE(3).

Now it is easy to restrict all the discussion above to the Lie group 5 0 ( 3) of rotations 

in R3. For a curve R(t) € 50(3), the corresponding time-dependent element from so(3) 

can be written in matrix form u  =  RT{t)R(t) or in vector form u> € R3. Because 50(3) 

is a subgroup of the general linear group GL(3, R), the action of the adjoint map on an 

element from so(3) written in matrix form can be written as

Adfi(cj) = Ru R t

By the general fact that

R u  =  RjujR t , Vw 6  R 3 Vi? e  50(3)

we conclude that the action of the adjoint on an element from so{3) written in vector form 

is simply multiplication with R  from the right. A similar result to Theorem 1 can now be 

stated and proved for 50(3):

Theorem 2. Let W  be the matrix representation o f a quadratic form <, > defined at 

identity o /5 0 (3 ) and extended through left invariance throughout the manifold. Then the 

quadratic is bi-invariant i f  and only i f  XV has the form:

XV =  o l I  (3.8)
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Proof. By Lemma 1, the quadratic is bi-invariant if and only if

<  > /= <  Adn(jj\, A.(Iru) 2  >/) Vi? € 5 0 (3 ), ViJi, u>2 £ se(3)

or, equivalently,

ulWLJ2 =  u l R r WRuj2, Vf2 € S0(3), Vwl 7u;2 6 R3 

which is true if and only if

W  = Rt WR,  Vf? € SO(3)

The proof is complete by the same argument as in Theorem 1. □

If q from Theorem 2 is positive, the quadratic form becomes a metric and the follow

ing is true:

Corollary 3. Let W  be the matrix representation o f a metric < , > defined at identity o f  

50 (3 ) and extended through left invariance throughout the manifold. Then the metric is 

bi-invariant i f  and only i fW  has the form:

W  =  a l ,  a  > 0 (3.9)

3.3 The kinetic energy metric

A metric that is attractive for trajectory planning can be obtained by considering the dy

namic properties of the rigid body. The kinetic energy of a rigid body is a scalar that does 

not depend on the choice of the inertial reference frame. It thus defines a left invariant
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metric. If the body-fixed reference frame is attached at the centroid and aligned with the 

principal axis of the body, the matrix W  as in Eq. (3.3) is given by

(3.10)
H  0 

0 m l

where m  is the mass of the rigid body and H  is the diagonal inertia matrix of the body 

about the body frame {M}. If {oj. u} e  se(3) is the vector pair associated with some 

velocity vector V', the norm of the vector V  assumes the familiar expression of the kinetic

energy:

< V' V' > =  \<jjTH u  +  \ m v Tv. (3.11)

The kinetic energy metric depends on the choice of the body fixed frame M.  The 

following proposition describes this dependence.

Proposition 4. Assume the body fixed frame is displaced from {A/} to {M'} by

9 m ' m  =
R  d 

0 1

Then the matrix o f the kinetic energy metric is changed to

W 9  = (3.12)
RTH R - m R T{d)2R  - m R TdR  

m R TdR m l

Proof Because of the change of body frame, according to Proposition 1, the new twists 

become:

S\ — , S \, S2 — -4cL , S2, , ] —
R  0 

dR R
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Therefore, we can write (all the metrics are written at identity):

< S l , S 2  >r=< AdgM,MSi, AdgM,MS 2  > /=  Sx [-4d9jw,w] W 

So, the matrix of the metric becomes

which is the same as (3.12).

R T - R Td 

0 RT

H 0 R 0

0 m l

a;
'-a

1 R

□

In [91] it has been proved that a geodesic A(t) on S E ( 3) equipped with metric (3.10) 

is described by

d =  0 .

If H  = a / ,  an analytical expression for the geodesic passing through

R{0 ) d(0) * ( 1) d(l)
.4(0) = • -4(1) =

0 1 0 1

at t = 0 and t = I respectively, is given by [91]:

R{t) d{t)
A{t) =

0
€ SE{3)

where

R(t) =  f2(0) exp{u0 t) 

d(t) = (d (l)-d (O )) t +  d(0) 

=  Iog(-R(0)r f2(l))
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In the case when H  /  a l ,  there is no closed form expression for the corresponding 

geodesic and numerical methods should be employed.

If H  = a l ,  the differential equations to be satisfied by a minimum acceleration curve 

are [91]:

+  u j x uj  = 0 (3.20)

d(4) =  0, (3.21)

As observed in [57], equation (3.20) can be integrated to obtain

J 2) +  uj x u j  =  constant

However, this equation cannot be further integrated analytically for arbitrary boundary

conditions. In [91] it is shown that for special choice of the initial and final velocities,

minimum acceleration curves are re-parameterized geodesics. If H  /  a l  in metric (3.10), 

the differential equations to be satisfied by the minimum acceleration curves are difficult 

to derive and not suited for numerical integration.

3.4 Screw motions

One of the fundamental results in rigid body kinematics was proved by Chasles at the 

beginning of the 19th century: Any rigid body displacement can be realized by a rotation 

about an axis combined with a translation parallel to that axis. Note that a displacement 

must be understood as an element of S E (3) while a motion is a curve on S E (3). If the
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rotation from Chasles’s theorem is performed at constant angular velocity and the trans

lation at constant translational velocity, the motion leading to the displacement becomes 

a screw motion. Chasles’s theorem then says that any rigid body displacement can be 

realized by a screw motion.

A curve .4(0 on a Lie group is called a one-parameter subgroup if .4(f +  s) =  

A(t)A(s). The following are equivalent ways of defining a screw motion -4(f) € SE(  3):

•  .4- 1(f).4(f) = constant.

•  {w, u} = constant.

•  .4(f) is a one-parameter subgroup of S E ( 3).

•  The tangent vectors .4(f) to the curve form a left invariant vector field.

With this mathematical definition, the Chasles’s theorem can be restated in the form: 

For every element in SE (  3) different from identity, there is a unique one-parameter sub

group to which that element belongs. Note that the definition of a one-parameter subgroup 

is not dependent on a metric.

Given two end positions on S E (3), one concludes that there always exists an inter

polating screw motion. Is this motion physically meaningful and/or optimal from some 

point of view? To talk about optimality, one first needs to define a metric on the manifold. 

Optimal interpolating motions with respect to a given metric are geodesics, minimum 

acceleration curves, minimum jerk curves, and so on.
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What is the connection between geodesics as defined in Section 2.4 and screw motions 

(one-parameter subgroups)? The following result is true for any Lie group [29]: for a bi

invariant metric, the geodesics that start from the identity are one-parameter subgroups.

As a particular case, geodesics through the identity on 5 0 (3 ) with metric G = a l  

are one-parameter subgroups (uj = constant). Also, for the bi-invariant semi-Riemannian 

metric on S E (3)

o / 3 $I 3  

5/3 0

geodesics through the identity are screw motions.

The conclusion is that an interpolating screw motion is not the appropriate choice if 

the metric on S E (3) is different from the bi-invariant metric (3.22), which is the case of 

the kinetic energy metric.

G = , q, 3 > 0 (3.22)
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Chapter 4 

An SVD-based projection method for 

interpolation on SE(3)

As shown in Section 3.3, closed form solutions for optimal curves on SE {3) with metnc 

(3.10) are known only for geodesics with H  =  a I. The differential equations satisfied 

by geodesics for metrics with H  #  a /  and minimum acceleration curves for Euclidean 

metrics H  =  a l  can be integrated using numerical methods for boundary value problems 

such as shooting or relaxation [66]. If H  ^  a l ,  the equations to be satisfied by minimum 

acceleration and higher order curves are not known, mainly because the calculation of the 

corresponding Riemmanian curvature is too involved.

This chapter describes an alternative method for generating smooth trajectories for 

a moving rigid body with specified boundary conditions. The method involves two key 

steps: (1) the generation of optimal trajectories in GA+(n), a subgroup of the affine
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group in R n; (2) the projection of the trajectories onto S E ( 3), the Lie group of rigid 

body displacements. The overall procedure is invariant with respect to both the local 

coordinates on the manifold and the choice of the inertial frame. The benefits of the 

method are three-fold. First, it is possible to apply any of the variety of well-known, 

efficient techniques to generate optimal curves on G.4+(n). Second, the method yields 

approximations to optimal solutions for general choices of Riemannian metrics on SE{3). 

Third, from a computational point of view, the method we propose is less expensive than 

traditional methods.

It is first shown (Section 4.1.1) how one can define a metric on GL+(n), so that it 

induces an appropriate metric on SO(n). A similar procedure is used in Section 4.1.3 to 

equip G.4+ (n) with a metric that induces a suitable metric in SE(n).  Then, in Sections 

4.2 and 4.3, a projection operator is defined, which allows one to project points and curves 

in the ambient space to SO(n) and SE(n),  while invariance with respect to changes in 

reference frames is preserved. The projection method is formalized and studied in Section 

4.4. Section 4.5 presents some interesting results giving the closeness of the projected 

curves to the exact geodesics on 50(3) for the particular case when the metric on 50(3) 

is Euclidean. A comparison between the projection and the relaxation method for solving 

boundary value problems, together with simulation results and discussions on complexity 

and implementation are given in Section 4.6.
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4.1 Riemannian metrics on SO(n) and SE(n)

In this section it is shown that there is a simple way of defining a left or right invari

ant metric on SO(n) (SE(n))  by introducing an appropriate constant metric in GL+(n) 

(G.4+(n)). Defining a metric (i.e. the kinetic energy) at the Lie algebra so(n) (or se(n)) 

and extending it through left (right) translations will be equivalent to inheriting the appro

priate metric at each point from the ambient manifold.

4.1.1 A metric in GL+(n)

Let W  be a symmetric positive definite n x n matrix. For any M  £ GL~(n) and any 

.Y, Y  £ Tm GL^{ti), define

< .Y. Y  > g l +== T t ( X t Y W )  = T r { W X TY)  =  rr(VW’A'r ) (4.1)

By definition, form (4.1) is the same at all points in G L ¥(n). It is clear that it is quadratic
  o

in the entries of X  and Y.  Let x, y £ Rn* be the column vectors obtained by collecting 

all the elements of X  and V' row by row. Then,

< J Y ,r  >GL^=xTWy,

where

W  =  diag(W'r , W T, W T), W  €  R n2xn2.

It is easy to see that W  is symmetric and positive definite if and only if W  is symmetric 

and positive definite. Therefore, (4.1) is a Riemmanian metric on GL^(n)  when W  is 

symmetric and positive definite. We next prove the following interesting result
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Proposition 5. The metric given by (4.1) defined on G L+(n) is left invariant when re

stricted to SO(n). The restriction on SO(n) is bi-invariant i fW  =  a l ,  a  > 0, I  is the 

n x n identity matrix.

Proof. Let any M  € GL+(n) and any vectors X ,  Y  in the tangent space at an arbitrary 

point of G £+(n). Then, we have

< X 1 Y > g l + = T t ( X t Y W )

and

< M X .  M Y  >CL+= T r ( X TM TM Y W )

from which we conclude that the metric 1 is invariant under left translations by elements 

from SO(n). Therefore, when restricted to SO(n), metric (4.1) is left invariant. For right 

invariance, if R  € SO{n), we have

< X , Y  > c L + = T r {Y W X T)

and

< X R ,  Y R  >gl+= T t{ Y R W R t X t ).

So, right invariance is guaranteed only under the condition that R W R T =  W , i.e. when 

W  commutes with all the elements R  G SO(n),  which, by an argument similar to that in 

the proof of Theorem 1 from Chapter 3 is equivalent to W  =  a l .  □

'We will use the subscript whenever we refer to the metric in the ambient space GL+(n).

45

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Remark 1. I f  right invariance on SO(n) is desired (and left invariance is not needed), 

we can define

«  X ,Y  » G L + =  T t { X Y t W) = T r { Y TW X )  = T r ( W X Y T)

A similar proof shows that the metric « ,  » gl+ wM be right invariant on SO(n) for  

W  symmetric and positive definite and bi-invariant i fW  =  a l.

Remark 2. The metric <. >gl+ is constant with respect to the canonical coordinate basis 

and the corresponding Christoffel symbols are all zero. Therefore, given two arbitrary 

points M\ and M 2  in GL~(n), the interpolating geodesic starting a tt  = 0 and ending at 

t = 1  is simply M(t)  =  Mx +  (Mo — M\)t  (see Section 4.4.2 fo r a proof that this straight 

line stays in GL+(n) under reasonable assumptions). Thus, the distance between M\ and 

M 2  is given by

d(Mu M 2 ) 2  =  \\M2  -  Mi\\2g l^ =  Tr[(M 2  -  Mx)r (M2 -  M X)W] (4.2)

4.1.2 The induced metric on 50(3)

Even though the following derivation can be done in the general case of a n(n — l) /2  - 

dimensional manifold SO(n)  in the ambient nr - dimensional manifold GL+(n), we will 

limit our discussion to the n =  3 case to avoid new notation. Further, the results are of 

direct interest in 50(3).

Let R  be an arbitrary element in 50 (3 ). Let X ,  Y  be two vectors from TrSO (3) and
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Rx(t), Ry{t) the corresponding local flows so that

X  =  Rxit), Y  = Ry{t), Rx(t) =  Ry{t) = R.

The metric inherited from GL+(3) can be written as:

< .Y ,l' > s o = <  -Y, V' > Gt+=  Tr(Rl( t )Ry( t)W ) =

= Tr{RZ(t)RRTRy(t)W)  =  T t{uI uvW)

where £jx =  Rx(t)r R x(t) and ujy =  Ry(t)TRy(t) are the corresponding twists from the 

Lie algebra so(3). If we write the above relation using the vector form of the twists, some 

elementary algebra leads to:

< -Y, y > so= uJx Gujy (4.3)

where

G = T r (W ) I 3  -  W  (4.4)

is the matrix of the metric on 50 (3 ) as defined by (2.12). A different but equiva

lent way of arriving at the expression of G as in (4.4) would be defining the metric 

in so(3) (i.e. at identity of SO(3)) as being the one inherited from T/G £+(3): gi3 =  

T r ( L f L ° W ) ,  i . j  =  1,2,3 (L\,L°2, L \ is the basis in so(3)). Left translating this met

ric throughout the manifold is equivalent to inheriting the metric at each 3-dimensional 

tangent space of SO(3) from the corresponding 9-dimensional tangent space of G L+{3).

Proposition 6. The metric W  on G L+(3) and the induced metric G on 5 0 (3 ) share the 

following properties:
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•  G is symmetric i f  and only i fW  is symmetric.

•  I fW  is positive definite, then G is positive definite.

•  If G is positive definite, then W  is positive definite i f  and only i f  the eigenvalues o f 

G satisfy the triangle inequality.

Proof. The first part follows immediately from (4.4). For the second part, we can use 

(4.4) to prove that the eigenvalues pt of G are given in terms of the eigenvalues A, of W  

by:

Pi =  A2 +  A3,

P 2  =  ^1 +  A3, (4.5)

Pz =  Ax +  A2.

Because W  is positive definite, it follows that A, > 0 which implies px > 0, i.e. G is

positive definite. For the third part, from (4.5) we have

P2  +  P Z ~  P \

1 “  2

A2 =  '“ + "23 ~ W . (4.6)

\ _  P i  +  P 2  —  PZ
3 — ---------- o ------------ •

If pi satisfy the triangle inequality, At are positive and the claim is proved. □

Remark 3. In the particular case when W  =  a l , a  > 0,from (4.4), we have G =  2a l, 

which is the standard bi-invariant metric on 50(3). This is consistent with the second
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assertion in Proposition 5. For a  =  1, metric (4.1) induces the well known Frobenius 

matrix norm on GL+{3). [40/

Remark 4. The quadratic form u TGu> associated with metric (4.3) can be interpreted 

as the (rotational) kinetic energy. Consequently, 2G can be thought o f as the inertia 

matrix o f a rigid body with respect to a certain choice o f the body frame {A/}. The 

triangle inequality restriction from Proposition 6  therefore simply states that the principal 

moments o f inertia o f a rigid body satisfy the triangle inequality, which, by definition, is 

true fo r  any rigid body. Therefore, for an arbitrarily shaped rigid body with inertia matrix 

2G, we can formulate a (positive definite) metric (4.1) in the ambient manifold G L+(3) 

with matrix

W  = \ T r ( G ) h  ~  G (4.7)

Thus (4.7) gives us a formula fo r constructing an ambient metric space that is compatible 

with the given metric structure o f 50(3).

4.13 A metric in GA+(n)

Let

W  =
W  a

(4.8)

be a symmetric positive definite (n-Fl) x (n +  1) matrix, where W  is the matrix of metric 

(4.1), a e  R ", and w E R . Let A' and Y  be two vectors from the tangent space at an 

arbitrary point of GA+(n) (X  and Y' are (n -t-1) x (n + 1) matrices with all entries of the
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last row equal to zero). Similar to Section 4.1.1, a quadratic form

< X , Y  > g a * =  T r ( X TY\V) (4.9)

is symmetric and positive definite if and only if W  is symmetric and positive definite.

Remark 5. As in the case o fG L+ (n ) (see Remark 2), the distance between two arbitrary 

points B i, B 2  € GA+(n) is given by:

4.1.4 The induced metric in S E (3)

We can get a left invariant metric on SE(n)  by letting SE(n)  inherit the metric <  • >GA+  

given by (4.9) from G A+(n). To derive the induced metric in SE(3)  we follow the same 

procedure as in Section 4.1.2 for the particular case of n =  3.

Let A  be an arbitrary element from S E ( 3). Let .Y, Y  be two vectors from TASE(3) 

and Ax{t), A y{t) the corresponding local flows so that

d(Bu B 2 ) 2  =  ||B, -  B i l l e t  =  Tr[(B2  -  B l )T(B 2  -  B X)W\ (4.10)

X  =  A x(t), V  = A y(t), A x(t) =  A y(t) =  .4.

