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Abstract— The increasing need for real time robotic systems
capable of performing tasks in changing and constrained envi-
ronments demands the development of reliable and adaptable
motion planning and control algorithms. This paper considers a
mobile robot whose performance is measured by the completion
of temporal logic tasks within a certain period of time. In
addition to such time constraints, the planning algorithm must
also deal with changes in the robot’s workspace during task
execution. In our case, the robot is deployed in a partitioned
environment subjected to structural changes in which doors
shift from open to closed and vice-versa. The motion of the robot
is modeled as a Continuous Time Markov Decision Process and
the robot’s mission is expressed as a Continuous Stochastic
Logic (CSL) temporal logic specification. An approximate solu-
tion to find a control strategy that satisfies such specifications is
derived for a subset of probabilistic CSL formulae. Simulation
and experimental results are provided to illustrate the method.

I. INTRODUCTION

The interest in finding robust and reliable motion planning
algorithms has substantially increased since the arena of
applications in which robots are being used is becoming more
constrained and complex. Planning in dynamic environments
represents an extension to the basic path planning problem,
in which, besides stationary obstacles, moving obstacles are
present. As in static environments, the problem of planning in
dynamic environments has many different approaches, with
different assumptions about the input, and different require-
ments on the output. Starting with [1], [2], most of the vast
number of planning algorithms considering dynamic envi-
ronments have attempted to solve the reachability problem of
moving from an initial to a goal position while staying within
specific regions and dealing with changes in the workspace.
However, while these methods solve this basic path planning
problem, they fail to consider planning with temporally
extended goals. In order to express these constraints, model
checking based planning techniques appear to be a viable
choice [3]–[8].

Research in verification and formal synthesis has sig-
nificantly grown in recent years. Besides the considerable
theoretical and experimental advances in verification, there
is an ongoing diversification of this field into areas that
at least initially appeared to be unrelated to logic and
model checking. As an example, synthesis of discrete time
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mobile robotic systems using formal methods has been an
actively explored subject by many researchers, including the
authors of this paper [9], [10]. Despite the progress in this
area, researchers have not explicitly considered synthesis in
continuous time systems.

The dynamics of real time systems can be effectively mod-
eled using probabilistic Markov models. Continuous Time
Markov Decision Processes (CTMDPs) [11] are stochastic
models that may exhibit nondeterminism between transitions
in which time follows an exponential distribution. In the field
of model checking, the Continuous Stochastic Logic (CSL)
was introduced in [12] to specify temporal logic properties of
continuous time Markov chains (CTMCs). Later on, in [13],
the maximum reachability problem in uniform CTMDPs was
solved using a backward greedy algorithm. More recently, a
discretization technique to solve the maximum reachability
problem in locally uniform CTMDPS was introduced in [14].

In this paper, we consider a changing environment with
doors that open and close during a time-constrained robot
mission. We solve this problem under the assumptions that
the robot’s elapsed time in a given region of the environment
and the transition time in which the doors switch between
open and closed are governed by exponential distributions.
Moreover, the exponential rate at which the doors switch is
given to the robot a priori. A CTMDP is used to model the
interaction between the robot and the changing environment
under these settings. We consider specifications given as CSL
formulas to represent the tasks to be accomplished by the
robot. The main contribution of this paper is the development
of a framework for the synthesis of control strategies from
such specifications to be applied in robotics applications.
Although the algorithms presented are based on existing
model checking and step-reachability probability algorithms,
the explicit formulation and solution of a CSL synthesis
problem as a maximum reachability problem are, to the
best of our knowledge, novel and general. While this paper
focuses on a structured environment with doors, the problem
and the methods developed can be generalized to arbitrary
environments that involve structural and ambient changes.
To illustrate these methods, we use the Dynamic Indoor
Concurrent Environment (DICE) Simulator to generate the
CTMDP model for a robot moving in a dynamic environment
and to show the planning of the robot.

II. PROBLEM FORMULATION AND APPROACH

Consider a mobile robot moving in an indoor environment
consisting of static and moving components. The static part
of the environment corresponds to regions whose topology is
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assumed to be known. The changing part of the environment
is represented by the occurrence of discrete events. A discrete
event is the outcome of any change in the dynamics of the
environment that the robot has no control over. Such changes
can correspond to transitions of the movable structures
present in the environment such as doors or gates opening
and closing. We call these events switching events.

