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Abstract— We address the problem of controlling a stochastic
version of a Dubins vehicle such that the probability of
satisfying a temporal logic specification over a set of properties
at the regions in a partitioned environment is maximized. We
assume that the vehicle can determine its precise initial position
in a known map of the environment. However, inspired by
practical limitations, we assume that the vehicle is equipped
with noisy actuators and, during its motion in the environment,
it can only measure its angular velocity using a limited
accuracy gyroscope. Through quantization and discretization,
we construct a finite approximation for the motion of the vehicle
in the form of a Markov Decision Process (MDP). We allow for
task specifications given as temporal logic statements over the
environmental properties, and use tools in Probabilistic Com-
putation Tree Logic (PCTL) to generate an MDP control policy
that maximizes the probability of satisfaction. We translate this
policy to a vehicle feedback control strategy and show that
the probability that the vehicle satisfies the specification in the
original environment is bounded from below by the maximum
probability of satisfying the specification on the MDP.

I. INTRODUCTION

In “classical” motion planing problems [LaV06], the spec-

ifications are usually restricted to simple primitives of the

type “go from A to B and avoid obstacles”, where A and B
are two regions of interest in some environment. Often this is

not rich enough to describe a task of interest in practical ap-

plications. Recently, it has been shown that temporal logics,

such as Linear Temporal Logic (LTL) and Computational

Tree Logic (CTL), can serve as rich languages capable of

specifying complex motion missions such as “go to region

A and avoid region B unless regions C or D are visited” (see,

for example, [KF08], [KB08b], [KGFP07]).

In order to use tools from formal verification and automata

games [BK08] for motion planning and control, most of

the works using temporal logics as specification languages

assume that the motion of the vehicle in the environment can

be modeled as a finite system. This usually takes the form of

a finite transition system [CGP99] that is either deterministic

(applying an available action triggers a unique transition

[KB08b]) or nondeterministic (applying an available action

can enable multiple transitions, with no information on

their likelihoods [KB08a]). More recent results show that,

if sensor and actuator noise models can be obtained through

experimental trials, then the robot motion can be modeled

as a Markov Decision Process (MDP), and probabilistic

temporal logics, such as Probabilistic CTL (PCTL) and
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Probabilistic LTL (PLTL), can be used for motion planning

and control (see [LWAB10]).

However, robot dynamics are normally described by con-

trol systems with state and control variables evaluated over

infinite domains. A widely used approach for temporal logic

verification and control of such a system is through the

construction of a finite abstraction ([TP06], [Gir07]). Even

though recent works discuss the construction of abstrac-

tions for stochastic systems [JP09], [ADBS08], the existing

methods are either not applicable to robot dynamics or are

computationally infeasible given the size of the problem in

most robotic applications.

In this paper, we provide a conservative solution to the

problem of controlling a stochastic Dubins vehicle such that

the probability of satisfying a temporal logic specification

over a set of properties at the regions in a partitioned

environment is maximized. Inspired by a realistic scenario

of an indoor vehicle leaving its charging station, we assume

that the vehicle can determine its precise initial position

in a known map of the environment. The actuator noise is

modeled as a random variable with an arbitrary continuous

probability distribution supported on a bounded interval.

Also, we assume that the vehicle is equipped with a limited

accuracy gyroscope, which measures its angular velocity, as

the only means of measurement available.

By discretization and quantization, we capture the motion

of the vehicle as well as the position uncertainty as a finite

state MDP. In this setup, the vehicle control problem is

converted to the problem of finding a control policy for an

MDP such that the probability of satisfying a PCTL formula

is maximized. For the latter, we use the approach from

[LWAB10]. By establishing a mapping between the states of

the MDP and the sequences of measurements obtained from

the gyroscope, we show that a policy for the MDP becomes

equivalent to a feedback control strategy for the vehicle in the

environment. Finally, we show that the probability that the

vehicle satisfies the specification in the original environment

is bounded from below by the maximum probability of

satisfying the specification on the MDP.