Let

Ri(t) di(t)
, i 6  {x,y}M t )  =

0 1

and the corresponding twists at time t:

Si =  -4“ l(f).4i(t) =
UJi Vi

, i €  {x,y}
0 0
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The metric inherited from GA+(3) can be written as:

< X . Y  > s e = <  -Y,V > a l *=  TriAHt)A„(t)W)  =

= T r ( S l A TA SyW)

Now using the orthogonality of the rotational part of .4 and the special form of the twist 

matrices, a straightforward calculation leads to the result:

< X  Y  >SE= T r ( S j S yW) =

=  Tr{u%UyW) + Tr(u^vyaT)+

+v^ujya + v^Vy w

Keeping the notation from section 4.1.2, if G is the matrix of the metric in SO(3) induced 

by G £+(3), then
“

- UJy G d
< a\  r  > se= T  TLd V G T G =

VV —a wlz

and G is given by (4.4).

Remark 6 . The metric given by (4.11) is left invariant since the matrix G o f this metric 

in the left invariant basis vector field is constant.

Rem ark 7. I fW  is symmetric and positive definite, then G given by (4.11) is symmetric 

and positive definite.

Remark 8. The quadratic form sTGs associated with metric (4.11) can be interpreted 

as being the kinetic energy o f a moving (rotating and translating) rigid body, where w is
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twice the mass m  o f the rigid body. I f  the body fixed frame {A/} is placed at the centroid 

o f the body, then a =  0. Moreover, i f  {M } is aligned with the principal axes o f the 

body, then G =  \H , where H is the diagonal inertia matrix o f the body. In the most 

general case, when the frame {A/} is displaced by some (Rq, do) from the centroid and 

the orientation parallel with the principal axes, we have:

G =  R^HRq — mR^d^Ro, a =  —mRod0

which is in accordance with (3.12).

4.2 Projection on SO(n)

We can use the norm induced by metric (4.1) to define the distance between elements in 

GL^{3). Using this distance, for a given A/ € GL+{3), we define the projection of A/ 

on SO(3) as being the closest R  € S O (3) with respect to metric (4.1).

The solution of the projection problem is derived for the general case of GL+ (n) and 

is based on the following lemma (a related treatment can be found in [41]):

Lemma 2. Let M  €  GL+(n) and A/ =  US.VT its singular value decomposition. Then 

R  =  U VT is the solution to the maximization problem

max Tr{M TR).
HeSO(n)

Proof. Let E =  diag{crx, . . ., <rn} and C  =  RTU, where R  € SO(3). Consider column

wise partitions for V  and C

V  =  r n], C = [cx, . . . ,  Cn]
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Then, we have:

Tr{M TR) = Tr(Vi:UTR) =  T r(V TC r )

=  T r ^ a i V i c f )  =  Y^(JiTr{vicJ) = Y ^ a lvfct 
1 = 1  t = i  1 = 1

Now C  and V  are both orthogonal, and ||cj|| =  ||i;i|| =  1. On the other hand, by Cauchy- 

Schwartz, {vfci ) 2  < ||ui||2||ci||2 =  1 and the equality holds for vt =  c1( or V = C, which 

implies R  = UVT. Therefore, $^"=1 cr, is an upper bound for T r ( M TR) which is attained 

for R  = UVT . □

The following proposition is the main result of this section:

Proposition 7. Let M  6  GL+(n) and U, E, V the singular value decomposition o f M W  

(i.e., M W  =  UY>VT). Then the projection o f M  on SO[n) with respect to metric (4.1) is 

given by R  =  U V T.

Proof The problem to be solved is a minimization problem:

We have

||M -  R\\2g l+ =< M  -  R , M  -  R  >gl+=

=  Tr[(M -  R)t (M -  R)W]  =

=  T r (M TM W  -  M t R W  -  Rt M W  +  R t R W )

Note that Tr(R TM W )  — T r ( W M TR) -- T r (M TR W )  and the quantities M TM W  and 

R TR W  =  W  are constant and therefore does not affect the optimization. Therefore, the
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problem to be solved becomes:

max T r ( W M TR)
ReSO {n)

With M W  = UHV7, according to Lemma 2, the solution to the above problem is R  =

U V T. □

Remark 9. Let S(n) denote the n(n +  l) /2  dimensional subset o f symmetric matrices o f

GL+{n).

•  For the particular case when W  =  /„, S(n) describes the set o f all matrices that 

project to identity in metric (4.1)- the fiber at identity. Note that the dimensions 

agree: SO{n) is n(n — l)/2 ) - dimensional, the fiber S(n) is n(n +  l) /2  - dimen

sional; the sum gives n2, which is the dimension o f the ambient GL+{n). Also, in 

this case, given R  6  SO(n), the set that projects to R  (fiber at R) is obtained by 

left translation RS(n);

•  In the general case, the set o f matrices that project to some given R  € SO (3) in 

metric (4.1) is Z2S(n) Wr_l.

Remark 10. It is easy to see that the distance between M  and R  in metric (4.1) is given 

by T r ( W ~ lV L 2 V T) +  Tr(W) — 2Tr(E). For the particular case when W  =  / 3> the 

distance becomes (°* — I)2- which is the standard way o f describing how "far" a 

matrix is from being orthogonal.

The question we might ask is what happens with the solution to the projection problem 

when the manifold GL+(n) is acted upon by the group SO (n). The answer is given below.
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Proposition 8 . The solution to the projection problem on SO(n) is left invariant under 

actions o f elements from SO(n). I f W  =  a l3, the solution is bi-invariant.

Proof Let M  € G L+(n), MW’ =  UHVT and the corresponding projection R  € SO(n), 

R  =  UVT. Consider the action of any L € SO[n) on M: M  =  LM.  Then an SVD for 

M W  yields M W  = (LU)T,VT . Then, by Proposition 7, the projection of M  on 50(3) 

is R = LUVt  =  LR, which proves left invariance. However, right translation of M  by 

I  G 50 (3 ) gives M  =  M L  and M W  =  UHVTW ~ lL W . The translated projection is 

UVTL. Right invariance is therefore guaranteed if W ~ lL W  =  L, i.e., W  commutes with 

arbitrary elements from 5 0 (n ). This is true only if W  = a l .  □

Remark 11. For the case W  =  I, it is worthwhile to note that other projection methods 

do not exhibit bi-invariance. For instance, it is customary to find the projection R  6  

5 0 (n) by applying a Gram-Schmidt procedure (QR decomposition). In this case it is 

easy to see that the solution is left invariant, but in general it is not right invariant.

4.3 Projection on SE(n)

Similar to the previous section, if a metric of the form (4.9) is defined on GA+ (n) with the 

matrix of the metric given by (4.8), we can find the corresponding projection on SE(n).  

We consider the case a =  0, which corresponds to a body frame {M }  fixed at the centroid 

of the body.
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Proposition 9. Let B  € G.4+(n) with the following block partition

B  =
Bi B 2  

0 1
, Bi  € GL+{n), B 2  € R"

and U, E, V  be the singular value decomposition o f B^W. Then the projection o f B  on 

SE(n) is given by

UVT B 2  

0 1
A = 6 SE(n).

Proof Let

A  =
R d 

0 1
, R  e  SO{n), d 6  R n

The problem to be solved can be formulated as follows:

A l|S  -  -4|1^

We have:

\B ~  A \\Ia+ =  Tr[(B -  A f ( B  -  A)W]

=  Tr (B TB W )  -  2Tr(BTA W )  +  Tr{Ar AW )

The quantity B TB W  is not involved in the optimization. Therefore, the problem becomes

min [-2 Tr{B TAW) + Tr{ATAW)\
A e S E ( n )

Since

Tr(ATAW ) = Tr(W )  +  {dTd + l ) w ,
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and

T t(Bt A W ) =  T r { B lR W )  + {B%d+ l)u;

we can separate the initial problem into two subproblems:

and

(b) min [—2B%d +  dTd\ 
de R n

From Lemma 2, the solution to subproblem (a) is R  =  UVT . For the second subproblem, 

note that d =  B i is the only critical point of the scalar function —2B%d +  drd. It is easy 

to verify that the Hessian at this point is 21, which is positive definite. Therefore, the

Similar to the SO(n)  case, the projection on SE{n)  exhibits several interesting in

variance properties.

Proposition 10. The solution to the projection problem on SE{n) is left invariant under 

actions o f elements from SE{n). In the special case when W  =  a l , the projection is 

bi-invariant under rotations.

Proof Let

solution is d =  B 2  which concludes the proof. □

B \ B i
B  = € GA+(n)

0 1

and define .4, U, E, V  such that

B i W  =  ITEVt , A  =
UV7 Bi

e  SE(n)
0 1
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Let

Q =

R d 

0 1

be an arbitrary element from SE{n).  Under left actions of Q, the solution pair becomes

QB  =
RBi RB 2  +  d 

0 1

Q.4 =
R U VT R B -2 + d

0 1

which proves left invariance of the projection. For the second part, note that the right 

translated solution pair is

BQ  =
B \R  B id  +  B 2

AQ =
UVTR U ^ d  +  Bi

0 1

It is easy to see that B \R W  =  UT.VTW  lRW .  With W  =  a / ,  we have ByRW  =  

CTEVt R. If only rotations (d =  0) are taken into consideration, right invariance is proved.

□
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4.4 The projection method

Based on the results we proved so far, we can outline a method to generate an interpolating 

curve .4(f) e  S E (3), t 6  [0, 1] while satisfying the boundary conditions:

.4(0), .4(1), .4(0), .4(1),---- .4(m)(0), .4(m)(l)

where the superscript ( )(m) denotes the m-th derivative. The projection procedure con

sists of two steps:

•  Step 1: Generating the optimal curve B {t) in the ambient manifold G.4+(3), which 

satisfies the boundary conditions and

•  Step 2: Projecting B(t) from Step 1 onto .4(f) € S E (3).

Due to the fact that the metric we defined on G.4+ (3) is the same at all points, the cor

responding Christoffel symbols are all zero. Consequently, the optimal curves in the am

bient manifold assume simple analytical forms. For example, geodesics are straight lines, 

minimum acceleration curves are cubic polynomial curves, and minimum jerk curves are 

fifth order polynomial curves in G.4+(3), all parameterized by time. Therefore, in Step 

1, the following curve is constructed in G.4+(3):

B(t )  =  B q +  B i t  +  —  -+- Bzm—it?™ 1

where the coefficients Bi i =  1, . . . ,  2m — 1 are linear functions r \  of the input data:

Bi = Ti .̂4(0),.4(1),.4(0),.4(1),.. . . .4 (m)(0),.4(m)(l)^ .
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Step 2 consists of an SVD decomposition weighted by the matrix W  as described in 

Proposition 9 to produce the curve .4(f).

4.4.1 Left invariance - independence of inertial frame

We ask if the generated motion is independent of the choice of the reference frame {F}. 

The answer is given in the following proposition:

Proposition 11. The projection method on S E ( 3) is left invariant, i.e., the generated 

trajectories are independent o f the choice o f the inertial frame {F}.

Proof. Assume the inertial frame {F} is displaced to (F '}  and the transformation matrix 

giving the displacement of {F} in {F'} is Q € SF(3). As seen from the new frame 

{F'}, the boundary conditions are specified as

Q.4(0), Q.4(l), Q.4(0), QA(  1) ....... Q.4 (m)(0 ), Q.4<m)(l)

and the interpolating curve in G.4+(3) satisfying the new boundary conditions becomes

B(t) =  B 0  +  B\t  +  . . .  +  B 2 m—it2m 1

where

Bi =Ft  (Q .4 (0 ),Q .4 (l) ,Q .4 (0 ),Q i(l) ,...,

Q.4(m)(0),QA(m)( l ) ) , i =  l , . . . . 2 m -  1

Since the functions r t are linear, we conclude that B(t)  =  QB{t).  Now using Proposition 

10, the projection of QB (t ) € G.4+(3) onto S E (3) is simply QA(t).  Thus, the projection
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method on SE(3)  consisting of two steps is left invariant, i.e., the generated trajectories 

are invariant to displacements of the inertial frame {F}. □

Remark 12. Due to the linearity on the boundary conditions o f the curve in the ambient 

manifold, the first step is always bi-invariant, i.e., invariant to arbitrary displacements in 

both the inertial frame {F} and the body frame {M}. The invariance properties o f the 

overall method are, therefore, dictated by the second step. According to Proposition 10, 

the procedure is bi-invariant with respect only to rotations o f {F} in the particular case 

o fW  =  a l. In the most general case, i.e., fo r arbitrary choices o fW ,  the method is left 

invariant to arbitrary displacements o f the inertial frame.

4.4.2 Uniqueness and smoothness of the projection

Due to the fact that SE {3) has a product structure 5F(3) =  50(3) x R 3 and the metrics 

that we use are product metrics, it is sufficient to answer the above questions for 50(3) 

and the ambient GL+{3). Also, due to the left invariance of the generated trajectories, 

without loss of generality, we can restrict our attention to curves passing through iden

tity. Finally, in accordance with the scope of this work, the discussion will be limited to 

geodesics and minimum acceleration curves.

Uniqueness

Let us first note that even if the singular value decomposition of some matrix from M  € 

G £ 'r (3): M  =  UT.VT is not unique (it is unique up to permutations of the singular
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values), the product R  = UVT giving the projection on SO (3) is unique. Finding the 

projection on SO (3) in the form UVT using SVD is equivalent to determining the polar 

decomposition M  = Q S  (Q orthogonal, S  symmetric and positive definite) with Q = 

R  = UVT, S  =  VY.VT. Also, as noted in [72], using the polar decomposition, one 

can find the orthogonal part Q by averaging the matrix with its inverse transpose until 

convergence, which can be proved to be cheaper to compute than the actual SVD of the 

matrix. We use SVD throughout the work simply because one gets more information 

through SVD than via polar decomposition. For example, proof of Lemma 2 is much 

simpler than the proof of a somewhat similar result given in the appendix of [72], which 

uses the Lagrange multiplier method to solve a constrained optimization problem. Also, 

the invariance properties of the projection become transparent in the SVD. Moreover, the 

deviation of the actual singular values of some matrix from 1 is a good measure of how 

far that matrix is from being orthogonal. In the actual implementation of the method, one 

can always use polar decomposition if the SVD calculation is deemed to be too expensive.

Also, the uniqueness of the projection as in Proposition 7 is guaranteed if M W  is 

nonsingular [42]. Since W  is positive definite, we only need to make sure that the smooth 

curve M{t) generated in the ambient manifold do not leave GL+ (3) (an element of GL(3) 

with negative determinant will not project to a rotation but to a reflection).

Consider the following interpolant between /  at t =  0 and 72(1) =  e"° € 50(3) at 

t = 1:

M(t)  =  /  +  (72(1) -  t 6  [0 , 1] (4.12)
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where f ( t )  is a smooth function with /(0 ) =  0, / ( l )  =  1. According to (A.l) from 

Appendix A, the singular values of M(t)  are given by {1, s(t), s(t)} where

s(t) =  v/2(l -  cos \\uo\\)f{t ) 2  -  2(1 -  cos ||w0||) /(f)  +  1 (4.13)

By studying the binomial under the square root, it is easy to see that s(t) > 0, Vf e  [0. 1] 

if and only if ||cj0|i ^  (2A: -t- l )7r, k integer. s(t) can become zero if and only if ||û 0|| = 

(2k + l ) 7r and /  =  1/2. Note that this condition corresponds to singular points of the 

exponential coordinates for 50 (3 ). Therefore, restricting the magnitude of the rotation 

0 < I l^o 11 < tt (which is the usual assumption when exponential coordinates are used as 

local parameterization of 50 (3 ) around identity) guarantees that the singular values of 

M{t) stay positive when t e  [0, 1], i.e., M(t) stays in G L+{3). As a particular case for 

f ( t )  = t, the geodesic in G L+(3), M(t) = I  + (i?(l) — I)t, passing through identity at 

t =  0 does not leave GL*(3) if the magnitude of the rotation is less than 7r.

For a minimum acceleration curve, we expect this condition to also depend on the 

magnitudes of the end velocities. Explicidy, the cubic polynomial interpolating boundary 

conditions on 50(3) given by f?(0) =  I , i?(0) at t = 0 and f?(l), i?(l) at t =  1

M(t)  =  I  +  R( 0 )t + ( -31  +  3R( 1) -  2R(0) -  # (1 ) )?  +

+(21 -  2R(1) + R(0) + R ( l) ) t 3  (4.14)

can be rewritten as M(t)  =  M\(t)  +  M 2 (t) where

M ^ t )  =  /  +  (R{1 ) -  I) f ( t) ,  f ( t )  =  31? -  21 3

M 2 (t) =  (t -  2 i? +  f3)i?(0) +  ( - t 2 +  *3)i?(l)
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Let a(-) and <x(-) denote the largest and smallest singular values of some matrix. Then

M (t) >  0 <=> a(M(t)) > 0, t 6  [0, 1]

Using

finding a lower bound for a(M{t) ) reduces to finding a lower bound for qXM\ (0) and an 

upper bound for a  (M2 (t)).

Mx{t) is of the form (4.12), and, therefore, it has singular values at {1, s(t), s(t)}, 

where s(t) is given by (4.13). It is easy to see that for /(f)  =  3t2 — 2t3, s(t) < 1, and, 

therefore, er(A/i(t)) =  s{t).