We assume that the robot can determine its current region
exactly and that it is programmed with a set of control
primitives. These primitives allow the robot to move inside
each region in the environment and from one region to
an adjacent one provided the region is not blocked by a
closed door. To account for noisy actuators, if in a given
region a control designed to take the robot to a specific
adjacent region is used, it is possible that the robot will
instead transition to a different adjacent region. In practice,
the success and failure rates of these controllers can be
determined. The robot only gets information on whether a
given door is open or closed when the current region contains
that door.

In order to analyze the motion of the robot in the en-
vironment, a probabilistic model is used. Consequently, a
change in the state of any door (open or closed) is assumed
to follow a Poisson distribution [15] so that the time between
two subsequent switching events is an exponential random
variable. It is assumed that the rate parameters associated
to these events are known. The exponential distribution is
a reasonable choice to represent the time between two con-
secutive switching events given that it depicts the following
features of the dynamic nature of the environment. First, the
number of events in a given time interval is independent
of the number of events in any other non-overlapping time
interval. Second, the number of events in a time interval is
proportional to the length of the time interval. And third, the
probability that an event occurs in a time interval becomes
arbitrarily small if the time interval is sufficiently small [2].

The motion of the robot is considered to evolve according
to the following dynamic process. The robot starts in an
initial region of the environment. After applying a control
primitive, it remains in this region for a random amount of
time before making a transition to a different region. The
time spent in a given region and the next region to be visited
are independent random variables. We assume that given a
set of previous regions visited at earlier times, the robot
‘forgets’ all but the region visited at the most recent time.
Intuitively, this feature can be captured by the memoryless
property of the exponential distribution. Hence, the time
that the robot stays in a particular region is modeled to be
exponentially distributed. The rate parameters associated to
these distributions can be determined with a combination of
experiments and simulations.

The mission given to the robot will be a temporal logic
statement over a fragment of the Continuous Stochastic
Logic (CSL) [12]. With this setting, we consider the fol-
lowing problem:

Problem 1. Given a motion specification in the form of a

temporal logic statement over a set of properties satisfied by
the regions in a changing indoor environment with known
topology, find a control strategy that maximizes the proba-
bility that the robot satisfies the specification before t time
units.

As an example, consider the environment shown in Fig.
1, which consists of 9 corridors (marked as C1, ..., C9), six
intersections (I1, ..., I6), and four doors (d1, ...,d4). The static
part of the environment corresponds to corridors and intersec-
tions that have the following properties: Safe (the robot can
safely drive through a region with this property), Relatively
safe (the robot can pass through the region but should avoid
it if possible), Unsafe (the corresponding region should be
avoided), Fire Extinguisher (there is an extinguisher in this
region that the robot can use later in its mission), and
Destination (a region the robot should visit). On the other
hand, the dynamic part is defined by the different states that
the doors can be in (open or closed). A task based on the
properties of interest in the considered environment is:

Specification 1. “In less than 3 minutes, reach a Destination
region while going only through either Safe or Relatively safe
regions that have a Fire Extinguisher available”.

Our approach to Problem 1 relies on modeling the motion
of the robot in the changing environment as a CTMDP, (see
Sec. III-A). A control strategy will be specified as a motion
primitive to be performed by the robot at each region in
the environment. Since the result of each control primitive
will be characterized probabilistically, the satisfaction of
the specification will be defined probabilistically as well.
The details of the construction of the CTMDP model are
described in Sec. V. Solving Problem 1 under the assumption
that the robot has perfect knowledge of the region it is
currently in reduces the problem to finding the strategy
that generates the maximum probability of satisfying a CSL
formula. Depending on the formula being considered, the
obtained probability may admit an upper bound. This topic
is developed in Sec. IV.

III. PRELIMINARIES
In this section, some concepts and notation used through

the paper are introduced.
Let AP be a set of atomic propositions.

Definition 1. [13] A Continuous Time Markov decision
process (CTMDP)M is a tuple (S,Act,R, T, L) where S is
a finite set of states, Act is a finite nonempty set of actions,
R : S×Act×S → R≥0 is a rate function such that for each
s ∈ S there is a pair (α, s′) ∈ Act×S with R(s, α, s′) > 0,
T : S×Act×S → [0, 1] is a transition probability function
such that for each s ∈ S and α ∈ Act, either T (s, α, .) is a
probability distribution on S or T (s, α, .) is the null function
(i.e. T (s, α, s′) = 0 for any s′ ∈ S), and L : S → 2AP is a
labeling function.