The main contribution of this work lies in the application,

since the result holds for a realistic vehicle with noisy

actuators and a limited accuracy gyroscope. The method that

we propose here is closely related to “classical” Dynamic

Programming (DP) - based approaches [ASG07]. In these

problems, the set of allowed specifications is restricted to

reaching a given destination state, whereas our PCTL control

framework allows for richer, temporal logic specifications

and multiple destinations. In [SWT09], the authors solve

the problem of reaching a given destination while avoiding
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obstacles using the Rapidly-exploring Random Tree (RRT)

algorithm that takes into account local reachability, as defined

by differential constraints. In our approach, in order to obtain

an MDP, a tree is also constructed (see Sec. III-B), but we

take into account reachability under uncertainty. Moreover,

our approach produces a feedback control strategy and a

lower bound on the probability of satisfaction, whereas the

method presented in [SWT09] only returns a collision-free

trajectory. In addition, these methods differ from our work

since they require the precise state of the vehicle, at all times,

whereas in our case, it is always uncertain.

Due to space limitations, preliminaries are not included in

this paper. We refer readers to [BK08] for information about

MDPs and to [BK08], [LWAB10] for detailed description of

PCTL. Furthermore, results in this paper are stated without

proof. Proofs of all results as well as additional remarks can

be found in the technical report [CB12].

II. PROBLEM FORMULATION AND APPROACH

A Dubins vehicle ([Dub57]) is a unicycle with constant

forward speed and bounded turning radius moving in a plane.

In this paper, we consider a stochastic version of a Dubins

vehicle, which captures actuator noise:
⎡
⎣

ẋ
ẏ
θ̇

⎤
⎦=

⎡
⎣

cos(θ)
sin(θ)
u+ ε

⎤
⎦ , u ∈U, (1)

where (x,y) ∈ R
2 and θ ∈ [0,2π) are the position and

orientation of the vehicle in a world frame, u is the control

input, U is the control constraint set, and ε is a random

variable modeling the actuator noise. We assume that ε has

an arbitrary continuous probability distribution supported on

the bounded interval [−εmax,εmax]. The forward speed is

normalized to 1 and ρ is the minimum turn radius. We denote

the state of the system by q = [x,y,θ ]T ∈ SE(2).
As it will become clear later, the control strategy proposed

in this paper works for any finite set of controls U . However,

motivated by the fact that the optimal Dubins paths use only

three inputs ([Dub57]), we assume U = {−1/ρ,0,1/ρ}, but

we make no assumptions on the optimality. We define W =
{u+ε|u ∈U,ε ∈ [−εmax,εmax]} as the set of applied control

inputs, i.e, the set of angular velocities that are applied to

the system in the presence of noise. We assume that time

is uniformly discretized (partitioned) into stages (intervals)

of length Δt, where stage k is from (k− 1)Δt to kΔt. The

duration of the motion is finite and it is denoted by KΔt. 1

We denote the control input and the applied control input at

stage k as uk ∈U and wk ∈W , respectively.

We assume that the noise ε is piece-wise constant, i.e, it

can only change at the beginning of a stage. This assumption

is motivated by practical applications, in which a servo

motor is used as an actuator for the turning angle (see e.g.,

[Maz04]). This implies that the applied control is also piece-

wise constant, i.e., w : [(k − 1)Δt,kΔt] → W , k = 1, . . . ,K,

1Since PCTL has infinite time semantics, after KΔt the system remains
in the state achieved at KΔt. In [CB12] we explain how to determine K.

is constant over each stage. We assume that the vehicle is

equipped with only one sensor, which is a limited accuracy

gyroscope.

Gyroscope model: At stage k, gyroscope returns the mea-

sured interval [wk,wk]⊂ [uk − εmax,uk + εmax] containing the

applied control input. Motivated by practical applications, we

assume that the measurement resolution of the gyroscope,

i.e., the length of [wk,wk], is constant, and we denote it

by Δε . For simplicity of presentation, we also assume that

nΔε = 2εmax, for some n ∈ Z
+. Let ε i = −εmax +(i− 1)Δε

and ε i =−εmax+ iΔε , i= 1, . . . ,n. Then, [−εmax,εmax] can be

partitioned2 into n intervals: [ε i,ε i], i = 1, . . . ,n. We denote

the set of all noise intervals E = {[ε1,ε1], . . . , [εn,εn]}. At

stage k, if the applied control input is uk + ε , the gyroscope

will return measured interval [wk,wk] = [uk−ε,uk+ε], where

ε ∈ [ε,ε] ∈ E .