Now assume that the end velocities are upper bounded by S > 0 in 2-norm, i.e., 

d-(.R(0).d(.ft(l) < S. We have:

< a({t -  2t2  + f3)i?(0» +  a ( { - t 2  + t3 )R{l)) <

< (t -  t2)S

Then, a sufficient condition for > 0 is

5 = g{t. ||cj0||) := s ( f ) / ( f - f 2)

A plot of g(t, IIcjoII) is presented in Figure 4.1 (a) for t  € [0, 1] and ||u/o|| € [0 .7r]. It 

can be seen (even though this can be proved rigorously by taking derivatives of g(t, ||cj0||)) 

that the minimum value of the function is always attained at t =  0.5, for all the values 

of ||u/o|| £ [0, 7r]. We conclude that a sufficient condition for a cubic interpolant of
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5 30 . 5

:c

(a)

Figure 4.1: Upper bounds on the end velocities on SO(3) are imposed so that the interpo
lating cubic in the ambient manifold does not leave GL~{3)

the form (4.14) to remain in GL+{3) for t 6  [0 , 1] can be expressed in terms of upper 

bounds on the end velocities as S < <7(0 .5, ||u;0||) To illustrate the magnitudes of the 

allowed velocities, a plot of <7(0.5. | | u / 0 | | )  is given in Figure 4.1 (b) for | | c j o | |  6  [0. ir\. As 

expected, the upper bound on end velocities becomes more restrictive with the increase 

on the rotational displacement.

Remark 13. The bound on the amount o f rotation 9 < tt is not really restrictive since 

rotations 9 larger than it can be always achieved by rotating 2ir — 9 around the same axis 

but on opposite direction.

Smoothness

Since the SVD (or polar decomposition) is a smooth operation, and provided that the 

smooth curve generated in the ambient manifold does not leave GL+(3) (this guarantees 

unique projections), the projected curve on 50(3) is smooth.

Singularities might occur due to the projection from GL+{3) (a 9 dimensional man

ifold) to 5 0 (3 ) (a 3-dimensional manifold). Specifically, the projected curve can have a
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cusp point when the tangent to the curve in the ambient space is also tangent to the fiber 

of the projection. Also, a curve that meets a fiber in two places will project to a curve 

with a self intersection. However, provided that the curve in 50 (3 ) is smooth in time, 

since the goal of this method is motion generation for robots, cusps and self intersection 

points are allowed. A cusp on a smooth curve on 50(3) will physically correspond to a 

situation when the angular velocity of the body smoothly decreases to 0  and then starts 

increasing. This situation mostly occurs in motion generation for nonholonomic robots. 

A self intersection point corresponds to the body attaining the same pose at two different 

times.

4.5 Geodesics on 50(3) with Euclidean metric

This section presents some interesting results giving the closeness of the projected curves 

to the exact geodesics on 50(3) for the particular case when the metric on 50(3) is 

Euclidean.

The problem to be solved is generating a geodesic R{t) between given end positions 

Ri =  f?(0) and R 2  =  R{ 1) on 50 (3 ). Without loss of generality, it is assumed Ri =  / .  

Indeed, a geodesic between two arbitrary positions Ri and f?2 is the geodesic between 

I  and R i XR 2  left translated by R i. Exponential coordinates cri,a2 ,cr3  are considered 

as local parameterization of 50 (3 ). If R 2  =  e"0, then the geodesic is the exponential 

mapping of the uniformly parameterized segment passing through 0 and cj0 (cr(t) =  u/01 )

66

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



from the exponential coordinates:

R(t) =  eait) =  e

The geodesic in the ambient manifold GL(3) satisfying the given boundary conditions 

on 5 0 (3 ) is

An analytical expression for the projection of an arbitrarily parameterized line in the 

ambient GL(3) onto SO (3) is derived, which will answer the following three questions.

•  Does the projection of a geodesic from GL{3) follow the same path as the true 

geodesic on 50(3)?  If the answer is yes, then the following question makes sense:

•  Do the above two curves have the same parameterization? If the answer is no,

•  Can one find an appropriate parameterization of the line in the ambient manifold so 

that the projection is identical to the true geodesic on 50(3)?

Proposition 12 is the key result of this section.

Proposition 12. Let M{t) = I  +  {R2  -  t € [0,1] be a line in GL(3) with

R 2  =  e^° € 50 (3 ) ( f  continuous, /(0 ) =  0, / ( l )  =  1). Then the projection o f this line 

R~(t) onto 50 (3 ) is the exponential mapping o f a segment drawn between the origin and 

uJo in exponential coordinates parameterized by 9(t):

M(t)  =  U{t)Z{t)VT{t) => R x {t) =  U{t)VT{t) =  e*°m (4.15)

atan2 (l -  /( f)  +  /( f )  cos ||u/0||, /( f )  sin ||u/0||) (4.16)
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Proof. The proof is given in Appendix A. □

Note that the obtained parameterization 0(f) satisfies the boundary conditions 0(0) =  

0, 0(1) =  1

As a particular case of Proposition 12 for /(f)  =  f, the following corollary answers 

the first two questions at the beginning of this section:

Corollary 4. The true geodesic on 50(3) and the projected geodesic from GL{3) with 

ends on SO(3) follow the same path on SO{3) but with different parameterizations. The 

projected curve is the exponential mapping o f the same segment from the exponential 

coordinates

R±(t) =  e ^ m

with the following parameterization

0 (*) =  7T~7ra ta n 2 ( l  - t  + tcos ||w0||.f sin ||u/0||)
M i l

The derivative of the function 0(f) is given by

± m t \ _  8111 M l
d t K } ||u/0||s(<)

where s{t) is given by (A.l). Plots of the function 0(f) and its derivative are given in 

Figure 4.2 for f €  [0,1] and the magnitude of the displacement on the manifold [|u70|t € 

(0,7T).

The conclusion is that even though the line in GL(3) is followed at constant velocity, 

the projected curve on the manifold has low speed at the beginning, attains its maximum
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(a) (b)

Figure 4.2: (a) The function 0(f); (b) The derivative jj0(f)

in the middle, and slows down as approaching the end point. The larger the displace

ment ||u/o||, the larger the discrepancy in speeds. Also note that the middle of the line is 

projected into the middle of the true geodesic because 0(0.5) =  0.5 (i.e the functions t 

and d(t) are equal at t =  0.5). This result has been stated in [72] in the context of unit 

quaternions as local parameters of 50(3) (viewed as the unit sphere 5 3 in the projective 

space R P 3).

To answer the third question, one needs to find a parameterization f{t)  (/(0) =  0, 

/ ( l )  =  1) of the line in GL{ 3) with ends on 50 (3 ), which gives uniform parameterization 

t  of the projected curve in exponential coordinates. The solution of the following equation 

i n /

atan2(l -  f ( t ) -I- f[ t)  cos ||w0||, f ( t )  sin ||a>0|| =  t
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(a) (b)

Figure 4.3: (a) The function f{t); (b) The derivative ^ / ( f )

is of the form

/(f)  =  sin(ll"ollO
sin(||w0||( l -  t)) +  sin(||cj0 ||f)

The answer to the third question is stated in the following corollary:

Corollary 5. The true geodesic on 50 (3 ) starting at I  and ending at R 2  =  is the 

projection o f the following line from the ambient manifold GL(3):

M(t) = I  + (R2 -  / ) / ( f ) ,  t € [0,1], /( f)  =  -  sin(||w0||f)
sin(||u/0||( l -  *)) +  sin(||o;o||f)

Illustrative plots of /( f )  and its derivative are given in Figure 4.3 for f € [0,1] and 

different values of the displacement ||u/0|| 6  (0 , tt).

As expected, to get a uniform speed on 50(3), the line in GL(3) should be followed 

at high speed at the beginning, slow down in the middle, and accelerating again near the 

end point.

70

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Remark 14. The result in Corollary 5 is similar to the formula fo r spherical linear in

terpolation ’Slerp’ in terms o f quaternions [72 J. The curve interpolating qx and q2, with

parameter u moving from 0  to 1 , is given by:

. . sinfl — u)9 sin uQ
Slerp(gx, q2; u) = ---------- qx + -r -x -q 2sin u sin 0

where qx ■ q2  =  cos 9.

4.6 Projection vs. relaxation: comparison and simula

tion results

This section demonstrates how minimum energy and acceleration motions for a rigid 

body can be constructed using the projection method. The obtained curves are compared 

with the ones generated by using the relaxation method to numerically solve the exact 

equations of the optimal curves, when they are known.

We will first focus on 50 (3 ). Due to the product structure of both S E (3) =  SO(3) x 

R 3 and the metric <, > s e  for a =  0, all the results are straightforward to extend to 

SE ( 3).

4.6.1 Geodesics and minimum acceleration curves on 50(3) by the

relaxation method

The relaxation method [66] is used to generate geodesics when G a l  and minimum 

acceleration curves when G =  a l .  The translational parts (3.14) and (3.21) are easily
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integrable leading to polynomial solutions. For the rotational part, a local parameteri

zation of SO (3) should be chosen and three first order differential equations relating lj 

to the derivatives of the parameters should augment the system. We choose exponential 

coordinates (as described in Section 2.5) as local parameterization of SO (3). Three more 

differential equations described by (2.19) will augment systems (3.13) and (3.20) to solve 

for the rotational part. Boundary conditions are imposed at times 0 and 1. In the relax

ation method, the ODE’s are replaced by finite difference equations on a mesh of points 

corresponding to the time domain. If we define

X \  =  <7. X 2 =  UJ. X3 =  LJ, X4 =  Ul,

the geodesic (subscript g) and the minimum acceleration (subscript a) ODE’s can be 

written as

i i  =  fi{Xi), i 6  {g, a} (4.17)

where

Ig  =  [xf X * ] r  Xa =  [xf x \  x l  * J 7

/ .(* .)  =  [ / r  / .(* .)  =  \ /t  f 02 s i ; s i r

f i  =  x + (1 — a ( | |x i | | ) )  ||Xil||2^ X2 (4.18)

fgt =  - G _ l (x2 x (Gx2)), fa* = x 3, fa* =  X 4 , f aA =  ~ X 2 X  X4

Note that the expression of f i  is in accordance with the time derivative of exponential 

coordinates on SO(3) as in (2.19) where a(y) =  (y/2)cot(y/2). If N  is the number of 

coupled first order differential equations in (4.17) and M  is the number of mesh points, a
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solution consists of values for N  dependent functions at each of the M  mesh points, i.e. 

.V x M  variables in all. The relaxation method determines the solution by starting with 

a guess and improving it iteratively. At each step, the method produces a matrix equation 

whose solution is increments for each entry in the .V x M  matrix of interest. When this 

increments are sufficiently small, we say that the method has converged, or the matrix has 

relaxed to the true solution. For more details the interested reader is referred to [66].

4.6.2 Geodesics and minimum acceleration curves on 50(3) by the 

projection method

If the projection method described in Section 4.4 is used, one solves the problem in 

G L+ (3), while keeping the proper boundary conditions for SO{3).

Geodesics are found in GL+{3) and eventually projected back onto 50 (3 ). The 

geodesic in GL+( 3) is

M{t) =  Rq + (i?i — f £ [0? l]

The projection onto SO(3) using the metric W  is given by:

M {t)W  =  LT(t)E(f)V*(f)r ,

R(t) =  U{t)V(t)T, W  =  | r r ( G ) /3 -  G (4.19)

For minimum acceleration curves, the boundary conditions /?(0), R{ 1), i?(0), R{ 1) 

are assumed to be specified. The minimum acceleration curve in G L+{3) with a constant
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metric <, > g l + is a cubic given by

M{t) =  M0  +  Mit + Mot2  + M 3 t3,

where M0, Mi, Mo, -V/3 e  GL+{3) are

Mo =  R{0), Mi =  /2(0),

A/2 =  —3/2(0) +  3/2(1) -  2/2(0) -  /2( 1),

A/3 =  2/2(0) -  2 /2(1) +  /2(0) +  /2(1).

Now the curve on SO{3) is obtained by projecting M(t)  onto 50 (3 ) using equation 

(4.19).

4.6.3 Computational efficiency

It is not difficult to see that, from a computational point of view, it is less expensive to 

generate interpolating motion using the projection method as opposed to the relaxation 

method. Recall that the complexity of the SVD o f a n x n  matrix is of order n3 [40]. If M  

is the number of uniformly distributed points in [0 . 1], then the number of flops required 

by the projection method in GL+{n) is of order 0{n 3 M).

The relaxation method for generating solution at M  mesh points of a system of N  

differential equations with two boundary conditions implies solving a M N  x M N  linear 

system in the corrections iteratively until the method relaxes to the solution (corrections 

converge to zero) [66]. Gaussian elimination, whose complexity is cubic, is used to solve
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the linear systems. Therefore, the number of flops required in the relaxation method is of 

order 0 ( M 3 N 3).

Consider the problem of generating geodesics on SO(n).  Here N  =  n(n  — 1). The 

projection method involves 0 ( n 3 M)  flops while the relaxation method has complexity of 

the order 0 ( n 6 M 3). For M  =  100, as we used in this paper, the generation of geodesics 

on 50(3) (n =  3) requires millions of flops by the relaxation method, while only thou

sands by the projection method.

4.6.4 Implementation notes

The relaxation method has been programmed in C, using routines from [66]. The pro

duced executable file is called with line command arguments from a MATLAB™ 2 file, so 

that the C code is transparent for the user. For both the projection and the relaxation 

method, the MATLAB™ files ask for input data: position and velocity boundary conditions, 

and mass and moments of inertia of the body. The output is the trajectory on S E ( 3). 

The rotational part can be plotted separately in exponential coordinates. Files of type 

. f ra m e s  to generate motion in Jack™ are also created.

2 MATLAB™ is a trademark of the Math Works, Inc.
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4.6.5 Simulation results

Geodesics on 50(3)

Without loss of generality, we will assume Ri =  I. Indeed, a geodesic between two 

arbitrary points Ri and Ro is the geodesic between I  and x/?2 left translated by R x 

[57, 91].

Illustrative examples are shown in Figures 4.4 and 4.5, where end positions on 50(3) 

are given in exponential coordinates. In all the examples, the initial condition is cr(0) =  

[0, 0. 0]T, which corresponds to the body frame {A/} being parallel with the iner

tial frame {F} at f =  0. In both Figures 4.4 and 4.5, Case (a) corresponds to final 

condition cr(l) =  [7r / 10. 7t / 10, 7t / 10]t  (i.e., a rotation of 7t \ / 3/10  about the unit 

vector [ l/\/3 , 1 /  v/3. l /\ /3 ] r ), while Case (b) describes the final condition cr(l) =  

[7r /6 , 7t / 3 , 7t / 2]t  (i.e., a rotation of 7r \ / l 4 /6  about the unit vector 

[ l / \ / l4 ,  2 / \Zl4, 3 / i/l4 ]r ). In other words, Case (a) represents a small (compared with 

7r) rotation, while Case (b) is a rotation approximately four times that in (a).

In Figure 4.4, G =  a l  and the geodesic passing through identity on 5 0 (3 ) is a uni

formly parameterized line through the origin in exponential coordinates. Also, as proved 

in [4], the projected geodesic follows the same path but with a different parameterization. 

When the displacement is small (Case (a)), the parameterizations of the curves obtained 

by relaxation and projection are almost the same. The difference in parameterization is 

more pronounced in case (b), when the excursion is large.

In Figure 4.5, G ^  a l  and the geodesics in exponential coordinates are not straight
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Rgure 4.4: Geodesics on SO{3) for an isotropic metric G = diag{3, 3, 3} drawn in 
exponential coordinates: (a)<r(l) =  [7r/10, tt/10, 7t/ 10]t ; (b) <t(1) =  [7r/6. 7t/3 , 7r/2]T
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Rgure 4.5: Geodesics on SO(3) for metric G = diag{10, 10, 3} drawn in exponential 
coordinates: (a) cr(l) =  [7r/10, 7r / 10, 7r / 10]r ; (b) a ( l ) = [7r/6, 7t / 3 , 7t / 2]t  .
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Figure 4.6: Minimum acceleration curves on 50(3) with canonical metric: (a) Velocity 
boundary conditions along the geodesic; (b) End velocity perturbed by and (c) End 
velocity perturbed by be\.

lines anymore. Also, the geodesic and the projected curve follow different paths. Again, 

the difference between the geodesic obtained by relaxation and the projected curve is 

more noticeable for larger displacements (Case (b».

Minimum acceleration curves on 50(3)

The following examples present comparisons between the minimum acceleration curves 

generated using the projection method and the curves obtained directly on 50(3) by 

integrating equations (3.20) using the relaxation method. All the generated curves are 

drawn in exponential local coordinates.

In Figure 4.6.5, the following position boundary conditions were used:

ct(0 ) = 0 0 0 o-(l) = 7T
6

7 T  I T

3 2
(4.20)
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The initial velocity is the one corresponding to the geodesic passing through the two 

positions:

UJn =  E E E 
6 3 2

Cases (a), (b) and (c) differ by the velocity at the end point. Figure 4 (a) corresponds to 

a final velocity u\ =  ljq, therefore one gets a minimum acceleration curve for which the 

end velocities are along the velocity of the corresponding geodesic, leading to a geodesic 

parameterized by a cubic of time [91]. The final velocity is a;i =  u 0  +  ei in case (b) and 

-jx = uq + 5ex in case (c), where ex =  [1 0 0]r .

As seen in Figure 4 (a), the paths of the projected and the optimal curves are the same, 

the parameterizations are slightiy different though, as expected. In cases (b) and (c), 

although the deviation of the final velocity from being homogeneous is large, the curves 

are close. Note that the boundary conditions are rigorously satisfied.

Geodesics on SE {3)

Since we know how to generate near optimal curves in 50(3), the extension to S E (3) is 

simply adding the well known optimal curves from R 3. A homogeneous parallelepipedic 

rigid body is assumed to move (rotate and translate) in free space. We assume that the 

body frame {M} is placed at the center of mass and aligned with the principal axes of the 

body. Let a, b and c be the lengths of the body along its x, y and z  axes respectively, and 

m  the mass of the body.

For visualization, a small square is drawn on one of its faces and the center of the
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parallelepiped is shown starred.

The matrix G of metric <, >so is given by

i ^  +  c2) 0

(a)

G = 0

0

0

0

o i ( a 2 +  62)

(b)

Figure 4.7: Minimum acceleration motion for a cube in free space: (a) relaxation method; (b) 
projection method.

