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Abstract—Transient transfection of cells can be highly stochas-
tic, resulting in large variations in plasmid counts across a
population. The resulting dynamics of the cells can then also be
highly variable, so predicting the behaviors of transfected circuits
can be a major challenge. In this work, we provide a precise
definition of genetic modules, from which we then develop a
method of composition that allows model-based design of circuits
in transiently transfected mammalian cells. For validation, we
apply our method to cascades consisting of two regulatory
switches. Predictions of the mathematical models compare well
with the experimental data. Our findings suggest reducing batch
effects and selecting a proper model both contribute to improving
model predictions.

I. INTRODUCTION

Experimental approaches combined with modeling are an
increasingly popular strategy taken by the research community
to study synthetic biology. Models can be used to simulate
the temporal behaviors of circuits, analyze critical features of
circuits such as bi-stability [1], [2] as well as guide circuit
construction [3], [4].

One challenge of synthetic biology is the problem of pre-
dicting the behaviors of genetic circuits based on the behaviors
of modules [5]–[9]. For a given circuit topology, a large
variety of transcriptional factors (TF) can be chosen from to
compose the circuit, resulting in a combinatorial explosion
of circuits that can be built. Building and testing all possible
circuit designs directly via experimental approaches is infeasi-
ble, especially since the numbers of successfully constructed
promoters, switch genes, terminators, etc. are rising rapidly
[10]. On the other hand, building and simulating predictive
models for circuits can often be completed within a reasonable
time thanks to today’s computational power. Hence, there is a
growing demand for a dependable tool that can facilitate the
prediction of circuit behaviors from modules.
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In this work, we present a novel method of composition
that enables forward design of complex circuits in transiently
transfected mammalian cells (TTMC). Transient transfection
is a widely adopted technique for delivering foreign genetic
materials into cells. The transfected genetic materials utilize
the cells’ innate transcriptional and translational machinery to
get expressed. As the name suggests, transiently transfected
genes are only expressed temporarily and do not become
integrated into the host’s genome. Compared with stable
transfection, transient transfection has many benefits including
a simple procedure and minimal side-effects to host cells [11].
It is increasingly being explored in mammalian cells because
many biomedical related proteins only become biologically
active in mammalian cells [12], [13].

Hill-function-based models have long been used to describe
gene regulation and study the time evolution of gene expres-
sion profiles in synthetic biology [14]. Unfortunately, the same
protocol for modeling is less successful in the context of
TTMC. In TTMC, plasmid copy number varies significantly
across the population (Fig. 2b). Binning cells by plasmid copy
number is a standard method to analyze experimental data.
Wang et al. construct a bin-dependent model that is compatible
with the process of binning and describes the experimental
data more accurately than the Hill-function-based model [15].
In this work, our goal is to develop a method of modular
composition that can be applied to the bin-dependent model.
In the rest of the paper, we will provide a precise definition
of a module, present our method of modular composition,
and validate our method via experimental data. Notation-
wise, Roman text is used for species and italicized text for
concentrations.

II. MODULES AND MODELS

A. Module

A transcriptional regulatory module is defined as a switch
gene and the promoter it regulates (Fig. 1a). The input of
the module is the switch gene, and the output, the regulated
promoter. The strength of the regulated promoter is often
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(a) (b)

Fig. 1. (a) Graphical representation of a genetic module. The input of a
module is the transcriptional factor I, while its output is the regulated promoter
pO. O is the protein that is expressed by pO. (b) Graphical representation of
a regulatory switch. The green dotted box stands for the reporter. The black
dotted box stands for the promoter regulated by an external inducer.

indicated by the expression level of the downstream gene. The
promoter can be regulated either positively or negatively, de-
pending on whether the regulator is an activator or an inhibitor.
Mathematically, a module M is expressed as: M = {I, pO},
where I and pO stand for the TF and the promoter, respectively.
We assume I is an inhibitor, but similar results can be derived
if I is an activator.

The definition we choose is widely used in the community
[3], [16] and has a distinct advantage. Another definition of
a module in the community is a transcriptional unit, i.e., the
coding sequence for a gene along with the sequences necessary
for its transcription [17]. In comparison, the definition we
choose captures the interaction between a TF and a promoter.
It maps a module to a transcriptional regulatory model, whose
parameters can be directly inferred from experimental data.
Based on this definition, models for modules contain all the
information needed to quantify signal propagation in a circuit.

B. Reporter

In a circuit, some proteins do not carry regulatory functions.
One such example are proteins used as markers for the states
of the cells, e.g., fluorescent proteins, antibodies, etc. We refer
to these proteins as reporters (Fig. 1b).

C. External Inducer

Besides modules and reporters, a circuit often contains
promoters regulated by external inducers (Fig. 1b). The con-
nection of TF to these promoters makes it possible to control
circuit behaviors via external inducers.