The vehicle moves in a planar environment in which a

set of regions of interest, denoted R, is present. Let Ru ⊂ R
denote a set of unsafe regions, and Rs = R\Ru define the set

of safe regions. One set of regions Rp ⊂ Rs is labeled with

“pick-up”, and another set Rd ⊂ Rs is labeled with “drop-

off”. In this work, we assume that the motion specification

is as follows:

Specification 1: “Starting from an initial state qinit , the

vehicle is required to reach a pick-up region to pick up a

load. Then, the vehicle should go to a drop-off region to

drop off the load. At all times, the vehicle should avoid the

unsafe regions.”

We assume that the vehicle can precisely determine its

initial state qinit = [xinit ,yinit ,θinit ]
T in a known map of the

environment. While the vehicle moves, gyroscope measure-

ments [wk,wk] are available at each stage k. We define a

vehicle control strategy as a map that takes as input a se-

quence of measured intervals [w1,w1][w2,w2] . . . [wk−1,wk−1]
and returns the control input uk ∈U at stage k. We are ready

to formulate the main problem that we consider in this paper:

Problem 1: Given a partitioned environment R, a vehicle

model described by Eqn. (1) with initial state qinit , a motion

task in the form of Specification 1, find a vehicle control

strategy that maximizes the probability of satisfying the

specification.

In this paper, we develop an approximate solution to

Problem 1. By discretizing the noise interval, we define a

finite subset of the set of possible applied control inputs. We

use this to define a Quantized System (QS) that approximates

the original system given by Eqn. (1). Next, we capture

the uncertainty in the position of the vehicle and map the

QS to an MDP. Finally, we translate the specification to a

PCTL formula and find an MDP control policy that satisfies

the formula with the maximum probability. This policy is

mapped to a vehicle control strategy and we show that

the probability that the original system under the obtained

control strategy satisfies φ is bounded from below by the

obtained maximum probability.

2Throughout the paper, we relax the notion of a partition by allowing the
endpoints of the intervals to overlap.
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III. APPROXIMATION

A. Quantized System

Let q : [0,KΔt] → SE(2) be the state trajectory. We use

qk(t) and wk, t ∈ [(k−1)Δt,kΔt], k = 1, . . . ,K to denote the

state trajectory and the constant applied control at stage k,

respectively. With a slight abuse of notation, we use qk to

denote the end of state trajectory qk(t), i.e., qk = qk(kΔt).
Given a state qk−1, the state trajectory qk(t) can be derived

by integrating the system given by Eqn. (1) from the initial

state qk−1, and taking into account that the applied control

is constant and equal to wk. Throughout the paper, we will

also denote this trajectory by qk(qk−1,wk, t), when we want

to explicitly capture the initial state qk−1 and the constant

applied control wk.

In this paper, we assume ε has uniform continuous

probability distribution supported on the bounded interval

[−εmax,εmax], but our approach is general in the sense that it

holds for any continuous distribution supported on a bounded

interval. For the uniform distribution the following holds:

Pr(ε ∈ [ε i,ε i]) =
|ε i − ε i|
2εmax

=
Δε

2εmax
=

1

n
, (2)

[ε i,ε i] ∈ E , i = 1, . . . ,n.