The following boundary conditions were considered:

a(0) =  

u/(0) =

0 0 0 

1 2 3

, * (1) =

, u/(l) =

T 7T 7T
6 3 2

2 1 1

T
d{ 0) = 0 0 0 , d( 1 ) = 8 10 12

m  = [d ( 0) = 1 1 1 , dW  = 1 5  3
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(a) (b)

Figure 4.8: Geodesics for a parallelepipedic body: (a) relaxation method; (b) projection method.

True and projected minimum acceleration motions for a cubic rigid body with a = 

b =  c =  2 and m  =  12 are given in Figure 4.7 for comparison. Note that for this case 

G — a l  with q =  4.

Geodesics for the same boundary conditions and a parallelepipedic body with a = 

c =  2, b =  10 and m = 12 are given in Figure 4.8. For this case,

52 0 0

0 4 0

0 0 52

As seen in Figures 4.7 and 4.8, even though the total displacement between the initial

and final positions on 50 (3 ) is large (rotation angle of iry/l4/6), there is no noticeable

difference between the true and the projected motions.

Three frames from the geodesic motion of the same parallelepiped generated using

the relaxation method and Jack™ 3 are shown for illustration in Figure 4.9. Jack™ is a
3 Jack™ is a trademark of the University of Pennsylvania
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program which facilitates constructing geometric objects, positioning figures in a scene, 

and describing motion of the figures. It also has facilities for specifying lighting and 

surface property information.

Figure 4.9: Frames from a movie produced with Jack™

4.7 Discussion

This chapter develops a method for generating smooth trajectories for a moving rigid 

body with specified conditions at end points. The method involves two key steps: (1) the 

generation of optimal trajectories in GA+(n); and (2) the projection of the trajectories 

from GA+(n) to SE{n).  The overall procedure is invariant with respect to both the local 

coordinates on the manifold and the choice of the inertial frame. The benefits of the 

method are three-fold. First, it is possible to apply any of the variety of well-known, 

efficient techniques to generate optimal curves on GA+(n) [33, 35]. Second, the method 

yields nearly optimal solutions for general choices of Riemannian metrics on S E ( 3). For 

example, we can incorporate the dynamics of arbitrarily shaped rigid bodies. Third, from 

a computational point of view, the method we propose is less expensive than traditional 

methods. We presented the application of the basic ideas to a motion generation problem
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with specified boundary conditions.
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Chapter 5

Optimal motion generation for groups 

of robots

This chapter develops a method for generating smooth trajectories for a set of mobile 

robots satisfying constraints on relative positions. It is shown that, given two end config

urations of the set of robots, by tuning one parameter, the user can choose an interpolating 

trajectory from a continuum of curves varying from the trajectory corresponding to main

taining a rigid formation to trajectories that allow the formation to change and the robots 

to reconfigure while moving.

The fundamental idea is based on the definition of a kinetic energy metric in the 

configuration space. It is well known from classical mechanics that any energy metric 

can be used to derive geodesics which represent the trajectory of the unforced system. 

We decompose the kinetic energy into the energy of the motion of a rigid structure and
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the energy corresponding to motions that violate the rigidity constraint. The first set of 

motions can be associated to velocity vectors that are tangential to orbits of the Euclidean 

group, S E ( 3) or SE{2). The second set of motions corresponds to velocity vectors which 

are orthogonal to the first. The kinetic energy metric is “shaped” by assigning different 

weights to each contribution1. The geodesic flow for this modified metric is derived, and 

trajectories of the individual robots are generated. When the weights are biased toward 

the rigid body motion, the obtained trajectories correspond to optimal rigid body motions 

in 3-D space (SE(  3)) or in the plane (SE(  2)). Other choices of weights lead to the special 

cases of the robots moving toward each other or each individual robot traversing its own 

optimal path.

This chapter is organized as follows. The problem is formulated and the notation 

is introduced in Section 5.1. Section 5.2 gives a mathematical description of the rigidity 

constraint. The configuration space is endowed with a metric in Section 5.3, which is used 

for infinitesimal decomposition of motion into rigid and non-rigid. An example of optimal 

motion planning for a rigid formation is given in Section 5.4. The rigidity constrained is 

relaxed and the kinetic energy metric is “shaped” in Section 5.5. The chapter ends with 

examples and discussions.

'This idea of a "decomposition” and a subsequent "modification” is related to the methodology of 
controlled Lagrangians described in [20,87].
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5.1 Problem statement and notation

Consider N  robots moving (rotating and translating) in 3-D space with respect to an 

inertial frame {F}. We choose a reference point on each robot at its center of mass Oi. A 

moving frame {Mi} is attached to each robot at Oi (see Figure 5.1).

IMI

IFI

X

Figure 5.1: A set of N  =  3 robots.

Robot i has mass mi and matrix of inertia Hi with respect to frame {Mi}. Let R, € 

50 (3 ) denote the rotation of {A/,} in {F} and qt €  R 3 the position vector of Oi in {F}. 

Let u>i denote the expression in {Mi} of the angular velocity of {A/,} with respect to {F}. 

The formation is defined by the reference points 0*. The moving formation is called rigid 

if the relative distance between any of the points O, is maintained constant. Sometimes 

it is also useful to define a formation frame {A/}, attached at some virtual point O' and 

with pose (R, d) €  SE {3) in {F}. Let q° denote the position vectors of O, in {Af}.

The configuration space is the 6iV-dimensional manifold, 5F(3) x SE {3) x . . .  5F(3),
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given by the poses of each robot. Given two configurations at times t  =  0 and t =  1 

respectively, the goal is to generate smooth interpolating motion for each robot so that the 

total kinetic energy is minimized.

The kinetic energy T  of the system of robots is the sum of the individual energies. 

Since the frames {Mi} were placed at the centroids Oi of the robots, T  can be written as 

the sum of the total rotational energy Tr and the total translational energy Tt in the form:

Since our definition of a formation only involves the reference points Ot, a formation 

requirement will only constrain the qt's from the above equation. Therefore, due to the 

decomposition in equation (S. 1), minimizing the total energy is equivalent to solving N + 1 

independent optimization subproblems:

where is some parameterization of the rotation of {M,} in {F}, i.e., some local coor

dinates on 50 (3 ). The solutions to equations (5.2) are given by N  geodesics on 50(3) 

with left invariant metrics with matrices Hi. Two different methods to obtain the solution 

are given in Chapter 4 and a short example is given in Section 5.4.

The main focus in this chapter is solving problem (5.3) while satisfying constraints 

on the positions of the reference points Oi that may be imposed by the requirements on 

the task. Thus the configuration space we are interested in is just the 3N  dimensional

min I u j H xUidt, i =  1, . . . ,  N, (5.2)

mm (5.3)
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Q =  {q\q — (9 i 5 • • • > 9iv )} , which collects all the position vectors of the chosen reference 

points. Maintaining a rigid formation (a virtual structure) imposes constraints on the 

configuration space, Q, and these constraints may be relaxed as necessary.

5.2 The rigidity constraint - virtual structures

The group of N  robots is said to form a virtual structure if the relative distances among the 

reference points Oi are maintained constant. Let q =  [qf, . . . , qJ,\T denote an arbitrary 

point in Q. For an arbitrary pair of reference points with position vectors qx and qj, 

i , j  =  1. . . . ,  N , i < j ,  the constraints can be written as:

(?i ~  9j)T(9i ~  Qj) — con stan t  (5.4)

or, by differentiation:

(9i ~  9j ) TQi ~  (9i ~  Qj)TQj =  0

By lifting this constraint to the configuration manifold Q, the coordinates of the corre

sponding differential one form can be written as a 1 x 3N  row vector

ulij — 0 . . .  0 (qi -  qj)T 0 . . .  0 - ( ®  -  qj)T 0 . . .  0

The non-zero 1 x 3  blocks in the above matrix are in positions i and j ,  respectively. If we 

consider all (N  — l)N /2  possible constraints, we can construct the codistribution u>r as 

the span of all the corresponding covectors:

u R =  span (u/y , i, j  =  1 , . . . ,  N, i < n}
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It is obvious that not all the ( N —l)N /2  covectors (constraints) are independent. To insure 

rigidity, it is necessary and sufficient to impose 2N  — 3 constraints of the type (5.4) in 

plane, while in 3D, the number is 3N  — 6 . This is closely related to the idea of minimally 

rigid graphs [61, 31], or, equivalently, isostatic graphs [32, 31]. By simple inspection, it 

is easy to prove that the annihilating distribution of l j r  ( l j r ( A r )  = 0) is:

A r =  Range(.4(<?)), A{q) =

—Q\ h

(5.5)

—Qn h

Therefore, by lifting each constraint to the configuration manifold Q, the virtual structure 

(rigidity) constraint can be written as

9 € ^ r {q) (5.6)

A generic situation is defined as being a configuration in which qt are not all contained in 

any proper hyperplane of R d (d =  2,3). Of course A r is integrable, therefore regular and 

involutive. It is interesting to note though that, in a generic situation, the distribution A r 

is regular and involutive, therefore integrable. The proof of regularity can be found, in a 

slightly different context in [69]. It is proved that, under the generic situation assumption, 

a matrix similar to u r , called the rigidity matrix, is of rank 3N  — 6 in 3D and of rank 

2 N  — 3 in plane, which is equivalent to the regularity of the annihilating distribution A r 

(of rank 3 in plan and 6 in 3D). For involutivity, let d , . . . ,  a$ (the columns of A(q)) 

denote the basis of A r at q. Then, it is easy to see that

di =  block diag{L?,. . . ,  L°}q, i =  1,2,3
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Therefore, the invoiutivity of a*, i — 1 , . . . ,  6 is reduced to the involutivity of the standard 

basis Li, i = 1 , . . . ,  6 for se(3), which is assumed known.

The following theorem gives an explicit construction of a foliation of R3 ̂  using the 

distribution A a - It follows that motion planning (control) problems for a set of N  robots 

in 3D required to maintain a rigid formation can be reduced to motion planning (control) 

problems for a left invariant control system on SE(Z).

Theorem 3. Assume g(0) =  q° and q{0) G A n(q°). Then, the formation constraint (5.6) 

is satisfied fo r all t > 0 i f  and only i f

qi(t) =  d(t) +  R{t)q° (5.7)

where (R(t).d(t)) is a trajectory o f the left invariant control system

g(t) =  gS  (5.8)

starting from R{0) =  / 3, d(0) =  0.

Proof To prove sufficiency, if s =  [uT vT]T  G R 6 are the coordinates of S  G se(3) in

the standard basis L x, . . . ,  I 6. then for each i =  1, . . . ,  N , we have:

<ji = d +  Rqf =  R v + Rjujq° = Rv + R u R T {qi — d) =

=  Rv + Ru(q,i -  d) = [ j
Rlj

dRu  +  Rv V
I Adgs

from which it follows that q =  [q[ , . . . ,  qJf]T G A«(g).

For necessity, let r  G R 6 give the coordinates of q in the chosen basis of A n{q):

q =  A(q)r
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Then, we will show that the system (5.8) starting at R(0) =  I, d(Q) =  0 with

R T 0 

- R Td R T

_  r , ,T „ T lT

r  =  A d g - i r (5.10)

gives qi(t) =  d(t) +  R(t)q°. Let s =  [uTvT]T. Then, the control system can be written as

R  = Ru, d =  Rv

Using (5.9), (5.10), and (5.11), we have, for any i =  1 , . . . ,  JV:

(5.11)

qx =  —qi(Ru) + dRjuj +  Rv = Ruqi — Rud  +  Rv

=  RjujR1 qi — RjJjR1 d -r Rv =  R R 1 qi — R R Td +  d

or.

Using

- d )  = R R T{q, -  J)

R R t  =  /  = >  RR t  = —R R 7

we end up with

- { R T(q i - d ) ) =  0

Using the initial conditions i?(0) =  / ,  d{0) =  0, ?j(0) 

integrated to (5.7).

q°, the above equation can be

□

Remark 15. •  The coordinates r o f the expansion o f q E  A ft(g) along the columns

ofA(q ) are exactly the components o f the left invariant twist o f a virtual structure 

formed by (q i , . . qpi) and {F} at that instant.
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•  s is the left invariant twist o f a moving rigid structure formed by (q°,. . .  ,q%) and 

{M } and fo r which the mobile frame {M } was coincident with {F} at t =  0. 

g =  (R. d) is the pose o f the moving frame {M } in {F}.

Corollary 6. The distribution ~^R{q) determines a foliation o f Q with leaves given by 

orbits o f S E (3).

5.3 Motion decomposition: rigid vs. non-rigid

We first define a metric <. > in the position configuration space, which is the same at all 

points q € Q:

< V q\V ;-> = V qlTMVq2, (5.12)

V', =  q € TqQ, M  =  ^diag{m i/3, . . . ,  m NI 3} (5.13)

Metric (5.12) is called the kinetic energy metric because its induced norm (Vq =  Vq =  q) 

assumes the familiar expression of the kinetic energy of the system 1/2  Ylt=i 9«- 

If no restrictions are imposed on Q, the geodesic between <?(0) =  q° and q{l) =  ql 

for metric (5.12) is obviously a straight line uniformly parameterized in time interpolating 

between q° and q1 in Q.

At each point q in the configuration space Q, A R(q) locally describes the set of all 

rigid body motion directions. The orthogonal complement to A R(q), A NR(q) will be the

set of all directions violating the rigid body constraints 2. For an arbitrary tangent vector

2In [20, 87], the tangent space at q to the orbit of S E {3) is called the vertical space at q, Ver,, and its 
orthogonal complement is the horizontal space at q €  Q, Hor,.
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Vq € TqQ, let RV^ denote the projection onto A r and NRV^ denote the projection onto 

A .vs.

Using metric (5.12), the orthogonal complement of the “rigid” distribution A R(q) is 

the “non-rigid” distribution

A.v r (<7) =  Null(.4(g)r M) (5.14)

Let B(q) denote a matrix whose columns are a basis of Aatr(?)-

Let w denote the components of the projection in this basis: NRV, =  B{q)xv. There

fore, the velocity at point q can be written as:

V', =  RV', +  NRV, =  A{q)r + B{q)y  (5.15)

Then, for any V'1, V'q e  TqQ, we have:

< v ;\ V,2 > =  VqlT\IV q2  =  r lTA TM A r 2  +

+ rlTA TMBip2  -I- wlTB TM A r 2  -I- B TMBib2  =

=  r lTATM A r 2  -I- xplTB TMBil; 2  =

= <  B\bl ,Bxb2  > +  < .4 r \ .4 r 2 > =

= <  NRV',1, NRV',2 > +  <  RV,1. RV',2 >

because both ATM B  and B TM A  are zero from (5.14). Also, note that

r =  {At  M  A)~l At  M  V,

(5.16)

xi) =  {BTM B )~ lB TM V  
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where the explicit dependence of .4 and B  on q was omitted for simplicity. Therefore, the 

translational kinetic energy (which is the square of the norm induced by metric (5.12)) 

becomes:

Tt{q, q) =  f M q  = tt At M A t +  wTB TM B u  (5.17)

In (5.17), rTA TM A r  captures the energy of the motion of the system of particles as a rigid 

body, while the remaining part wTB TM Bw  is the energy of the motion that violates the 

rigid body restrictions. For example, in the obvious case of a system of N  = 2 particles, 

the first part corresponds to the motion of the two particles connected by a rigid mass-less 

rod, while the second part would correspond to motion along the line connecting the two 

bodies.

5.4 Motion generation for rigid formations

In this section, we will assume that the robots are required to move in rigid formation, 

i.e., the distances between any two reference points Oi are preserved, or, equivalently, the 

reference points form a rigid polyhedron.

In our geometric framework, the rigid body requirement means restricting the trajec

tory q(t)  £ Q to be a SE {3) - orbit, or equivalently, N Rq =  0 or q € Aft(q), for all

q-

In this case, one can imagine a body frame {M}  moving with the virtual structure 

determined by the O f s. Initially (f =  0), the frame {M}  is coincident with {F } and 

g(0 ) =  q°. The position vector of Oi in {M}  is constant during this motion and equal to
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<7°.

From Theorem 3, qt =  [—q° J]s, and therefore, the kinetic energy Tt becomes:

Tt = sTM s , M  = A(q°)TMA(q°) (5.18)

where s € se(3) is the instantaneous twist of the virtual structure.

Therefore, if the set of robots is required to move while maintaining a constant shape 

q°, the optimization problem is reduced from dimension 6N  to dimension 3N  +  6, and 

consists of solving for .V geodesics on 50(3) with metrics Hx (individual rotations) and 

one geodesic on the SE {3) of the virtual structure with left invariant metric M. as in 

(5.18).

5.4.1 Example: Five identical robots in 3D space

For illustration, we consider five identical parallelepipedic robots m, =  m. i =  1 .-----5

required to move in formation while minimizing energy. The initial and final poses to

gether with the geometrical properties of the robots are given in Figure 5.2. The body 

frames and the formation frame placed at the center of mass and aligned with the princi

pal axis are drawn. The inertial frame is coincident with the formation frame at t =  0. As 

seen from the inertial frame, the formation frame is translated by (X , 0, Z) and rotated by 

-90 degrees around the y-axis.

As outlined in the previous section, generating optimal motion for this group of robots
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Initial (t»0)

Final ( t - i )

Figure 5.2: Geometry of the robots and of the virtual structure showing the initial and the 
final configurations. The relevant dimensions are chosen to be: a=c=2, b=10, h=20,1=10, 
X=20, Z=20, m=12.
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reduces to generating five geodesics on the S O (3) of each robot with left invariant metric

H -  m  
24

0

0

a2 +  cr

0

0

fr2

, i =  1, . . . ,  o

and one geodesic on the S E (3) of the virtual structure endowed with a left invariant 

metric with matrix

C - T

2Z2 0

0 Z2 +  ^

0

0

0

0

0

0

0

0

Z2 +  * f  0

0 3 / 3

The resulting motion is presented in Figure 5.3.