Given s ∈ S, with a slight abuse of notation, we use
Act(s) to denote the set of actions available at state s. We
assume that each state has at least one outgoing transition.
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Fig. 1. Schematic representation of the dynamic environment from Fig. 2.
The properties satisfied at the regions are: S = Safe, R = Relatively safe, U
= Unsafe, E = fire Extinguisher, and D = Destination.

A CTMDP M is called locally uniform [14] if ∀s ∈ S
and ∀α, β ∈ Act(s), E(s, α) = E(s, β), where E(s, α) =∑

s′∈S R(s, α, s′) is the exit rate. In the sequel, we use E(s)
to denote the exit rate of state s of a locally uniform CTMDP.

For a given CTMDP M, the embedded locally uni-
formized discrete time Markov decision process (DTMDP)
with uniformization rate E(s) = maxs∈S maxα∈ActE(s, α),
is (S,Act, T u(M), L), where for all α ∈ Act(s),

T u(M)(s, α, s′) =

{
E(s,α)

E(s)
T (s, α, s′) if s 6= s′

E(s,α)

E(s)
T (s, α, s′) + 1− E(s,α)

E(s)
if s = s′.

A path ω of a CTMDP M is an infinite sequence
s0, α0, t0, s1, α1, t1, s2, α2, t2, . . . where si ∈ S is a state,
αi ∈ Act is an action and ti ∈ R≥0 is the sojourn time in
state si. The sequence can be written as:

s0

α0,t0−−−→ s1

α1,t1−−−→ s2

α2,t2−−−→ . . . .

Any finite prefix of ω that ends in a state is a finite path
of M. The set of all non-empty finite sequences of states is
denoted by Pathfin and that of infinite ones by Pathinf .

In order to resolve the nondeterminism that occurs in the
states of a CTMDP in which more than one action is allowed,
we introduce the concept of timed measurable policies.

Definition 2. [14] A timed measurable policy for a CTMDP
M is defined as a mapping π : Pathfin×R≥0×Act→ [0, 1],
such that for all ti ∈ R≥0 and ω ∈ Pathfin, the functions
π(ω, t, .) : Pathfin × R≥0 → [0, 1] yield a probability
distribution over all α ∈ Act.

Time measurable policies that are based on the current
state and the total elapsed time are known as late total
time positional (late TTP) policies [14]. Within this class,
we consider a special set of policies. A late TTP policy is
piecewise constant and non-Zeno if for any state s ∈ S and
any time bound t, the frequency at which actions change is
finite. Such policies ensure that a finite number of decision

epochs occurs up to time t. Considering time intervals of
equal length, we define the concept of periodic policies.

Definition 3. Any piecewise constant and non-Zeno late TTP
policy is a periodic policy if for all s ∈ S and k ∈ N there
exists an action α ∈ Act such that for the elapsed time within
the interval [kT, (k + 1)T) of period T, the chosen action
is α.

Continuous Stochastic Logic (CSL) [12] is a branching
time temporal logic based on Computation Tree Logic (CTL)
[16]. A CSL formula sets conditions on a state of a CTMDP.
Besides the standard propositional temporal logic operators,
CSL includes the probabilistic operator Pλ(φ) where φ is
a path formula and λ is a probability threshold. CSL also
admits the steady-state probabilistic operator Sλ(Φ), where
Φ is a state formula. Sλ(Φ) expresses that in the long-run, the
steady-state probability of a Φ-state satisfies the threshold λ.
The path formulae φ are defined as for CTL, except that a
bounded next operator X I Φ and a bounded until operator,
Φ U I Ψ for the compact interval I ⊆ R≥0 are included.
Formally, we have:

Definition 4. The syntax of CSL state formulae are defined
according to the following grammar rules:

Φ ::= true | a | ¬Φ | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | P∼λ[φ]| S∼λ[Φ]

where a ∈ AP , φ is a path formula, ∼∈ {<,≤, >,≥}
is a comparison operator, and λ ∈ [0, 1] is a probability
threshold. CSL path formulae are given by:

φ ::= X I Φ | Φ1 U I Φ2

where Φ, Φ1, and Φ2 are state formulae and I ⊆ R≥0∪{∞}.

The semantics of CSL formulae is defined on CTMDPs
analogously to the semantics of PCTL formulae on MDPs
[12].