For each interval in E we define a representative value

εi =
ε i+ε i

2 , i = 1, . . . ,n. i.e., εi is the midpoint of interval

[ε i,ε i]. We denote the set of all representative values as E =
{ε1, . . . ,εn}. We define Wd = {u+ ε | u ∈U,ε ∈ E} ⊂W as

a finite set of applied control inputs. Also, let ω : U →Wd be

a random variable, where ω(u) = u+ ε with the probability

mass function pω(ω(u) = u+ε) = 1
n , ε ∈ E. This probability

follows from Eqn. (2) since ε ∈ E is the representative value

of interval [ε,ε] ∈ E . Finally, we define a Quantized System

(QS) that approximates the original system as follows: The

set of applied control inputs in QS is Wd ; for a state qk−1

and a control input uk ∈U , QS returns

qk(qk−1,ω(uk), t) = qk(qk−1,uk + ε, t) (3)

with probability 1
n , where ε ∈ E.

B. Reachability graph

We denote u1u2 . . .uK , in which each uk ∈U gives a control

input at stage k, as a finite sequence of control inputs of

length K. We use ΣK to denote the set of all such sequences.

For the initial state qinit and ΣK , we define the reachability

graph GK(qinit) (see [LaV06] for a related definition), which

encodes the set of all state trajectories originating from qinit
that can be obtained, with a positive probability, by applying

sequences of control inputs from ΣK according to QS given

by Eqn. (3). In Fig. 1 we give an example of a reachability

graph.

IV. POSITION UNCERTAINTY

Since the specification is a statement about the regions

in the environment, in order to answer whether some state

trajectory satisfies the specification, it is sufficient to know

its projection in R
2. Therefore, we focus only on the position

uncertainty.

qinit

y

x

Fig. 1. The projection of reachability graph G3(qinit) in R
2 when U =

{− π
3 ,0,

π
3 } and E = {−0.1,0,0.1} with Δt = 1.2. Magenta objects represent

the states of the vehicle.

The position uncertainty of the vehicle when its nominal

position is (x,y) ∈R
2 is modeled as a disc centered at (x,y)

with radius ξ ∈ R, where ξ denotes the uncertainty:

D((x,y),ξ ) = {(x′,y′) ∈ R
2|||(x,y),(x′,y′)|| ≤ ξ}, (4)

where || · || denotes the Euclidian distance. Next, we explain

how to obtain ξ .

Any state trajectory q(t) ∈ GK(qinit), t ∈ [0,KΔt], can

be partitioned into K state trajectories: qk(t) = q(t ′), t ′ ∈
[(k − 1)Δt,kΔt], k = 1, . . . ,K (see Fig. 2). We denote the

uncertainty at state qk as ξk. Let uk +εk ∈Wd be the applied

control input at stage k such that qk(t) = qk(qk−1,uk +εk, t),
k = 1, . . . ,K, with q0 = qinit . Then, we set the uncertainty at

state qk = [xk,yk,θk]
T equal to:

ξk = max
[x′,y′,θ ′]T∈{qk,qk}

{||(xk,yk),(x′,y′))||} where

q
k
(t) = q

k
(q

k−1
,uk + εk, t) and qk(t) = qk(qk−1,uk + εk, t),

(5)

for k = 1, . . . ,K, where q
0
= q0 = qinit . Eqn. (5) is obtained

using a worst case scenario assumption. If uk + εk ∈ Wd is

the applied control input for QS, the corresponding applied

control input at stage k for the original system is in [uk −
εk,uk + εk], where εk ∈ [εk,εk] ∈ E . The position of the end

state of the original system at stage k would be the farthest

(in the Euclidean sense) from qk, if the applied control input

was either ui + ε i, i = 1, . . . ,k, or ui + ε i, i = 1, . . . ,k (see

[FMAG98] for more details). An example is given in Fig. 2.

From Eqn. (5) it follows that, given a state trajectory

q(t) ∈ GK(qinit), t ∈ [0,KΔt], the uncertainty is increasing as

a function of time. The way the uncertainty changes along

q(t) makes it difficult to characterize the exact shape of the

position uncertainty region. Instead, we use a conservative

approximation of the region. We define ξ : [0,KΔt]→ R as
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Fig. 2. Left: Evolution of the position uncertainty along the state trajectory
q(t), where q(t) is partitioned into 3 state trajectories, qk(t), k = 1,2,3.
Right: The conservative approximation of region D((x(t),y(t)),ξ (t)) along
the state trajectory q(t) = [x(t),y(t),ξ (t)]T , when the uncertainty trajectory
is ξ (t ′) = ξk(t), t ′ ∈ [(k−1)Δt,kΔt], where ξk(t) = ξk , k = 1,2,3.

an approximated uncertainty trajectory and we set ξ (t) = ξk,

t ∈ [(k−1)Δt,kΔt], k = 1, . . . ,K, i.e., we set the uncertainty

along the state trajectory qk(t) equal to the maximum value

of the uncertainty along qk(t), which is at state qk. An

example illustrating this idea is given in Fig. 2.