We used exponential coordinates at, i =  1, 2,3 as local parameterization of 50(3)

[4].

5.5 Motion generation by kinetic energy shaping

By shaping the kinetic energy, we mean smoothly changing the corresponding metric 

(5.12) at TqQ so that motion along some specific directions is allowed while motion 

along some other directions is penalized. The new metric will no longer be constant 

- the Christoffel symbols of the corresponding symmetric connection will be non-zero. 

The associated geodesic flow gives optimal motion.
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2 0 -

N

-1 0

20

-10 -20i X

Figure 5.3: Optimal motion for five identical robots required to maintain a rigid formation 

In this work, the original metric (5.12) is shaped by putting different weights on the 

terms corresponding to the rigid and non-rigid motions:

< V',1, V',2 >n= a < NRV',1, NRV',2 > +(1  -  a) < R V ,\R V ',2 > (5.19)

Using (5.16) to go back to the original coordinates, we get the modified metric in the 

form:

< v;1, V? > „=  v f M M V ? ,  (5.20)

where the new matrix of the metric is now dependent on the artificially introduced param

eter q  and the point on the manifold q € Q'-

Ma(q) = a M A (A TM A) ~TATM  +  (1 -  a )M B (B TM B )~TB TM  (5.21)
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The influence of the parameter a  can be best seen by examining the significance of 

a  taking on the values of 0, 0.5 and 1. As a  tends to 0, the preferred motions will 

be ones where robots cluster together through much of the duration of the trajectory, 

thus minimizing the rigid body energy consumption. As a  approaches 0.5, the motions 

degenerate toward uncoordinated, independent motions. As a  tends to 1, the preferred 

motions are ones where the robots stay in rigid formation through most of the trajectory, 

thus minimizing the energy associated with deforming the formation.

We use the geodesic flow of metric (5.20) to produce smooth interpolating motion 

between two given configurations:

where T* are the Christoffel symbols of the unique symmetric connection associated to 

metric (5.20):

rriij and m tJ are elements of Ma and M ~ l, respectively.

Because a  =  0 and a  =  1 make the metric singular, (5.24) can only be used for

0 <  q  <  1.

q° =  9(0 ). ql = 9(1) € R 3" (5.22)

To simplify the notation, let xt, z =  1, ___3N  denote the coordinates 9, e  R 3, 1 =

1,  N  on the configuration manifold Q. In this coordinates, the geodesic flow is de

scribed by the following differential equations [29]:

(5.23)

(5.24)
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5.5.1 Example: two bodies in the plane

Consider two bodies of masses mi and m2 moving in the x  — y plane. The configuration 

space is Q =  R? with coordinates q = [xi, yi, x2, 2/2]r - The .4 and B  matrices describing 

A R(q) and A NR{q) as in (5.5) and (5.14) are:

.4 = . B  =

- 2 / i  1 0

h  0 1

- 2/2  1 0  

x2 0 1

The 64 Christoffel symbols Fk =  (r£ )„  of the connection associated with the modified 

metric at q € Q become:

m 2( x 2 - x i )
m i ( 2 / i - t / 2 )

 m2
mi

X i  — X ;

vi ~yi

r1 =

r2 = 

r3 = ■ 

r4 =

2(1 -  2a) m2 dx

where

r =

a  m\ + m2 (d2 +  d2)2

2(1 -  2a) m2______ d y ___ ^
a  mi +  m2 (d2 +  d2)2

2(1 ~  2a) mi______ d x  ^
a  mi +  m2 (d2 +  d2)2

2(1 -  2a) mi______ d y  ^
a  m x +  m2 (d2 +  d2)2

d  ̂ d x d y  d£ d x d y

d x d y  4  d x d y  d %

4  d X d y  4  d X d y

d x d y  d̂  d x d y  d̂
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and dx — xi -  x2, dy = y\ — y2. It can be easily seen that, as expected, all Christoffel 

symbols are zero if a  =  0.5. Also, the actual masses of the robots are not relevant, it’s 

only the ratio rrii/m 2  which is important.

In this example, we assume m 2  =  2mi and the boundary conditions:

1
1--------

iCO
1

0 _ vi
o

?° =
—0.5

0

, 9* =
3 +  ^

&
4

which correspond to a rigid body displacement so that we can compare our results to the 

optimal motion corresponding to a rigid body.

If the structure was assumed rigid, then the optimal motion is described by uniform 

rectilinear translation of the center of mass between (0,0) and (3,0) and uniform rota

tion between 0 and 37t /4  around — z placed at the center of mass. The corresponding 

trajectories of the robots are drawn in solid line in all the pictures in Figure 5.4. It can be 

easily seen that there is no difference between the optimal motion of the virtual structure 

solved on SE{2) and the geodesic flow of the modified metric with a  = 0.99 (Figure 5.4, 

bottom). If q =  0.5, all bodies move in straight line as expected (Figure 5.4, middle). 

For a  =  0.2, the bodies go toward each other first, and then split apart to attain the final 

positions (Figure 5.4, top).
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a  = 0 . 2

a  =  0.5

-a*-_i 2 24 J

a  =  0.99

Figure 5.4: Three interpolating motions for a set of two planar robots as geodesics of a 
modified metric defined in the configuration space.
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0 -

25-0 5 0.5
a =  0.2

-1 352.5-0.5 0.5-1
a =  0.5

-0.5

t 15

a =  0.99
-0.5 0.5

Figure 5.5: Three interpolating motions for a set of three planar robots as geodesics of a 
modified metric defined in the configuration space.
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5.5.2 Example: three bodies in the plane

The calculation of the trajectories for three bodies moving in the plane is simplified by 

assuming that the robots are identical, and, without loss of generality, we assume =  

m2 =  m3 =  1. The rigid and the non-rigid spaces at a generic configuration

q =  [art, Vi, *2, y2, *3, y3]r € Q =  R6

are given by

A r = Range(.4), .4 =

- 2/i 1 0

Xi 0 1

- 2/2 1 0

x2 0 1

-2/3 1 0

x3 0 1

A/vr =  Range(B), B =

XJ-I!
yi-sra yi-y2

X2-X1
yi-ya

- 1 0 - 1

ri-xa
yi-sra

ya-yi
yi-ya

x l ~ x 3.
yi-y2

0 0 1

0 1 0

1 0 0

For simplicity, we omit the expressions of the modified metric and of the Christoffel 

symbols. The simulation scenario resembles the one in Section 5.5.1: the end poses 

correspond to a rigid structure consisting of a equilateral triangle with side equal to 1.
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The optimal trajectory solved on S E (2) corresponds to rectilinear uniform motion of the 

center of mass (line between (0,0) and (3,0) in Figure 5.5) and uniform rotation from 

angle 0 to 3n/4  around axis —2. The resulting motion of each robot is shown solid, 

while the actual trajectory for the corresponding value of a  is shown dashed. First note 

for a  =  0.99 the trajectories are basically identical with the optimal traces produced by 

the virtual structure, as expected. In the case a  =  0.5 the bodies move in straight line 

(corresponding to the unmodified metric). The tendency to cluster as a  decreases is seen 

for a  =  0.2. Note also that due to our choice mi =  m2 =  m3, the geometry of the 

equilateral triangle is preserved for all values of a , it only scales down when a  decreases 

from 1.

5.6 Discussion

This chapter presented a strategy for generating a family of smooth interpolating trajecto

ries for a team of mobile robots. The family is parameterized by a scalar a . As a  becomes 

closer to zero, the robots are pulled together as they move between the initial and final 

positions. The case a  =  0.5 corresponds to a totally uncoordinated strategy: each robot 

will move from its initial to its final position while minimizing its own energy. Finally, 

as a  tends to 1, the robots try to preserve the distances between them and minimize the 

overall energy of the motion.

While the chapter provides a useful conceptual framework for motion planning and 

generation of trajectories, there is a practical limitation to this work. As the number of
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robots, N , increases, the generation of the Christoffel symbols and the solution of the 

two-point boundary value problem becomes more complicated.

106

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 6 

Abstraction and control for groups of 

fully-actuated planar robots

In this chapter, we consider the problem of controlling a large number of robots required 

to accomplish a task as a group. For example, consider the problem of moving hundreds 

of planar robots with arbitrary initial positions through a tunnel while staying grouped so 

that the distance between each pair does not exceed a certain value. The simplest solution, 

generating reference trajectories and control laws for each robot to stay on the designed 

trajectory, is obviously not feasible from a computational viewpoint. It is desired to have 

a certain level of abstraction: the motion generation/control problem should be solved in 

a lower dimensional space which captures the behavior of the group and the nature of the 

task. For example, the robots can be required to form a virtual structure. In this case, 

as shown in Chapter 5, the motion planning problem is reduced to a left invariant control
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system on S E (3) (or SE(2) in the planar case). However, the virtual structure constraint 

might be too much, or simply not appropriate in many applications, including obstacle 

avoidance, tunnel passing, etc.

We propose an abstraction based on the definition of a map from the configuration 

space of the robots to a lower dimensional abstract manifold, whose dimension does not 

scale with the number of robots. The task to be accomplished by the team suggests a nat

ural feedback control system on the small dimensional manifold. In this chapter we focus 

on planar fully actuated robots and require the abstract manifold to have a product struc

ture of a Lie group, which captures the dependence of the ensemble on the chosen world 

coordinate frame, and a shape manifold, which is an intrinsic description of the team. We 

design decoupled controls for group and shape. We also show that the individual con

trol laws which are mapped to the desired behavior of the formation can be realized by 

feedback depending only on the current state of the robot and the state on the formation 

manifold, so that the robots have to broadcast their states and only have to listen to some 

coordinating agent with small bandwidth.

This chapter is organized as follows. The problem is formulated in Section 6.1 and 

our geometric approach to solving it is outlined in Section 6.2. Sections 6.3, 6.4, and 

6.5 define an abstraction, discuss its significance and show that the requirements of the 

problem formulated in Section 6 .1 are satisfied. Interesting simulation results are included 

in Section 6 .6. The chapter concludes with statement of contributions and future work in 

Section 6.7.
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6.1 Definitions and problem formulation

Consider N  kinematically controlled robots with states belonging to manifold Q, and 

control spaces Ui. For planar fully actuated agents, the states are position vectors qt £ 

Qi =  R2, i — 1, . . . ,  N  with respect to some world frame {VV'}, and the controls ut £

Ui =  R2:

qi =  Ui (6 . 1)

Collecting all the robot states together, we get a 2 .V-dimensional control system

q =  u (6 .2)

where q £ Q = [1*11 Q» =  R 2jV- u £ U = H jli  Ui = R2A and the canonical projec

tions:

*i(Q) = Qi» d-Ki{u) =  Ui (6.3)

The motion (behavior) of the ensemble of robots is determined if the corresponding 

velocities are specified:

Definition 4 (Behavior). Any vector field X q  £ T Q  is called a behavior.

Individual behaviors are obtained by projecting the collective behavior X q  using (6.3). 

Given a large number of robots evolving on the configuration space Q, we want to 

be able to solve motion generation / control problems on a smaller dimensional space, 

which captures the essential features of the group, according to the class of tasks to be 

accomplished. We want the dimension of the control problem to be independent of the
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number of agents and also independent of the possible ordering of the robots. These 

requirements will provide control laws which are robust to individual failures and also 

good scaling properties.

We also need to make sure that, after solving the task on the small dimensional space, 

we can go back and generate control laws for the individual agents. All these ideas lead 

to the following definitions:

Definition 5 (Abstraction). Any surjective submersion

<r> : Q -¥ A, <t>{q) =  a (6.4)

is called an abstraction if  it is invariant to permutations o f the robots and the dimension 

n o f A is not dependent on the number o f robots N. .4 and a are called abstract manifold 

and abstract state, respectively.

It is assumed that the abstract state a is physically significant in accordance to the task 

to be accomplished.

In addition, if possible, it is desired that .4 have a product structure

A = G x S, a =  (g, s), <p =  {0 g, <ps) (6.5)

where G is a Lie group. An arbitrary g E G defines the gross position and orientation of 

the team in the world frame {IV'} and it is called the group variable, s €  S is  called the 

shape variable. The main idea is to have a control suited description of the team of robots 

a in terms of the pose g of a virtual structure, which captures the dependence of the team 

on the world frame (IV'}, plus a shape s, which is decoupled from g, and therefore, an
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intrinsic property of the formation. In other words, if g is an arbitrary element of G, we 

require the map tp to satisfy

<P(g) =  (9 , s) => 6 (gq) =  {gg, s) (6.6)

where gq represents the action of the group element g on the configuration q G Q and gg 

represents the left translation of g by g using the composition rule on the group G. Since 

we only approach planar robots in this paper, G is a subset of S E ( 2). gq represents a rigid 

displacement of all the robots by g. (6 .6) shows that the map tp is left invariant, which 

gives invariance of our to be designed control laws to the pose of the world frame {If'}. 

Indeed, if the world frame {VV’} is displaced by g, the shape s is not affected while the 

pose g is left translated by g.

Instead of designing high dimensional behaviors X q , we want to be able to describe 

collective behaviors in terms of time-parameterized curves on the lower dimensional ab

stract manifold .4.

Definition 6 (Abstract behavior). Any vector field X A 6  T A  is called an abstract be

havior.

Let dtp denote the differential (tangent) of the map <p. Note that the submersion condi

tion in Definition 5 guarantees the suijectivity of the differential dtp at any q € Q, which 

will guarantee the existence of vector fields X q  pushed forward to any abstract behavior

* 4 .

The abstraction tp gives a decomposition of the space of behaviors on Q into behaviors 

which can be “seen” in the abstract manifold .4 and behaviors which cannot be seen in .4.

I l l

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Definition 7 (Detectable behaviors). A behavior X q  G TQ which is mapped to a non

zero abstract behavior X a  G T  A is called a detectable behavior. A behavior which is not 

detectable is called non-detectable.

Our goal in this paper is to generate individual control laws which are mapped to 

desired abstract (collective) behaviors, i.e.. wisely chosen low-dimension descriptions. 

Therefore, we will not allow individual motions which cannot be captured in A, because 

this would be a waste of energy. However, non-detectable behaviors can be useful to 

accommodate specifications which are not captured by A.

We are now able to formulate the main problem:

Problem 1 (Control of fully actuated robots). Determine physically meaningful forma

tion abstractions Q, abstract behaviors X A, and corresponding individual robot control 

laws Ui satisfying the following requirements:

(i) The abstract state a is stationary if  and only i f  all the robots qi are stationary.

(ii) The abstract manifold .4 has a product structure (6.5) and <z> satisfies the left invari

ance property (6 .6 ).

(iii) The control systems on the group G and shape S  are decoupled.

(iv) I f  the state a o f the abstract manifold is bounded, then the state o f each robot qi is 

bounded.

Requirement (i) from Problem 1 guarantees that each individual motion on Qi can 

be “seen” in the small dimensional m anifo ld  A  and, therefore, can be “penalized” by
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control. This is equivalent to the detectability of the corresponding behavior X q . If 

requirements (ii) and (iii) are satisfied, then one can design control laws for the interest 

variables on a separately, e.g, change the pose of the formation g while preserving the 

shape s. Requirement (iv) is self-explanatory.

In addition to the requirements explicitly formulated in Problem 1, it is desired that 

the energy spent by the individual robots to produce a desired abstract behavior be kept 

to a minimum. Also, the amount of inter-robot communication in the overall control 

architecture should be limited.

6.2 Approach

In this section we characterize the solution to Problem 1. First, note that the map <t> 

gives a foliation of the configuration space Q. We assume that the abstract manifold has 

the desired product structure .4 =  G x S. Let Qg be the codistribution spanned by the 

differential one forms obtained by differentiating each component of 09. Similarly, Qs is 

the codistribution determined by <ps. Let A9 and A, denote the corresponding annihilating 

distributions, i.e.,

Qg(Ag) =  0, fis(As) =  0 (6.7)

Let A3 be any distribution so that A9 +  A9 =  TQ  and dimA9 +  dimA9 =  dimQ.

Similarly, denote by As any distribution so that A, + A 3 =  TQ  and dinxA, -I- dimA, =

dim<2. Then,

X Q e  A9 (6.8)
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guarantees that, on the abstract manifold, at a = (3 , s), g changes in time whenever q 

does. Similarly,

X Q € Aa (6.9)

corresponds to a change in the shape variable s. The set of detectable behaviors is given 

by Ay +  Aa. Requirement (i) from Problem 1 can therefore be written as:

X q € A g + X  (6 .10)

In other words, system (6.2) is forbidden to move on a leaf <p =  const, (motion which 

could not be “observed” on the abstract manifold .4) if and only if (6.10) is satisfied.

To formulate the decoupling condition between the control of the group G and the 

shape S  of .4 (item (iii) of Problem 1), we first require that the distributions A g and Aa 

be independent, i.e., A g n A a = 0, where 0 denotes the zero vector field. Then the 

decoupling condition is satisfied if the codistribution corresponding to g annihilates the 

visible motion corresponding to s and the other way around. Explicitly,

Q9(Aa) =  0 . Qs{Ag) =  0 (6.11)

This is easy to see if we differentiate g = ®g{q) in coordinates to obtain g = d<t>gq. If 

q is detectable (satisfies (6.10)), then we can write q =  A gug +  .4aua, where .49 and .4a

are some matrices whose columns span A9 and Aa. u, does not affect q if and only if

d®gA , =  0, which, if we go back to the coordinate free representation, means Q9(Aa). 