As an example of the properties that can be expressed
using CSL formulae, Specification 1 on the environment in
Fig. 1 translates to the formula:

φ :: S ∨ (R ∧ E) U [0,3] D.

IV. CONTROL SYNTHESIS OF CTMDPS WITH
TIMED BOUNDED SPECIFICATIONS

In this paper we restrict our attention to path CSL formu-
lae.

A. Next Optimal Operator (Pmax=?X I Φ)

Let s denote the current state of the system. The problem
of finding the optimal action to satisfy the formula within the
interval I ⊆ R≥0 in exactly one transition can be reduced to

π∗(s) = arg max
α∈Act(s)

(e−E(s) inf I − e−E(s) sup I)
∑
s′|=Φ

T (s, α, s′).

(1)

The computation of the policy that satisfies the formula with
maximum probability can be achieved by defining an indexed
probability vector Φ, whose entries are equal to e−E(s) inf I−
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e−E(s) sup I if s |= Φ and 0 otherwise. Then, a vector with the
probabilities of satisfying X I Φ from each state is calculated
by multiplying the transition probability matrix T and the
vector Φ.

The solution of Pmin=?[X I Φ] is solved as for the Pmax=?

case. However, instead of a maximization problem, a mini-
mization problem is solved.

B. Until ε-Optimal Operator (Pmax=?[Φ U I Ψ])

The maximum probability of satisfying Φ U I Ψ is
achieved by a fixed point characterization. In the se-
quel, assume that I = [0, t] and let P(s, α, s′, x) =
E(s)e−E(s)xT (s, α, s′) represent the probability that a tran-
sition to state s′ results after applying action α at state s
within x time units for x ≤ t. Let pmax(s, t) denote the
maximum probability of satisfying the formula in at most
t time units. The function (s, t) 7→ pmax(s, t) is the fixed
point of the higher-order operator Ω : (S×R≥0 → [0, 1])→
(S × R≥0 → [0, 1]), defined for all s ∈ S, t ∈ R≥0 and the
measurable function F : S × R≥0, such that:
Ω(F )(s, t) =

1 if s |= Ψ∫ t
0

max
α∈Act(s)

∑
s′∈S

P(s, α, s′, x)F (s′, t− x)dx if s |= Φ ∧ ¬Ψ

0 otherwise.

The solution to the nontrivial case when s |= Φ∧¬Ψ implies
solving recursively a set of Volterra integral equations. Nu-
merical integration and transformation of the integral equa-
tion into a system of differential equations are two possible
approaches that can be used to solve the equation. However,
these methods have been shown to be time consuming and
numerically unstable [17]. Alternatively, if we consider the
first T units of time in the interval [0, t], we can split the
integral into two summands as follows:

pmax(s, t) =

∫ T

0

max
α∈Act(s)

P(s, α, s′, x) · pmax(s′, t− x)dx

+

∫ t

T

max
α∈Act(s)

P(s, α, s′, x) · pmax(s′, t− x)dx.

(2)

The integration range of the second summand in (2) can be
shifted by −T. Additionally, for a sufficiently small T, the
first summand can be made independent of x. Solving the
integrals and replacing P(s, α, s′, x) accordingly, we obtain:

pmax(s, t) ≈ max
α∈Act(s)

(1− e−E(s)T)
∑
s′∈S

T (s, α, s′)·

pmax(s′, t−T)+ e−E(s)T · pmax(s, t−T). (3)

The first summand in (3) is an approximation of the first
integral in (2) representing the probability that only one
transition occurs during the interval [0,T]. Clearly, (3) can
be interpreted as a lower bound for pmax(s, t). In order to
define an upper bound for (2), let E = maxs∈S E(s) be the
maximum exit rate of the system. In the worst case, the maxi-
mum ε error will be equal to (ET)2

2
. This result follows from

the derivation of the Taylor expansion of the exponential

function when considering that the number of transitions in
the [0,T] interval follows a Poisson distribution. For a fixed
ε upper bound, the number of steps k that satisfy ε ≥ (E·t)2

2k

can be defined.
Based on the above approximation, a discrete time MDP

M̃ = (S,Act, T̃ , L) is induced, where

T̃ (s, α, s′) =

 (1− exp−E(s)T) · T (s, α, s′) if s 6= s′

(1− exp−E(s)T) · T (s, α, s′)
+ exp−E(s)T if s = s′.