V. CONSTRUCTION OF AN MDP MODEL

Let Π = {πp,πd ,πu} be a set of propositions, where

πp,πd , and πu label the pick-up, drop-off, and unsafe regions,

respectively. We define [πp] = {(x,y) ∈ R
2|(x,y) ∈ ∪r∈Rpr},

[πd ] = {(x,y) ∈ R
2|(x,y) ∈ ∪r∈Rd r} and [πu] = {(x,y) ∈

R
2|(x,y) ∈ ∪r∈Rur} as the set of all positions that satisfy

propositions πp, πd , and πu, respectively.

A. MDP construction

A labeled MDP M that models the motion of the vehicle

in the environment and the evolution of position uncertainty

is defined as a tuple (S,s0,Act,A,P,Π,h) where:

• S is the finite set of states. For every state trajectory

qk(t) ∈ GK(qinit), t ∈ [(k−1)Δt,kΔt], k = 1, . . . ,K, a state of

the MDP is created. The meaning of the state is as follows:

(q(t),q,q,ε,ε,Θ) ∈ S means that along the state trajectory

q(t), the uncertainty trajectory is

ξ (t) = max
[x′,y′,θ ′]T∈{q,q}

||(x,y),(x′,y′)||,

where [x,y,θ ]T is the end state of q(t); The noise interval

is [ε,ε] ∈ E ; For Θ ∈ 2Π: (i) πp ∈ Θ, (ii) πd ∈ Θ, and (iii)

πu ∈ Θ, mean that (i) it can be guaranteed that a pick-up

region is entered, (ii) it can be guaranteed that the end state is

inside of a drop-off region, and (iii) it is possible to enter Ru,

along the state trajectory q(t) when the uncertainty trajectory

is ξ (t) (see Fig. 3 for an example).

• s0 = (qinit ,qinit ,qinit , /0, /0,Θinit)∈ S is the initial state, where

Θinit ∈ 2Π is the set of propositions satisfied at qinit .

• Act = U ∪ϕ is the set of actions, where ϕ is a dummy

action when the termination time is reached;

• A : S → 2Act gives the enabled actions at state s: at

termination time, A(s) = ϕ , otherwise A(s) =U ;

• P : S×Act ×S → [0,1] is a transition probability function

(its construction is described below);

• Π = {πp,πd ,πu} is the set of propositions;

• h : S → 2Π assigns propositions from Π to states s ∈ S,

where h is as follows: if s= (q(t),q,q,ε,ε,Θ), then πp ∈ h(s)
iff πp ∈ Θ, πd ∈ h(s) iff πd ∈ Θ, and πu ∈ h(s) iff πu ∈ Θ.

s = (q1(t), q1, q1, ε1, ε1,Θ1)

(q12(t), q
1
2
, q12, ε

1
2, ε

1
2,Θ

1
2)

(q22(t), q
2
2
, q22, ε

2
2, ε

2
2,Θ

2
2)

(q32(t), q
3
2
, q32, ε

3
2, ε

3
2,Θ

3
2)

ε12 w
.p

1
3

ε22 w.p 1
3

ε32 w.p 1
3

u1
2

u2
2

u3
2

. . .

. . .

. . .