Similar reasoning can be made for the shape s. ug and us separately control g and s. They 

will be the actual controls for group and shape, after some convenient rescaling.
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Q

d<p

A = GxS

a = (g,s)

Figure 6.1: The map q> = (<j>g, os) gives a foliation of the configuration space Q. The leaf 
<p(q) =  a is the intersection of the leaves <pg(q) =  g and <t>s{q) =  s. The set of detectable 
behaviors at q is A g +  A4. Decoupled control systems on G and S  are obtained if the 
distributions A9 and A , are orthogonal.

For (iv), note that Problem 1 can actually be seen as an input - output linearization 

problem [45] for the control system (6.2) with output a =  <p{q). The total relative degree 

is dim(Q) -  n since each robot is kinematically controlled. The vector field A'.4 guar

antees some desired behavior of the output (which we call abstract state) a, which will, 

of course, guarantee its boundness. Now the hardest problem, as usual in input - output 

linearization, is calculating and stabilizing the internal dynamics. This would imply, in 

general, finding the appropriate coordinate transformation separating the internal dynam

ics from output dynamics, calculating the corresponding zero dynamics and studying its 

stability. To avoid this, we try to define the output map so that bounds on output would 

easily imply bounds on the state, so it will not be necessary to explicitly calculate the 

internal dynamics.

Given a vector field X A € T.4, the set of all vector fields X q  € TQ  which maps to 

X A is underdetermined. For simplicity, let q and a denote the coordinates of X q  and X A,
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respectively. Then,

dq>q =  a (6.12)

The usual way of solving the undetermined linear problem (6.12) is to find the minimum 

norm vector q satisfying it. Assume the metric in Q is described (at each point) by a 

symmetric positive definite matrix M  e  R2Nx2N. Then the solution to the minimization 

problem

min qTMq  (6.13)

under the constraint (6 .12) is given by

q = M - ld0T{dc>M-ld0T) - l a (6.14)

Note that, since 0  is a submersion, <pi. . . . .  ©„ are functionally independent, or, equiv

alently, d0 is full row rank, which implies that d 0 M ~ ld 0 r  is invertible. By writing

d0 T =  (d<pg, d0j ) ,  aT =  (gT . sT), (6.14) becomes

q =  M - ld 0 Tg {d0qM ~ ld0 Tg ) - lg +  M - l d0 Ts {d0sM - xd 0 T5 ) - l s  (6.15)

if

d0 gM - ld0 Ts =  0 (6.16)

Note that q from (6.15) satisfies the detectability and decoupling conditions formulated 

in terms of distributions (6.10) and (6.11) if, in coordinates, A g and A , are spanned by 

M ~ ld(pT and M ~ l doJ,  respectively. Indeed, the linear independence of d<pg and d<ps 

implies the independence of A g and A5 and (6.11) is implied by (6.16). Moreover, (6.7) 

implies that A g and A g are orthogonal in metric M.  The same is true for A,  and A5.
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The metric M  can be anything that makes sense from an application point of view. 

If no other constraints are imposed, we suggest that the kinetic energy metric (5.13) be 

used. Even though all the results in this chapter are valid for general choices of kinetic 

energy metrics, we restrict our attention to M  =  /o .v , which can be seen as the kinetic 

energy for identical robots of mass 1.

Finally, to limit the amount of inter - robot communication in the overall control ar

chitecture, we propose partial state feedback. Ideally, we want to achieve an architecture 

where the control law of a robot only depends on its own state and the low dimensional 

state of the team from the group manifold:

ul = ui (qi,a) (6.17)

Pictorially, the desired control architecture combining abstraction and partial state feed

back features is given in Figure 6.2.

6.3 Abstraction

In this section we define a physically significant abstraction (6.4) and show that it satisfies 

requirements (iii), (iv), and (vi) from Problem 1. Then we construct individual control 

laws in accordance with requirements (i) and (ii). Satisfaction of requirement (v) is proved 

in Section 6.4.

For an arbitrary configuration q e  Q, the group part g of the abstract state a is defined
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qt

qi Ui qN

r - » CN

Q n

Un

Figure 6.2: A control architecture combining abstraction and partial state feedback fea
tures: the formation is controlled on the “abstract”, small dimensional formation manifold 
.4; the control law of each robot is only dependent on its own state qx and the abstract state
a.

by g =  (R. fi) 6  G = S E ( 2). Let

t* =  ^  S  9i e  R2* i=i
(6.18)

Define

r, = [ar„ Vi]T =  Rr (qi -  p), i = 1, • . . ,  .V 

The rotation part R  € 50(2) is defined by the following equation

JV

^ 2  XxVi = o

(6.19)

(6.20)
t=i

In this paper we restrict our attention to a 2 - dimensional shape s =  [sl5 s2] defined by

A' N

=  A r r i E 1?-t=l *=1
(6.21)

Since 50(2) is 1-dimensional, the dimension of the abstract manifold .4 is n  =  5, inde

pendent of the number of robots N.  Also it is obvious that our definitions (6.18), (6.20),
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(6.21) of group and shape are invariant to permutations of robots, as required by Defini

tion 5. The submerssion condition will be studied later in this section.

Before we show that the abstraction 4> defined above solves Problem 1, we study its 

physical significance.

6.3.1 Significance

There are two slightly different interpretations of the abstraction defined by (6.18), (6.19),

(6.20), and (6.21). Let

E = T r r r I > - ' '> < ? i - ^ T (6-22)
i=i

and

r =  — (jV -  l )E 3Z E z (6.23)

where £3 is defined by (6.31). Equation (6.23) simply states that T is obtained from 

(N  — 1)E by interchanging the diagonal elements and multiplying the extra - diagonal 

elements by -1. Therefore, T and (N  -  1)E have the same eigenstructure.

Spanning rectangle

/x and T in (6.18) and (6.23) can be seen as the centroid and inertia tensor of the system 

of particles <7, with respect to the centroid and orientation {IF}. Let {M} define a virtual 

frame with pose g =  (R, (i) in {VF}. Then r* is the expression of — n  in the virtual 

frame {M}. The rotation equation (6.20) defines the orientation of the virtual frame so

that the inertia tensor of the system of points r, in {M }  is diagonal. (N  — l ) s x and
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(N  — l)s2 are the eigenvalues of the tensor and are therefore measures of the spatial 

distribution of the robots along the axis of the virtual frame { M }.

It is interesting to note that the shape variables provide a bound for the region occupied 

by the robots. From (6.21), it immediately follows that, for any i =  1 , . . . .  .V,

\ x i \  <  v/(-V -  1 )su |ft| <  y / { N  -  1 )s2  (6.24)

The conclusion can be stated as follows: An ensemble o f N  robots described by a 5 - 

dimensional abstract variable a = (g, s) = (R. p. sj, s2) is enclosed in a rectangle 

centered at p and rotated by R  6  SO (2) in the world frame {W}. The sides o f the 

rectangle are given by 2 \ / { N  — l)sj and 2y /{N  — l)s2.

We call the rectangle described by {R. g., s2) the spanning rectangle.

Concentration eltipsoid

p. and T. given by (6.18) and (6.22) can be interpreted as sample mean and covariance of 

a random variable with realizations <?,. If the random variable is known to be normally 

distributed, then, for a sufficiently large JV, p and I! converge to the real parameters of 

the normal distribution. R  in (6.20) is the rotation that diagonalizes the covariance and 

si, s2 are the eigenvalues of the covariance matrix. This means that, for a large number of 

normally distributed robots, p, R, s\ and s2 give the pose and semiaxes of a concentration 

ellipsoid.
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Specifically, it is known that contours of constant probability p for normally dis

tributed points in plane with mean p. and covariance E are ellipses described by

(x — /z)r E- l (x — p) =  c, c = — 21n(l — p) (6.25)

The ellipse in (6.25), called equipotential or concentration ellipse, has the property 

that p percent of the points are inside it, and can be therefore used as a spanning region 

for our robots, under the assumption that they are normally distributed. Therefore we can 

make the following statement: p percent o f a large number N  o f normally distributed 

robots described by a 5 - dimensional abstract variable a =  (g , s) =  (R, p. so) is 

enclosed in an ellipse centered at p, rotated by R  € 50(2) in the world frame {W} and 

with semiaxes v/cs7 and y/cso, where c is given by (6.25).

Even though the normal distribution assumption might seem very restrictive, we show 

in Section 6.3.4 that it is enough that the robots be normally distributed in the initial 

configuration. Our controls laws will preserve the normal distribution.

Spanning rectangle vs. concentration ellipsoid

The abstraction based on the spanning rectangle as defined in Section 6.3.1 has the ad

vantage that it provides a rigorous bound for the region occupied by the robots and does 

not rely on any assumption on the distribution of the robots. The main disadvantage is 

that this estimate becomes too conservative when the number of robots is large. Indeed, 

the lengths of the sides of the rectangle scale with \ /N  — 1, so for a large N  the spanning 

rectangle might become very large, even though the robots might be grouped around the
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centroid p.

On the other hand, the size of a concentration ellipsoid as defined in Section 6.3.1 

does not scale with the number of robots, which makes this approach very attractive for 

very large N . However, it has the disadvantage of assuming a normally distributed initial 

configuration of the team and does not provide a rigorous bound for the region occupied 

by the robots. Roughly speaking, (1 — p)N  are left out of the p-ellipse. Increasing p will 

decrease the number of the robots which be outside but will also increase the size of the 

ellipsoid.

To have an idea of what is a “large” number N  for which the second approach is more 

feasible, note that the spanning rectangle and the rectangle in which the concentration 

ellipsoid is inscribed are similar and the ratio is >/(N — 1 )/c. The ratio of their areas is 

therefore (N  — l) /c  For example, if p =  0.99, we have c =  9.2103, and the spanning 

rectangle becomes larger for N  > 11. If N  = 100, the area of the spanning rectangle 

is 10.7488 larger than the area of the rectangle circumscribing the ellipse, and only one 

robot might be left out of the ellipse.

6.3.2 Left invariance

In this section we show that that requirement (iii) of Problem 1 is satisfied. We have:

Proposition 13. The abstraction 6 defined by (6.18),(6.20), and (6.21) satisfies the left 

invariance property (6.6).
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Proof: It is easy to see that R, s i ,  and s2 are defined by

diag(sl5 s2) =  /V _  l ^ 2  n r f  =  R TE/2 (6.26)

To prove the left invariance property (6 .6), let g =  (R, d) € S E ( 2) denote a displacement 

of the world frame {VF} —> {W'}. Then, in the new world frame {14"}, the positions of 

the robots are given by q[ =  Rqt +  d. The new formation variables are primed. It is easy 

to see that

p! = Rp. +  d (6.27)

and r( =  R17R fa — p). Also

JV

diag(P;. A )  =  «  =  B ^ R Z R t R  (6.28)
* »=l

From (6.27) and (6.28) it follows that

Pi =  pi, p2  — P2  (6.29)

each of the pairs being the spectrum of E which is invariant to orthogonal transformations. 

Moreover, R and RTR' are both orthogonal matrices diagonalizing E. We conclude that

R! =  RR  (6.30)

Collecting (6.27) and (6.30), we get g' =  gg, which, together with (6.29), proves the

claim

□
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6.3.3 Detectable behaviors and decoupling of group and shape

In this section, under the assumption that the configuration space Q is equipped with an 

Euclidean metric, we construct detectable behaviors and decoupled control systems for 

group and shape, in accordance with requirements (i) and (iv) from Problem 1.

To this end, we need to bring our definitions of formation variables (6.18), (6.20),

(6.21) to more convenient forms. Let

Ei =
0 1 

I 0

E 3  =

, e 2  =

0 - 1  

1 0

1 0

0 - 1
(6.31)

and

(6.32)
Hi =  I2 +  R2E2, H2 = I2 -  R2E2,

H3 =  R2Ei
where I 2  is the 2 x 2 identity matrix. Using a parameterization

R = [cos(0) — sin(9): sin(9) cos(9)], it is easy to see that the matrices H, are symmetric 

and

Hf = 2Hu Hl = 2H2, H \  = I 2  (6.33)

H tH 2  = 0, HXH 3  = H 3 - E 3,
(6.34)

H2 H 3  = h 3  + e 3

Then, some simple calculations and the observation that E 3  is skew-symmetric show that

equation (6 .20) defining the rotational part becomes
AT

-  fi)TH3{qi -  n) =  0 (6.35)
i=l
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while the description of the shape (6.21) takes the form

N t(Qi ~  I*)' - n i l f t  ~  V)*
(6.36)

s 2 =  21^=1) £ . = i ^ »  -  n)THz{qi -  / i)

Let the rotation R  € SO (2) be parameterized by 0. If the amount of rotation is restricted 

to 9 € (—7r /2 ,7r /2 ), a unique solution of equation (6.35) is given by

9 =  ±atan2 fe £ i(9 »  “  A*)r £i(<fc -  A*),
v (6.37)

E i i ( «  -  ^)TE2{qx -  /x))

We now characterize the set of detectable behaviors (6.10) for the map <p given by 

equations (6.18), (6.37), (6.36) together with definitions (6.31) and (6.32).

First note that

dHx =  2H$d9, dH2  = - 2 H 3 d9 (6.38)

Using (6.18), (6.38), (6.35), it follows that

1 ,v
dsi =  -y— 5^(9* -  l*)THidqi (6.39)

*=I

and
1 v

ds2  =  v _  ^ ( g i  -  n)TH2dqi (6.40)
i=i

By differentiating (6.35) and using (6.18), (6.36), we have

*  =  ( j f - D  "  r i ' W *  <6-4 »

Then, the codistributions and Q, as defined in Section (6.2) are given by

Qg = span {dp, d9}, Qp = span{dsi, ds2} (6.42)
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and the control distributions corresponding to group As and shape As by

\  =spm{x;, xt) (6.43)

and

X = s p a n { X ' ' , X ? } (6.44)

where

- ^  =

h

, x i  =

• «

# 3(91 -  /*)

h H 3 {qN -  p)

(6.45)

and

V J i —

Hi{qi - f i )

_

#>(91 -  m)

? - q

Hi(qN -  n) H2 (qN -  n)

(6.46)

I2  is the identity matrix.

Therefore, in accordance with (6.10), requirement (i) of Problem 1 is satisfied if we 

restrict the behaviors to the set A9 +  As given by (6.43), (6.44), (6.45), and (6.46).

We now show that the control distributions A9 and As are orthogonal, so decoupled 

control systems can be designed for group and shape, in accordance with requirement (iii) 

of Problem 1. Indeed, the two columns of Xjf are obviously orthogonal. It is easy to see 

that X%, X ^ 1 and X** are orthogonal to Xg  by the definition of /i (6.18). Since HiH 2  =  0, 

Xq1 and Xq 2 are also perpendicular. Finally, Xq is orthogonal to both X * 1 and X * 2 by

(6.34), (6.35), and by noting that £3 is a skew symmetric matrix. We conclude that the 

two control distributions Ag and A, are orthogonal so requirement (iii) of Problem 1) is
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verified. Moreover since orthogonal control directions are chosen as basis for Ag and As, 

each of the formation variables can be individually controlled.

6.3.4 The Individual control laws

The differential map d<pq : TqQ -» TaA  is given by:

d<j> =
N -  1

■V-l T 
•V -

V-l T

(6.47)
j ^ { q i  -  fi)TH3 . . .  ~  H)TH3

{q i~ n ) THi ••• {Qn — v )THi

(?i -  h)t H2 • • - (qx ~  v) t H2

The minimum norm vector q on TQ  which is mapped to a vector field a in T A  is

given by q = d < t> r  ( d < t > d < j > T ) ~ l d .  Some simple calculations show that

Si + s2 4si 4 s2
(6.48)

Note that the controls fi, d, s\, s2  act on orthogonal directions so one can explicitly 

control each of the formation variables without affecting the others.

We define the individual controls as projections dTrt of the minimum norm vector

(6.49)

(6.48):

U i= q i = f i  + j ^ H 3(qi -  n ) 6

+ 4k H i(qi ~  (qi -  fi)s2

Remark 16. Note that the overall control architecture implementing (6.49) fits the struc

ture in Figure 6.2. Each robot i needs to implement controller C„ which is only dependent
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on its own state qi and the small dimensional abstract state a. Also, each robot has to 

send its own state to the abstract control system, which calculates and then broadcasts the 

updated abstract state. Therefore, robot i only has to broadcast its 2-dimensional state 

and listen to a the 5-dimensional abstract state a, independent on the number o f robots 

N.

Remark 17. d<j>d4>T is invertible i f  and only i f  Sy ^  0 and s2 ±  0, which is also equivalent 

to the submersion condition in Definition 5. Also, the control law (6.49) is not defined at 

Si =  0 and s 2 = 0. The abstract behavior on .4 should be designed so that > 0 and 

s2 > 0, for all t. A simple inspection o f (6.21) shows that the cases s x =  0 and s2 = 0 

physically correspond to degenerate situations when all the robots are on the Oy and Ox 

axis o f the formation frame {M}, respectively.

Remark 18. I f  si =  s2, the derivative o f the orientation 6 is not defined, as seen from 

(6.41). Indeed, in this case, the robots are equally distributed along the axes o f the for

mation frame, and there is no orientation information. When orientation is not important 

fo r  a certain application, a simpler abstraction might be defined as in Section 6.5

Remark 19. Note that if  control law (6.49) is applied to all the robots, then the team 

undergoes an affine transformation. Indeed, the orbits o f the affine group GA(2) in Q 

are described by qi = d +  Aqf, d 6  R2, -4 € GL(2), which, by differentiation, gives 

qt =  d +  .4-4_ l(</t — d), which is the same as (6.49) with p. =  d and .4.4-1 =  (sx — 

s2 )/(s\  +  s2 )H2Q +  l/(4si)HiSy +  1/{4s2 )H2 s2. Any affine transformation is known to 

preserve collinearity, ratios o f distances on lines, and parallelism. Therefore, control law
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(6.49) can be used fo r formations in which preserving properties like the ones mentioned 

above is important. Even more interesting, it is known that affine transformations preserve 

the normal distribution. This means that i f  the robots are initially normally distributed, by 

applying the control laws (6.49), they remain normally distributed. The 5 - dimensional 

abstract state, interpreted as sample mean p. and sample covariance E, gives us control 

over the pose, aspect ratio and size o f the concentration ellipsoid as defined in Section

6.3.1.