For a given upper bound on the approximation error, ε, an
ε-optimal policy is found solving the maximization problem:

π∗(s, k) = arg max
α∈Act

( ∑
s′|=Φ∧¬Ψ

T̃ (s, α, s′) · p(s′, k − 1)

+
∑

s′|=¬Φ∧Ψ

T̃ (s, α, s′)

)
, (4)

where π∗(s, k) denotes the ε-optimal periodic policy that
applied at s generates the probability of reaching a Ψ-state
starting from state s in at most k steps in the induced
discrete MPD M̃. Therefore, computing pmax(s, t) up to an ε
error can be found using dynamic programming techniques
such as the value iteration method [11]. The solution for
Pmin=?[Φ U I Ψ] is found in a similar way.

C. Complexity

As for PCTL, the overall time complexity for CSL control
synthesis is linear in the size of the formula and polynomial
in the size of the model. Let M =

∑
si∈S
|Act(si)| be

the size of the CTMDP M. Obtaining the optimal policy
for formulae of the form Pmax=?[X I Φ] has O(M) time
complexity, as only one matrix-vector multiplication and
one maximization step are needed. On the other hand, for
formulas of the form Pmax=?[Φ U I Ψ], the complexity is
more expensive. Assuming we start with a locally uniform
or uniformized CTMDP, the discretized MDP M̃ used in the
maximization process is built adding at the most one self-
loop for each si ∈ S and α ∈ Act(si). Therefore, in the
worst case, the size of M̃ is 2M . For a given error bound
ε, the smallest number of steps k to be used while applying
the value iteration algorithm is given by (Et)2

ε
. Hence, the

time complexity of the algorithm is O(M · (Et)2

ε
) [14].

V. CTMDP MODEL OF ROBOT MOTION IN A
CHANGING ENVIRONMENT

A. CTMDP Model Construction

To capture the dynamics of the environment, we use the
following definition:

Definition 5. [10] A changing environment is a tuple E =
(R,D,A,C,H), where
• R = {r1, r2, . . . , rk} is a set of k mutually disjoint

regions;
• D = {d1, d2, . . . , dN} is a set of N doors;
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• A ⊆ R × R is a binary relation representing the
adjacency between two regions. (r1, r2) ∈ A denotes
that r1 and r2 are adjacent and there is no door in
between;

• C = {c1, c2, . . . , cN} is a set of Boolean variables
indicating if a door is closed (ci = 1) or open (ci = 0),
and;

• H ⊆ D × R is a binary relation representing the
adjacency between regions and doors. A region r has a
door d if (d, r) ∈ H .

Using this definition, we define Rd as the set of regions
that have a door, i.e., Rd = {r ∈ R|(d, r) ∈ H for some
d ∈ D}, and Rnd as the set of regions with no doors, i.e.,
Rnd = R \Rd. The state space of the CTMDP is the union
of the set of regions with no doors with the union of the
set of pairs of regions containing a door and the states of
that door, i.e., S = Rnd ∪

⋃
r∈Rd
{(r, 0), (r, 1)}. The action

space of the CTMDP includes the set of control primitives
available at each one of the static components (regions) in
the environment and the decisions that allow the robot to
cope with the occurrence of a switching event.

In order to represent the CTMDP rate and transition
functions, we assume the following timing of events. After
choosing an action in a given state, the robot remains there
for an action-dependent random period of time during which
the robot is moving according to the action. Then a transition
occurs and the next action is chosen. We assume that the
probabilities of these transitions depend only on the region
the robot is currently in. Since transitions only occur at the
end of a sojourn in a region, we specify the transition prob-
abilities for the Markov model by T (s, α, s′) = Pr(s′|s, α).
We assume that the sojourn time in s ∈ S under Act(s) ∈
Act is exponentially distributed on the interval [0, x] i.e.,
E(s, α)e−E(s,α)x, with exit rate E(s, α) =

∑
s∈S R(s, α, s′).

As already outlined, each switching event is governed
by a Poisson distribution whose rates are assumed to be
known. The knowledge of these rates allows us to capture
the behavior of the dynamic components of the environment
and integrate it into the model of the system.