D. Model

Defining a module allows us to establish a framework
for the composition of mathematical models. The simplest
circuit containing at least one module, one reporter, and
one external-inducer-regulated promoter is a regulatory switch
(Fig. 2a). I and O can be measured via direct expression or co-
expression of a fluorescent gene. In TTMC, expression levels
are largely determined by the number of plasmids transfected
in individual cells [16], which cannot be controlled and are
extremely variant across a population. Hence, there is a need
to estimate the plasmid counts, which can be achieved by co-
transfecting another constitutive fluorescent protein, known as
the transfection marker (TM) (Fig. 2). Data of I and O are
then binned by the TM so that subpopulations of cells with
similar plasmid counts can be compared.

(a) (b)

Fig. 2. Characterization of a regulatory switch. (a) Z, the TM, is used to
estimate plasmid copy number in cells. (b) Distribution of the TM. The black
bins are ignored because they represent untransfected cells (we plot this figure
using data from [16]).

Davidsohn et al. develop a Hill-function-based ODE model
which describes the time evolution of the average concentra-
tion of the input protein I and the downstream protein O [16]:

dIi

dt
= αi · φ(t) − λI · Ii

dOi

dt
= β · φ(t) ·
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)f
·
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2

)b t
T
c

(1)

In (1), i represents the i-th plasmid count bin. Ii and Oi

are the average concentrations of the induced and the regulated
proteins in the i-th bin. αi is the production rate of the induced
protein. αi is assumed time-invariant because I is assumably
induced by a constant concentration of inducer. φ(t) captures
that the population-average plasmid counts decrease over time
as with transient transfection. T , the length of the cell cycle,
is measured to be approximately 20 hours [16]. λI and λO are
dilution rates. β is the maximal production rate of the regulated
protein for cells in the 1st bin, i.e., cells with minimal plasmid
counts, P1. Pi is the mid-point of the i-th plasmid count bin.
f maps the ratios of the concentrations of TMs to the ratios
of plasmid counts [16]. Transfected genes in TTMC are not
expressed until plasmids enter the nucleus during mitosis. It
has been estimated that the average delay in the initiation of
expression is 25 hours across a population of cells [16]. While
in this work we are focused on the average behavior of the
population, more sophisiticated models could be developed to
accout for stochasticity in the initiaion of gene expression

A fundamental assumption of the model above is that the
log of the maximal production rate of the regulated protein
is a linear function of the log of the TM. However, this
assumption does not hold at high plasmid copy number as
protein production rates may slow down due to enzyme
saturation [15]. In [15], Wang et al. show why this assumption
may be violated in TTMC and develop an alternative bin-
dependent model [15]:
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(a) (b)

Fig. 3. Comparison between the experimental data and (a) the Hill-function-
based models (b) the bin-dependent models fit to the data. Plasmid copy
number is shown by color. Solid curves are experimental data, and dashed
curves are model fits. Each dot on a curve represents one inducer level. Both
axes are log scaled. The best-fit values of the parameters are (a): β = 6.96×
104 MEFL/hr, f = 1.28, d = 2.13 × 105 MEFL, h = 0.68, γ = 1.91 ×
10−5; (b): β = 4.68 × 104 MEFL/hr, f = 1.58, d = 2.90 × 105 MEFL,
h = 0.72, γ = 1.10× 10−3, g = 0.83. We plot both (a) and (b) using data
from [16].

In (2), i∗ is the bin that separates high plasmid copy number
from the rest. For high plasmid copy number, the log of
the plasmid copy number is again approximated as a linear
function of the log of the TM, but with a different slope. The
rest of the notations are the same as in (1).

Example 1: We fit the Hill-function-based model (1) and
the bin-dependent model (2) to the TAL14, TAL21, and
LmrA datasets from [16] using the method of least squares
(TAL14, TAL21, and LmrA are names of the repressors in
the regulatory switches shown in Fig. 2a). Each switch is
induced at twelve dosages. For each dosage, I and O are
measured via a flow cytometer 72 hr post-transfection. These
data are segmented by the concentrations of the TM into bins
of width 0.1 on a log scale. The geometric means of I and
O are then calculated within each bin. The fit model values
versus the experimental values of the geometric means are
shown in Fig. 3. Compared to the Hill-function-based model,
the bin-dependent model fits the data well at all plasmid copy
numbers.

III. CIRCUITS AND MODELS

A. Modular Connection

Within a set of modules, two are connected if the promoter
of one module expresses the TF of the other. Mathematically,
the connection between modules M and M∗ can be represented
by a tuple (M,M∗), where M = {I, pO}, M∗ = {I∗, pO∗}, and
pO expresses I∗.

Similarly, the connection between a module M and a
reporter R can be represented by a tuple (M,R), where
M = {I, pO}, and pO expresses R. The connection between
an external-inducer-regulated promoter E and a module M
can be represented by a tuple (E,M), where M = {I, pO},
and E expresses I. The connection between E and R can be
represented by (E,R), where E expresses R.