Remark 20. All the results derived in this chapter remain valid i f  the Euclidean metric 

M  = I2 .M is replaced by a general kinetic energy metric (5.13) and the abstract variables 

are obviously redefined as:

=  £ » =I m,9\  (6.50)
m

1 V
51 =  — Ĵ 7 n i { q i - p ) T H l { q i - p ) ,  (6.51)

*" 1=1

1 <V
52 =  9^  ~  m)T^ 2 ( Qi  ~  f t ) ,  (6.52)

1 = 1

1 (  V
9 =  -a ta n 2  ( ^ 2  ”^(9* “  n)TE\(Qi ~  (6.53)

^ n i i i q i -  p ) T E - 2 { q i -  /i)^  (6.54)

where m  =  > m* is the total mass o f the system o f robots. The control law (6.49) 

remains unchanged.
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6.4 Abstract behavior

Equation (6.49) gives the control law which should be implemented by controller C* as 

shown in Figure 6.2 if the output function <p is defined as in Section 6.3. At each time 

instant f, the control system on .4 acquires all the states qit updates its own state a in 

accordance to (6.18), (6.37), (6.36), (6.31), and (6.32), flows along its designed control 

vector field a  and disseminates its state a to all the robots.

Assume the goal is to move the robots from arbitrary initial positions 9,(0 ) to final rest 

positions of desired mean iid, orientation 6 d, and shape sf, So.

An obvious choice of the control vector field a  =  [/i. 9,  s x. s2] on the abstract 

manifold .4 is

/i =  Kftin4  — fi)

e  =  kg(9d - 9 )
(6.55)

Si =  fcSt( s ? - s i )

s2 =  kSi( s % - s 2)

where ATM 6  R 2x2 is a positive definite matrix and kg,  k Sl 2 > 0 .

More generally, the task might require the robots to follow a desired trajectory ad{t) =  

[}Ld{t), 9d ( t ) ,  sf (f), s2(*)] on -4- control vector field on F  can be of the form:

/i =  K„{^d{t) -  n(t)) +  iid{t)

9 =  kg(9d( t ) - 9 ( t ) ) + 9 d{t)
(6.56)

«i =  kSl(sf{t) -  si{t)) + Sid(t) 

h  =  k*2(s2(f) -  52(f)) + S 2d(f)
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Note that (6.5S) (or (6.56)) only guarantees the desired behavior on the abstract mani

fold A. If the imposed trajectory ad(t) is bounded at all times, it is easy to see that a(t) is 

bounded. For the problem to be well defined, we still need to make sure that the internal 

states are bounded (requirement (v) of Problem 1). We have:

Proposition 14. I f  a is bounded, then so are qt, i = I , . . . .  N.

Proof: It is enough to assume boundness of /z, si, and s2 to prove boundness of qt. 

Assume

ll/< -  A \  < .v„. (6.57)

l»i -  *il < -W«i» (6.58)

|«2 -  *21 < -W.2 (6.59)

First note that from (6.36) it follows that

(6.60)

from which, by using (6.58) and (6.59), we have

lift ~  /ill < \Z-V(si +  s2) <

N

Finally, using (6.57), we have

l i f t  -  d d \\ =  l i f t  ~  ft  +  d  ~  / l l  <  l i f t  ~  M i l  +  l l / i  ~  / i d | |

which concludes the proof.
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□

In the stabilization to a point case, the boundness and globally asymptotic convergence 

to the desired values of the abstract variables are guaranteed by (6.55). Proposition 14 

proves the boundness of the internal dynamics. We still need to study the equilibria and 

regions of convergence for each robot. We have the following Proposition:

Proposition 15. F o r a n y  pd, 6 d, sf, s d, th e  c lo s e d  lo o p  s y s te m  (6.49), ( 6 .5 5 ) ,(6 .1 8 ) ,  (6 .3 7 ) ,

(6 .3 6 )  g lo b a l ly  a s y m p to t ic a l ly  c o n v e r g e s  to  th e  e q u il ib r iu m  m a n ifo ld  p. =  p d, 9  =  0d,

Si =  sf, s 2 =  sf.

Proof: First, from (6.49), (6.18), (6.41), (6.39) and (6.40) it is easy to see that the 

abstract state is in equilibrium (a =  0) if and only if each robot is in equilibrium (<7, =  0, 

i =  1 , . . . ,  N). Therefore, the equilibria of the closed loop system are sets described by 

p  =  p d, 6 =  9d. si =  sf, so =  sf.

For the second part, consider the following Lyapunov function defined on Q:

v{q) = \\\pd - p \ \ 2  + \{ed - e f
(6.61)

+  j(s f  -  sO2 +  j(s f  -  S 2 ) 2 

and consider the derivative of V  along the vector field on Q:

V’(g) = - iU /z *  -  Mil2 -  -  S)2 (6.62)
-fcs i(sf -  S i ) 2 -  k S2(s% -  s 2 )2

Therefore, V(q) <  0, Vg e  R 2A and V  = 0 if and only if p  =  pd, 6  =  0*, si =  sf, 

and S2 =  sf, which is also an invariant set for the closed loop system. According to the
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Global Invariant Set Theorem (LaSalle), to prove the proposition we only have to prove 

that V(q) —► oo as ||g|| —» oo. We prove this by contradiction. Suppose \\q\\ —► oo and 

there exists some L > 0 so that V(q) < L. This implies

W f i  -  / I I  <  y / 2 L , \ S l  -  sf I <  y / 2 I ,  |s2 -  sf | <  y / 2 L

By an argument similar to the one used in the proof of Proposition 14, we can conclude 

that

||?« -  / I I  < y / ( N - l M  + 4  + 2 y/2 L) +  V lL ,

which means that all are bounded, i =  1 . . . . .  -V. But ||<?|| —> oo implies that, for at least 

one i =  1, . . . .  .V, ||?s|| —► oc. Therefore, we reached a contradiction and the theorem is 

proved.

□

6.5 Contractions and expansions

When orientation is not relevant for a certain application, we can define a simpler 3 - 

dimensional abstraction as follows. The group g is restricted to the position of the centroid 

p. Let s = si +  s2 be the new shape variable. Since Hi +  Hi  =  2/2, we have

1 N
s =  ^  ~~ -  [*)T{qi ~  / ,  (6.63)

i = l

For the new abstraction (/z, s), it is easy to see that the left invariance property (6 .6) is 

satisfied. Concerning the bound of the region occupied by the robots, note that (6.63)
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implies

IIqt -  /i|| < y /{N  -  1 )s (6.64)

from which we conclude that the N  robots described by a 3 - dimensional abstract variable

a =  (/i, s) are enclosed in a circle centered at /z and with radius y j{N  — l)s.  The new 

control directions become

x a  = X s' * 9

(Qn -  /i)

(6.65)

The decoupling is obvious by the definition of /z. Concerning the internal dynamics, it is 

easy to check, following the proof of Proposition 14, that is bounded if a =  (/z, s) is 

bounded. The individual control laws (6.49) become:

9i =  Ui =  /z +  —s. i = 1........N
2 s

(6.66)

It is interesting to note that control laws (6 .66) preserve the shape and orientation of 

the structure formed by the position vectors qx in the given inertial frame. Indeed, let

kj = Iki -  9j | | - 1  #  j .  Using tfj =  (ft -  q3)T(qi -  q3), it is easy to see by integration that

s( 0 )

and therefore

_ kj (Q) , Vi, j , k, I =  1 . . . . ,  JV, Vf > 0
lkl( 0)

from which we conclude that the geometric shape is preserved and the scale factor is
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proportional to \/s(t) .  Also, straightforward calculations show that

proving that the orientation of the structure is also preserved during the motion.

Remark 21. In this case, the abstraction is reduced to the position o f the centroid and 

the scale factor o f a geometric figure o f given shape and orientation determined by the 

initial positions o f the robots.

6.6 Simulation results

This section presents simulations illustrating the theoretical results proved in this paper. 

First, we show how a team of robots can be driven through a tunnel by designing controls 

on a 5 - dimensional space. For a very large number of initially normally distributed 

robots, we control a equiprobability ellipsoid. For tens of robots, we control the spanning 

rectangle. Finally, an expansion example is included.

6.6.1 Tunnel passing

Consider the task of driving a team of robots from arbitrary initial positions through a 

tunnel of given geometry, and spread out at the end of tunnel. Independent of the number 

of robots, the problem can be reduced to a 5 - dimensional control problem using one of 

the abstractions proposed in this paper. If the number of robots is of the order of tens, the 

spanning rectangle as defined in Section 6.3.1 can be used. For hundreds and thousands
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of robots, the spanning rectangle becomes too conservative. In this case, if it is allowed 

to lose a very small percentage of them and if their initial distribution is assumed normal, 

we propose the control of a concentration ellipsoid, as described in Section 6.3.1.

In both cases, we divide the task into three subtasks:

(1) Gather the robots in front of the tunnel in such a shape that they can pass through 

it.

(2) Drive the robots through the tunnel.

(3) Spread out at the end of the tunnel.

Control using the concentration ellipsoid

Assume .V =  100 and it is desired that “almost all” of the robots accomplish the task. 

Assuming that the robots are normally distributed in the initial configuration, they remain 

normally distributed by applying the control laws (6.49), according to Remark 19. If 

99 percent is an acceptable quantization of “almost all”, according to Section 6.3.1, the 

problem can be reduced to a 5-dimensional control problem for a concentration ellipsoid 

of probability p =  0.99.

For the subtask of regrouping in front of the tunnel (1), we use the globally stabiliz

ing controllers (6.49), (6.55). Considering the geometry, position, and orientation of the 

tunnel, we chose p d =  [3 23], =  0, sf =  10.8574, sd =  0.3518. The chosen shape

corresponds to semiaxes of y/csf  =  10 and y /csf =  1.8 along x  and y, respectively. 

The abstract controller parameters were =  2/ 2, kg =  2, kSl =  fcs, =  2. Note that in
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this first subtask both shape and pose are controlled. Four snapshots from the produced 

motion are shown in the first row of Figure (6.3).

Since the ellipse from step (1) is small enough and oriented to fit the tunnel, no shape 

and orientation control is necessary to accomplish subtask (2). We use trajectory follow

ing controllers of type (6.56) on A  to move the ellipse through the tunnel. If we want 

to uniformly move the ellipse at [50 23] in 1 second while keeping shape and orienta

tion constant, we only have to control /xx, therefore /iy =  0 =  =  s? = 0 .  We use

/4(f) =  (1 -  t)3 + to0  (therefore /i*(f) =  47). The second row of Figure (6.3) shows four 

instants of the generated trajectories. As expected, shape and orientation is preserved, 

therefore illustrating the control decoupling proved in Section 6.3.3.

For the third subtask, we illustrate control of shape decoupled from pose, which is 

maintained constant. We again use the globally stabilizing controllers (6.49), (6.55) with 

fi =  0 ,0  =  0, sf =  Sj =  20, kai = At3, =  2. The obtained expansion is shown in the last 

row of Figure (6.3).

Control using the spanning rectangle

If it is now required that all the robots accomplish the task, we need to use the spanning 

rectangle as an abstraction. The advantage is that no assumption is being made on the 

initial distribution of the robots. On the other hand, as stated in Section 6.3.1, the spanning 

rectangle becomes too conservative an estimation of the region occupied by the robots, as 

the number of robots increases.
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Figure 6.3: 99 of N  =  100 normally distributed planar robots are driven through a tunnel 
by designing 5 - dimensional controls for the corresponding equiprobability ellipse. First 
row: the robots gather in front of the tunnel inside an ellipse whose shape and orientation 
allows passing through the tunnel. Second row: the robots pass through the tunnel, the 
shape and orientation of the ellipse are kept constant. Third row: the robots spread out by 
keeping the pose of the ellipse fixed and changing the shape.

We consider N  = 10. The control procedure follows exactly the one described in

6 .6 .1. The control parameters are also the same. The only exception is that, for the first 

subtask, we used s? =  11.1111 and sd =  0.36, which correspond to a spanning rectangle 

of sides 2>/(N — 1 )s? =  20 and \J{N — I)si  =  3.6, which is thin enough to fit through 

the tunnel. The simulation results are shown in Figure 6.4.

6.63, Expansions

Consider N  =  30 robots, distributed on three concentric circles. We apply the geometric 

shape preserving control laws (6 .66) to illustrate contractions and expansions. We use 

global convergence to a point for the abstract state a = (/i, s). Figure 6.5 shows a pure 

expansion obtained with /i =  0 and s  =  ks(sd — s)  with ks = 2 and sd =  400.
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Figure 6.4: iV =  10 planar robots are driven through a tunnel by designing 5 - dimensional 
controls for the corresponding spanning rectangle. First row: the robots gather in front of 
the tunnel inside a rectangle whose sides and orientation allow passing through the tunnel. 
Second row: the robots pass through the tunnel, the sides and orientation of the rectangle 
are kept constant. Third row: the robots spread out by keeping the pose of the rectangle 
fixed and increasing the lengths of the sides.

6.7 Discussion

In this paper we propose a control method for a large number of robots based on an ab

straction of the team to a small dimensional manifold invariant to permutations of the 

robots and whose dimension does not scale with the number of robots. The task to be 

accomplished by the team suggests a natural feedback control system on the formation 

manifold. We focus on planar fully actuated robots and show that it is possible to provide 

the abstract manifold with a product structure of a group and a shape. We also prove that 

completely decoupled control systems can be designed for group and shape. The individ

ual control laws which are mapped to the desired behavior of the formation can be realized 

by feedback depending only on the robots’ current state and the small dimensional state

139

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Figure 6.5: N  =  30 robots experiencing an expansion using control laws (6 .66). The 
centroid is kept fixed. Orientation, paraleliem, angles, and ratios of lengths are preserved.

on the formation manifold.
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Chapter 7 

Control of a team of car-like robots 

using abstractions

In this chapter, we show how the abstraction method developed in Chapter 6 can be ap

plied to control a team of car-like robots. The robots are modeled as under-actuated kine

matic drift - free control systems. We define outputs as Cartesian coordinates of some 

reference points on the robots, which are used in the formulation of the collective tasks, 

i.e.,, in a cooperative mission, the robots are represented by their reference points. Using 

input - output feedback linearization for each robot, the controls are related to the veloc

ities of the output (reference points) through a linear nonsingular map. We then use the 

abstraction defined in Chapter 6 to map the set of all reference points to a lower dimen

sional abstraction manifold. Controls are designed for the small dimensional abstraction 

manifold in accordance to the cooperative task to be accomplished. They correspond to
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m

Figure 7.1: Kinematic model of a car-like robot

certain velocities of the reference points, which are then translated back to controls for 

the under-actuated robots.

This chapter is organized as follows. In Section 7.1, we formulate the problem and 

introduce the notation. The control laws to be applied to each robot so that the team has 

a desired cooperative behavior specified in terms of the chosen reference points are given 

in Section 7.2. We describe our experimental platform in Section 7.3, the results of the 

experiments in Section 7.4, and final remarks in 7.5.

7.1 Problem formulation

Consider N  identical car - like planar robots, as the one shown in Figure 7.1. In the world 

frame {W },  robot i is described by a 3 - dimensional state vector x l =  [x*1? x 2, x ^ ,  i =  

1, . . .  iV, where (x\ . x l2) give the Cartesian coordinates of the robot center and x \  measures 

the orientation of the robot frame in {VF} (see Figure 7.1). Each robot is modeled as a 

kinematic, drift free control system

X* =  G(x*)u* =  gi{x')u\ -I- 0 2 ( * ‘ )U 2 (7.1)
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where the control vector fields are given by

•

cos x3 0

0t(*) = sinx3 , 92 (x)  = 0

0 1

(7.2)

for x  =  [xi, x-j, x3]r . The control ul = (u\,ul>) consists of driving and steering speeds. 

On each robot we pick a reference point Pi different from the robot center. The Carte

sian coordinates ql =  go) of the reference points P, is {VF} are used to formulate 

cooperative tasks. In other words, for each robot i, i =  1 , . . . .  .V, we define an output 

map

q' = h(x') (7.3)

where h is given by

h(x) =
Xi -I- dcosx3 

X2  + d sin r 3
(7.4)

Problem 2 (Control of car-like robots). Design control laws u \ i =  1 . . . . ,  N  so that 

the team o f N  car - like robots accomplishes a cooperative task formulated in terms o f 

the chosen reference points ql.

As in Chapter 6 , examples of tasks include stabilization inside a given region of the 

space, tunnel passing, expansions and contractions, etc.
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7.2 Robot control laws

Note that the choice of the output function h together with the linearity of dynamics (7.1) 

in ul leads to a linear nonsingular relationship between the derivative of the output ql and 

the control variables ql = dh(xl)G(xl)ul, unless d = 0. dh denotes the differential of h. 

Therefore, we can define new inputs

q' =  j  (7.5)

which are related to the original ones by

ul =  .4 (x V  (7.6)

where

cos X3 sin X3
.4(x) =  (dh{x)G(x)) 1 =

Sin X3 COS X3
d d

(7.7)

Equations (7.1), (7.3), (7.5) and (7.6) represent an input output feedback linearization 

problem [45]. The next natural step would be to set vl = qld +  k(qld — ql), k > 0 so that 

ql exponentially tracks a given desired trajectory qld{t). Alternatively, in the next section 

we show how the redefined inputs vl can be designed so that the robots described by the 

reference points q \ i  =  1 , . . . ,  N  have a desired collective behavior, using the abstraction 

procedure developed in Chapter 6 .