B. Dynamic Indoor Concurrent Environment (DICE)

In order to capture the motion of the robot in an in-
door changing environment, the Dynamic Indoor Concurrent
Environment (DICE) was developed. DICE is a simula-
tion/experimental platform based on the Robotic InDoor
Environment (RIDE) simulator [9]. It consists of a mobile
robot moving in an environment with corridors and inter-
sections delimited by RFID tags. The robot is an iRobot
Create equipped with a Hokoyu URG-04LX laser range
finder, an APSX RW-210 RFID reader, and a Dell Latitude
2120 netbook. The RFID tags mark the boundaries between
the regions and serve as transition indicators for the robot.
DICE contains doors that randomly change from open to
closed and vice-versa. The time at which a door changes
was programmed to follow an exponential distribution. The
motion of the doors is activated by servos mounted on top of

each door through a USB servo controller, which receives the
commands from an off-board computer by a wireless USB
hub. The samples from the exponential distributions were
generated in Matlab. The simulation component of DICE
was designed to capture the most important characteristics of
the environment and the robot, including the robot dynamics
and sensors, door transitions, transition times, and reasonable
models of the noise affecting all sensors and actuators.

For this work, we utilized the environment in Fig. 1.
The sojourn time in a given state was approximated to be
exponential given the assumptions described in Sec. II. To
enforce Markovianity in the transitions, the states of the
CTMDP were defined as adjacent pairs of regions (e.g. I2C4

represented the state in which the robot was in I2 and is now
in C4). As described in Sec. V.A, states containing a region
with a door were duplicated to account for the two possible
states the doors could be in. The model had 48 states.

The actions available at these states were: FollowRoad,
GoRight, GoLeft, GoStraight, TurnAway, and Wait. The
transition probabilities and rates associated to each action
(with the exception of Wait) were computed after performing
1000 simulation trials. In each trial, the robot was initialized
at the beginning of the region representing each state. If
this region was a road, then the FollowRoad controller was
applied until the system transitioned to the next state. On the
other hand, if this region was an intersection, each one of
the actions allowed at this state was applied and the resulting
transitions and the sojourn times were recorded. The results
were then integrated into the transition probabilities and rate
matrices, respectively. The entries of the rate matrices were
the inverse of the average sojourn times calculated in the
simulations. To corroborate the accuracy of the CTMDP
model obtained through simulation, five of the transition
probabilities and their time averages were determined ex-
perimentally by performing 35 trials of each transition. The
simulated and experimental results were then compared using
the Fisher exact test [18] and determined to be statistically
equivalent with a confidence of 99%.

Finally, each state of the CTMDP was labeled with the
property that is satisfied at the second region of the pair
representing such state.

VI. CASE STUDY

Consider the environment shown in Fig. 1 and the motion
specification given by Specification 1 in Sec. II. This speci-
fication can be translated to the following CSL formula:

φ1 :: Pmax=?[S ∨ (R ∧ E) U [0,3] D] (5)

Discretizing the CTMDP representing the motion of the
robot in the environment allows us to find an ε-optimal
control policy for the specification given in (5). Defining
an error bound equal to 0.027 and using the approach
described in Sec. V for the CSL Until operator, the maximum
probability for (5) was 0.345. To validate the computed
probabilities, 500 simulations and 35 experimental trials were
performed. The simulations demonstrated that the probability
of satisfying (5) was 0.298 while the experimental trials show
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Fig. 2. Snapshots (to be read left-to-right and top-to-bottom) from a movie showing the robot’s motion produced by applying the control strategy
maximizing the probability of satisfying Specification 1.

that this probability was 0.371. The discrepancy in the results
is likely due to several factors, including statistical variation
due to the finite number of runs, differences between the
real-world and simulation dynamics, and remaining non-
Markovian behavior in the system.

Fig. 2 depicts scenes from a single successful experimental
run in DICE according to the ε-optimal policy determined by
the proposed approach. The robot starts its mission at C1. In
this particular run, the robot followed the path C1I1C2I2 at
which point it found door d2 closed. It then turned away
and followed the route I2C2I1C3I3. Upon reaching I3, the
robot found door d1 open and it continued driving through
C5I4C7I6. Door d4 was closed when the robot arrived at I6

and the robot chose to wait for it to open. Once it did, the
robot passed through to arrive at C9, achieving the task in
the specification in less than three minutes.

VII. CONCLUSIONS

We presented a method for the automatic deployment of
a mobile robot moving in a changing indoor environment
subject to a time constrained task given in terms of a
temporal logic specification. The robot’s motion capabilities
and the knowledge of the time distributions between the
transitions of the changing elements of the environment were
captured using a CTMDP. This allowed us to implement
CSL model checking and dynamic programming techniques
to find an optimal (ε-optimal) control strategy that maximizes
the probability of satisfying the specification as a CSL
formula.
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