B. Composition of models

Based on the models for modules, we can develop models
for general circuit topologies in which each promoter is
either constitutively expressed or regulated by one and only

one unique TF. We name the circuit to be built the target
circuit. Assume the target circuit consists of m modules and
n external-inducer-regulated promoters. Let {pOk}mk=1 denote
the set of regulated promoters in the target circuit. Because
each promoter is regulated by one unique TF, we know for
all k = 1, 2, ...,m, there exists a unique gene, also known
as the input of the module Ik such that Ik regulates pOk.
Similarly, because the strength of the promoter is indicated
by the expression level of the downstream gene, we know for
all k = 1, 2, ...,m, there exists a unique downstream gene
Ok such that expression of Ok initiates at pOk. It is worth
mentioning that through the composition of modules, some
TF may be regulated by others, i.e., {Ik}mk=1 ∩ {Ok}mk=1 6= ∅.

The model for the target circuit is a collection of the
models for all modules and external-inducer-regulated pro-
moters. However, models of different modules cannot be
directly connected into a chain. Like most biological data,
flow cytometry measurements are subject to noise. This noise
may originate from imperfect experimental conditions as well
as data calibration. In order to make accurate quantitative pre-
dictions of circuit behaviors, we need to reduce batch effects
by bringing different batches to the same scale, based on the
approach taken in [16]. The scaling factors among batches
can be calculated by comparing the means and the tightness
of the data of different batches (details can found in [16]).
Once the scaling factors are calculated, we compensate the
batch effects by dividing the parameters by the scaling factors.
Mathematically, we can develop a bin-dependent model based
on (2) for the k-th module for each k = 1, 2, ...,m:
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In (3) and (4), Iki, Oki, βk, Hk, λIk, λOk, i∗k, fk, and gk
are counterparts of Ii, Oi, β, H , λI , λO, i∗, f , and g from (2)
for the k-th module. In (4), the prime variables represent the
variables without batch effects. cIk, cOk, and cPk represent
the scaling factors of the input I, the downstream protein O,
and the TM in the k-th module. Similarly, we can develop
a model for the j-th external-inducer-regulated promoter for
each j = 1, 2, ..., n:

dI′ji
dt

= α
′
ji · φ(t) − λIj · I

′
ji, (5)

where

I
′
ji =

Iji

cIj

α
′
ji =

αji

cIj

(6)
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Fig. 4. Graphical representation of a two-transcriptional-repressor cascade.
The circuit consists of two modules: the I1-pO1 module and the I2/O1-pO2

module. I1 and I2 can be different combinations of TAL14, TAL21, and LmrA.

In (6), Iji and αji are the concentration and the production
rate of the protein expressed by the j-th external-inducer-
regulated promoter in the i-th bin. I ′ji and α′ji are counterparts
of Iji and αji without batch effects. Notice the same method of
composition can be applied to the Hill-function-based model
(1).

Example 2: Using the above method, we construct Hill-
function-based models with and without rescaling, and a bin-
dependent model with rescaling for each of the six possible
two-repressor cascades: LmrA-TAL14, LmrA-TAL21, TAL14-
LmrA, TAL14-TAL21, TAL21-LmrA, and TAL21-TAL14.
The structure of a two-transcriptional-repressor cascade is
illustrated in Fig. 4. Each cascade can be regarded as a
composition of two modules. The scaling factors for I, O, and
the TM are TAL14: 0.29, 0.93, 0.89; TAL21: 0.20, 1, 1.12;
LmrA: 1, 0.41, 1 [16]. We then simulate the dynamics of the
two-repressor cascades by inserting the parameter estimates
into the models.

To validate the bin-dependent model and our rescaling
method, we measure the differences between the simulated
and the observed concentrations of EYFP 72 hours post-
transfection. The error metric we adopt is the mean-fold error
for all induction levels and plasmid copy numbers of each cas-

cade. The mean-fold error is defined as e

∑M
u=1

∑N
i=1

∣∣∣∣∣log
(
O′ui
Ô′ui

)∣∣∣∣∣
MN ,

where Ô′ui and O′ui denote the predicted and the observed
concentrations of EYFP at hour 72, M the number of inducer
levels, and N the number of bins. We compare the observed
experimental concentrations against the concentrations simu-
lated by the models (Fig. 5a). The bin-dependent model is
shown to outperform the Hill-function-based model in almost
all aspects. The Hill-function-based model with rescaling gives
an average error of 1.8 fold compared to an error of 2.2 fold
for the model without rescaling (Fig. 5b). This suggests that
inconsistent scales between modules account for a significant
portion of the error. With rescaling, the bin-dependent model
makes an average error of 1.7 fold and produces smaller errors
than the Hill-function-based model for five of the six cascades
(Fig. 5b).

IV. CONCLUSION

In this work, we present a method of modular composition
that addresses the issue of batch-effects in TTMC. By vali-
dating our method with real experimental data, we find that
the rescaled bin-dependent model makes the most accurate
predictions among the models that are tested. Our work shows
promises in improving circuit designs in TTMC.

(a) (b)

Fig. 5. (a) Comparison between the experimental data and the predictions
of O2 made by the bin-dependent model. Plasmid copy number is shown
by color. Solid curves are experimental data, and dashed curves are model
predictions (we plot the histogram and experimental data in this figure using
data from [16]). (b) Comparison of the mean-fold errors of the Hill-function-
based models, with and without rescaling, and the bin-dependent model with
rescaling.
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