Collect all the robot outputs qi and redefined inputs vl together into a 2JV-dimensional 

control system

q =  v, q € Q , v e V  (7.8)
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where

Q  =  {q\ =  ( q \ . . . , q N) e R 2N}
(7.9)

V =  {v| =  ( v \ . . . , v N) e R 2N} 

and allow to recover the individual states and controls by using the canonical projection

7 T * (q )  =  q\  7 T « ( v )  =  v l, i = l , . . . , N  (7.10)

Given a large number of robots represented by the Cartesian coordinates $  of the cho

sen reference points P,, or, equivalently, a q G Q, we want to solve motion generation 

/ control problems on a smaller dimensional space, which captures the essential features 

of the group, according to the class of tasks to be accomplished. For this, we use the ab

straction map <t>: Q -» .4 defined in Chapter 6 to formulate an input - output linearization 

problem for the system described by (7.8) and (6.4). Let the new inputs be denoted by

w e  R", where n  is the dimension of the abstraction manifold A. Then

a =  w  (7.11)

and, since w = d<f>(q)v, we have

v =  d<f>T{d<l>d<i>T)~lw  (7.12)

Everything else follows exactly the same lines as the abstraction defined in Chapter 6 . 

For convenience, we give below all the equations necessary to implement the individual 

controllers.

Given the position of the reference points qt, i =  1 , . . . ,  N,  the abstract state can be
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calculated as a =  (g,s), where the group part g =  (/z, 9) is given by

1
V  —  n  2 ^ t= i 9*

6  =  |a ta n 2 (E ili(9«  “  v)TEi{qi -  A*)> X ali(9i -  fi)TE2(qi -a* ))

and the shape is described by

s i =  w h s  Sfe=i(* _  v)THMi -  /*).

s2 =  2(Arri) -  n)TH2{qi -  fi)

where * •
0 1 1 0 10

Ei = . e 2  = IIrn

1 1
O

1
0 1

1 1 0

and

H i = I 2 + R 2E2, H2 = I2 -  R 2E2, H3 = R 2E l

The abstract variables are controlled by stabilization at a point

fi =  w tt =  — n), 9 — we =  ke(9d — 9)

si =  w Sl =  Arai(sf -  s i ) ,  s 2 =  w S2 =  kS2(s$ -  s2) 

or by trajectory tracking

9

= wu =  K ^ p ^ t )  -  /*(*)) + ^ ( t )

=  we =

Si = wSl =

s2  =  wS 2 =

ke(9d{ t ) - 9 { t ) ) + 9 d(t) 

kai(si{t) -  Si(t)) + s \d{t) 

~  «2(*)) +  s'2 d(t)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

where e  R 2x2 is a positive definite matrix and ke, ka i 2  > 0. Finally, using (7.6),
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Abstract motion plan

Figure 7.2: Overall control architecture

individual control laws are generated for each robot in the form

ul =  A{x') ( Wft +  51 S2H3(qi -  n)we + -  fi)wSl + -̂ —H2(qi -  ^)wS2 )
\  Si +  s 2 4 s i  4so /

(7.19)

where .4(x) is given by (7.7).

The overall control architecture is given in Figure 7.2.

On the stability of the internal dynamics, we proved in Chapter 6 that the boundness 

of a 6  -4 together with the definition of <j> easily imply the boundness of each of q \ 

i =  1 ,. . . ,  iV The remaining 1 - dimensional internal dynamics of each robot can also be 

proved to be bounded [28] if each % is bounded.
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7.3 Experimental platform

Our experiments were performed using a team of five car-like robots (see Figure 7.3 (a)). 

The Clodbuster platform is based upon a 1/10 scale radio controlled model of a mon

ster truck, made by Tamiya Inc. We made significant modifications to the vehicle, to 

incorporate - an omni-directional camera, additional on-board power, and an improved 

suspension. The robot has a servo controller on board for steering and a digital propor

tional speed controller for forward/backward motion. Each robot is equipped with an 

ultra-portable laptop (PHI 850 Mhz processor, 256MB RAM, built in wireless connec

tivity, Windows XP operating system). As sensors, they have twelve infra-red position 

sensitive detectors (PSDs) with three in each comer and a IEEE 1394 firewire based digi

tal camera (manufactured by Point Grey Research) with the Netvision 360 omidirectional 

lens assembly from Remote Reality Inc. The camera provides a 360 degree angular field 

of view (see Figure 7.3 (b)). There exists a simple geometric mapping from the image 

plane to the ground plane or any other plane of interest due to the special parabolic shape 

of the reflecting surface.

C o m m unication  among robots is needed to estimate the individual orientations x \  and 

relies on IHF.F. 802.1 lb networking. A calibrated overhead camera is used to localize the 

Cartesian coordinates of the reference points ql. A centralized computer calculates the 5 - 

dimensional team variable a =  (/x, 6 , s x, s2) and broadcasts it back to the robots together 

with q% from the overhead camera. Each robot has then complete information on its state 

x l and the state a and can compute its own control ul. All this computation is executed
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(a) (b)

Figure 7.3: (a) A team of five GRASP Lab robots (Clodbusters) and (b) a sample image 
from an omnidirectional camera.

in approximately 15 H z  in the slowest computer. Note that the actual communication 

architecture that we use in the experiments does not exactly fit the one we claim in Figure 

6.2 because in our indoor setup the robots are not able to determine their own position 

and orientation.

7.4 Experimental results

7.4.1 Group control

In the first experiment we show how the pose of the team can be controlled while shape 

is preserved, illustrating the decoupling property of controllers (7.6), (6.49). The robots 

are initially “almost” aligned with the Oy axes of the world frame: n  =  (2.2020,1.6817), 

6  = —1.499 rad, si =  0.5417, s2 =  1.6798e -  4. We use controllers (6.55) with ATM =  

4/2, ke =  4, kSl =  kS 2 = 0 to stabilize the team at y.d =  (2.2,3.7), 0^ =  0 . The shape, 

according to our theoretical results, should be preserved. The results are shown in Figure
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Figure 7.4: The position and orientation of the team is stabilized at desired values while 
shape is preserved.

Figure 7.5: Sequence of four snapshots in an expansion maneuver - illustrates control of 
shape while pose in preserved.

7.4.

7.4.2 Shape control

The second experiment illustrates an expansion maneuver. Instead of plotting the exper

imental data, as in Section 7.4.1, we show four snapshots from the actual experiment in 

Figure 7.5. The robots were initially grouped in a small circle =  s2 =  0.0738 around 

H =  (2.4607,2.6185). We again used stabilizing controllers (6.55) but this time with 

=  0, kg =  0, kSl = kS 2 =  4 to stabilize the team at s? =  s£ =  0.6078. The pose of 

the team, as predicted by our theoretical results, was preserved.
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7.5 Discussion

We used the abstraction method developed in Chapter 6 to control a team of under

actuated car-like robots. First, using a well-known technique, reference points are chosen 

on the robots so that their velocities are related to the individual controls through linear 

nonsingular maps. The reference points are used in the formulation of the cooperative 

tasks. Second, the abstraction defined in Chapter 6 is used to map the reference points to 

a lower dimensional manifold. Controls are designed for the small dimensional manifold 

in accordance to the cooperative task to be accomplished. They project to certain veloc

ities of the reference points, which are then translated to controls for the under-actuated 

robots. We used our Clodbuster robots to illustrate how group and shape can be separately 

controlled.
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Chapter 8

Concluding remarks

Multi-agent planning and control gained a lot of interest from the robotics community in 

the past few years. Applications range from highway workers protection to deep space 

exploration and laser interferometry. The goal of this work is to provide a better under

standing of this problem and to propose a set of mathematical tools which might be useful 

in developing planning and control algorithms.

8.1 Contributions

As outlined at the beginning of the thesis, our contributions are on three different but 

related directions.

An efficient method for interpolation on SE{3) The first part of the thesis develops a 

new method to generate smooth interpolating curves on S E (3). This work was published
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in [3 ,4 ,7 ,1 2 ,1 0 ,8], The starting point is [25,57,91,90]. The approach is geometric and 

the resulting trajectories are invariant with respect to the choice of reference frames and 

independent of the parameterization of the manifold. It is first shown how a physically 

significant left or right invariant metric on SO{n) (S E (n )) is inherited from the ambient 

manifold G L+{n) (GA+{n)) equipped with the appropriate metric. The bi-ivariant met

ric on SO{n) [26] and the left invariant metric proposed by Park and Breckett [63] are 

special cases of this general treatment. Next, a projection operator that projects points 

and curves from the ambient manifold onto SO(n) (S E (n )) is defined. The uniqueness 

and smoothness of the projected trajectory are discussed. Several examples are presented 

to illustrate how curves generated in the ambient manifold can be projected to get near 

optimal results on SO(n) and SE (n), especially when the excursion of the trajectories is 

“small”. In certain cases, we are also able to establish quantitative results that measure 

the closeness of the generated trajectory to the optimal trajectory [4], The idea of the 

projection is not completely new [52, 72]. The novelty of this approach mainly relies 

on invariance of the produced trajectories, the way of defining and inheriting physically 

significant metrics, and the increased efficiency of the algorithms.

Optimal motion plans for rigid formations The second part of the thesis develops a 

method of optimal motion planning for groups of robots moving in formation [6 , 15, 5, 

11,9]. First, the rigidity of a formation is mathematically formalized by identifying, in 

the tangent bundle of the configuration space, distributions corresponding to infinitesimal 

rigid and non-rigid motions. The total kinetic energy is then decomposed into the energy
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of the motion of a rigid structure and the energy corresponding to motions that violate the 

rigidity constraint. The corresponding metric is “shaped” by assigning different weights 

to each contribution. This idea of a “decomposition” and a subsequent “modification” is 

related to the methodology of controlled Lagrangians described in [20,87]. When rigidity 

is required, it is shown how individual motion plans can be constructed so that the overall 

energy of the formation is minimized. When the rigidity constraint is relaxed, a contin

uum of trajectories, varying from greedy to cooperative strategies, can be constructed by 

varying one parameter.

Abstractions for large groups of robots The third part of the thesis proposes a control 

method for large groups of robots based on the definition of a map from the configuration 

space of the robots to a lower dimensional abstract manifold, whose dimension does not 

scale with the number of robots. This work was published in [13, 17, 19, 18, 14, 16]. The 

task to be accomplished by the team suggests a natural feedback control system on the 

small dimensional manifold. In this paper we focus on planar fully actuated robots and 

require the abstract manifold to have a product structure of a Lie group, which captures the 

dependence of the ensemble on the chosen world coordinate frame, and a shape manifold, 

which is an intrinsic description of the team. We design decoupled controls for group and 

shape. We also show that the individual control laws which are mapped to the desired 

behavior of the formation can be realized by feedback depending only on the current state 

of the robot and the state on the formation manifold, so that the robots have to broadcast 

their states and only have to listen to some coordinating agent with small bandwidth.
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8.2 Future work

We plan to focus our future work on planning and control for large groups of inexpensive 

robots using abstractions (output maps) resembling the one defined in Chapter 6 .

One first step towards extending the results in this thesis is to consider more shape 

variables. So far, we only considered a two dimensional shape space (6.21) describing 

the spatial distribution of the robots along the axis of a frame with pose g € G. This 

was enough to define a bound for the spanning region of the robots, which is essential to 

approach applications like tunnel passing, obstacle avoidance, etc. If more shape infor

mation is necessary, the space 5  can be easily extended using higher central moments. 

For example, if the distribution is not normal, then the third moment, called skewness, 

can be used as a measure of how far the distribution is from being symmetric. The fourth 

central moment, called kurtosis, describes the degree of Harness of the distribution curve. 

Physically this could be used as a measure of the coverage by the robots of the area of the 

equiprobability ellipse. Indeed, a negative fourth moment (flat distribution) would give 

a more uniform coverage than a positive one (peaked distribution). This shape variable 

might be critical in applications where the robots are sensors deployed to uniformly cover 

a certain area. On the other hand, the calculation of higher moments would increase the 

complexity of the control algorithm and therefore reduce its robustness.

Another direction of future research is to use non-detectable behaviors (see Definition 

7) to accommodate specifications which cannot be captured by the abstract variable. For 

example, an abstract behavior X A could specify the time - evolution of the pose (group
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part g) and semi-axes (shape part s) of an ellipsoid with the guarantee that all the robots 

are inside it. The behavior X q could be the sum of the detectable behavior which produces 

the desired A\* plus a non-detectable part (not affecting the abstract behavior) which could 

accomplish the specification that the area inside the ellipsoid is uniformly occupied by the 

robots.

We are also interested in defining abstractions which can easily accommodate under

actuated robots. Mathematically, the formulation in (6.1), (6.2) and (6.3) can be easily 

extended to accommodate under-actuated robots, with states qt belonging to manifolds 

Qi equipped with drift free control distributions A, : Q, x £ / ,—>• TQi where U, is the 

control space and TQi is the tangent bundle of Qt. Then, a similar large control system 

incorporating all the individual under-actuation constraints can be obtained by collecting 

all robot states Q =  f l i l i  Qi defining a control distribution A obtained from the indi

vidual control distributions through direct sum A =  A,. The canonical projections

are defined by -Ki : Q —► Qi, ^(<7) =  qi and d-Ki : TQ  -* TQi, rrir^A) =  A*. An 

abstract behavior should incorporate the under-actuation constraints. They naturally arise 

on .4 by pushing forward the allowed control directions in A through <£.

Investigating different types of communication architectures is another possible direc

tion for future research. The one studied in this work falls into the category of Asymmetric 

Broadcast Channels (ABC), which consists of a supervisor or a leader that broadcasts par

tial state information about the group, while the individual agents can upload their state 

information to the supervisor. This up-link can also be implemented by equipping the
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supervisor with an appropriate sensor (for example, a supervisor UAV with cameras can 

observe a swarm of UGVs). The ABC architecture is borrowed from models of wireless 

communication, satellite networks, and users of the world wide web (individual agents 

require limited upload capability compared to the download volume). In the future, we 

want to investigate a second architecture, called Nearest Neighbor Communication Chan

nels (NNCC), which allows each agent to communicate only with its neighbors. This is 

motivated by architectures in parallel computing and MEMS arrays where the intercon

nections between nodes require this constraint. In multi-agent robot systems, this can be 

easily implemented without communication by allowing each agent to measure its state 

and the states of a set of neighbors within a certain neighborhood. For the particular case 

of abstraction map that we considered in this work, simulations show that if our control 

laws are applied on circular neighborhoods, and the abstract variables for each neighbor

hood are controlled so that they converge to the same desired values, then the whole team 

converges to a configuration described by the same desired abstract values.

Future work will be also be directed towards extending the results to 3-D environ

ments and implementing the obtained control architectures in our blimp - car outdoor 

experimental platform.
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Appendix A

Proof of Proposition 12

The SVD decomposition of M{t) = I  +  (R 2  — /)/(£ ) = U{t)H(t)V(t)T is needed, 

where R 2  = e"0 and /(£) is a continuous function defined on [0,1] satisfying /(0 ) =  0, 

/ ( l )  =  1. The first observation is

M T(t)M{t) = I -  f ( t ) (  1 -  f { t ) )N , N  = 21 - R 2 - R %

The eigenstructure of the constant and symmetric matrix N  completely determines the 

SVD of M(t).  Because N  is symmetric and real, its eigenvalues will be real and the 

corresponding eigenspaces orthogonal. Let At, u, be an eigenvalue-eigenvector pair of N.  

Then,

Nvi = XiVt =» M T{t)M(t) = (1 -  -  f(t))Xi)vi

So, theoretically, the desired SVD decomposition is determined at this moment:

•  The matrix V  (t ) can be chosen constant of the form V  = [ui v2  u3] where vi, v2, u3 

are orthonormal eigenvectors of N;
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•  The singular values are given by sj(t) =  1 — f ( t ) (  1 — f{t))Xx (it will be shown 

shortly that the right hand side of this equality is always positive)

•  The time-dependence of the projection will be contained in

U(t) =  [m(t) u2(t) u3(t)], Ui{t) =  i  =  1,2,3

Using the Rodrigues formula for R2 =  eua, it is easy to see that

1 — CO S I |o /0 | |  2 . .* 2 T \
•V -  M 5 ( «» +  w0 )

from which it follows that the eigenvalues of N  are given by

A(N)  =  {0,2(1 -  cos M l ) ,  2(1 -  cos M ) }

and a set of three orthonormal eigenvectors by
f

— U / 3 — U J 0U J 1

y

U J q  1

0

1
2  . *> 

u >3 +  u i lM  ’  y / U z + U i y / i J 2^1  +  ( u >3 +  U l f ) 2  +  W 3U /2

L J  i — U ) s U ) 2

j

where u Q = [u/i u 2  cj3]t . With the eigenstructure of N  determined, one can write

E(£) =  diag{l,s(t) ,s{t)},  s(t) =  ^ 2(1 -  cos ||u>o||)/2(*) -  2(1 -  cos ||u/0||)/(f) +  1

(A.l)

where the binomial under the square root is always positive because it is positive at zero 

and 1 — cos ||u/0|| €  (0,2) gives a negative discriminant. Some straightforward but rather 

tedious calculation leads to:

UJqu m T = 1 + +  (1 -
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where

_  1 -  /( f )  ~t~ /( f )  cos |[u;o|| _  f( t )  sin ||aJ0||
s(f) ’ s(f)

The discussion is restricted to |[oj0|| € (0, n)  (in accordance to the exponential coordi

nates) which will give 72(f) > 0. Note that 7? (f) +  73(f) =  1, so it is appropriate to 

define a function 0 (f) € (0, 1) so that

7i(f) =  cos(||<Jol|0(f)). 72 (f) =  sin(||wo||0(<))

By use of the Rodrigues formula again,

U [ t ) V T  =  e“°m

so the projected line is the exponential mapping of a segment between the origin and ljq 

in exponential coordinates. The parameterization of the segment is given by

6W =  atan2(1 ~  /(*) +  / (* )cos I M . / W  sin ||u0||)INII
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