[πd]

[πp]

q1(t)

q12(t)

q22(t)q32(t)

q1

q
1

q1

q12

q12

q12

qinit

[πu]

ξ12
ξ 22

ξ 3
2

x

y

Fig. 3. Above: An example scenario corresponding to the MDP fragment
shown below. For the state trajectory q1

2(t) = [x(t),y(t),θ(t)]T , t ∈ [Δt,2Δt],
when the uncertainty trajectory is ξ 1

2 (t) = ξ 1
2 the following holds: (i) it

can be guaranteed that a pick-up region is entered (i.e., ∃t ∈ [Δt,2Δt]
s.t. D((x(t),y(t)),ξ (t)) ⊆ [πp]), (ii) the end state is inside of a drop-off
region (i.e., D((x(2Δt),y(2Δt)),ξ (2Δt))⊆ [πd ]), and (iii) Ru is not entered
(i.e., ∀t ∈ [Δt,2Δt], D((x(t),y(t)),ξ (t))∩ [πu] = /0). Thus, Θ1

2 = {πp,πd}.
Similarly, Θ2

2 = {πp,πd} but Θ3
2 = {πp,πu}. Below: A fragment of the

MDP corresponding to the scenario shown above, where [−εmax,εmax] is
partitioned into n = 3 intervals. Action u1

2 ∈ A(s) enables three transitions,

each w.p. 1
3 . This corresponds to applied control input being equal to u1

2+ε i
2

w.p. 1
3 , ε i

2 ∈ E. The elements of the new states are: qi
2(t) = qi

2(q1,u1
2+ε i

2, t);
qi

2
(t) = qi

2
(q

1
,u1

2 + ε i
2, t); qi

2(t) = qi
2(q1,u

1
2 + ε i

2, t); [ε i
2,ε

i
2] ∈ E is s.t. ε i

2 ∈
[ε i

2,ε
i
2]; and Θi

2 is given above, where i = 1,2,3.

We generate S and P while building GK(qinit) starting from

qinit . Algorithm 1 takes as inputs a state s ∈ S corresponding

to some state trajectory qk−1(t) and an applied control input

uk +εk, and generates the new state of the MDP and updates

S and P. First, given the end state of qk−1(t) and the applied

control input uk + εk ∈ Wd , the state trajectory at stage k,

qk(t), is obtained (line 2). Then, using q
k−1

and qk−1, and the

fact that εk ∈ [εk,εk] ∈ E , we obtain q
k

and qk (line 3). The

uncertainty trajectory along qk(t), ξk(t) follows from Eqn. (5)
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Algorithm 1: Generating S and P

Input: s ∈ S, uk ∈U , εk ∈ E, S, P
Output: S, P

1 (qk−1(t),qk−1
,qk−1,εk−1,εk−1,Θk−1) = s;

2 qk(t) = [xk(t),yk(t),θk(t)]T = qk(qk−1,uk + εk, t);
3 qk(t) = qk(qk−1

,uk + εk, t); qk(t) = qk(qk−1,uk + εk, t);
4 ξk(t) = max[x′,y′,θ ′]T∈{q

k
,qk} ||(xk,yk),(x′,y′)||;

5 if ∃t ∈ [(k−1)Δt,kΔt] s.t. D((xk(t),yk(t),ξk(t))⊆ [πp] then
6 Θk = Θk ∪{πp};

7 if D((xk,yk),ξk)⊆ [πd ] then
8 Θk = Θk ∪{πd}, ;
9 if ∃t ∈ [(k−1)Δt,kΔt] s.t. D((xk(t),yk(t),ξk(t))∩ [πu] �= /0

then
10 Θk = Θk ∪{πu};

11 s′ = (qk(t),qk,qk,εk,εk,Θk); P(s,uk,s′) = 1
n ; S = S∪{s′};

(line 4). The algorithm checks if it can be guaranteed that a

pick-up region is entered (lines 5− 6), that the end state is

inside of a drop-off region (lines 7−8), and if it is possible

to enter Ru (lines 9− 10) along qk(t) when the uncertainty

trajectory is ξk(t). Finally, the newly generated state, s′, is

added to S and the transition probability function is updated,

i.e., P(s,uk,s′) = 1
n (line 11). This follows from the fact that

given a control input uk ∈U the applied control input will be

uk+εk ∈Wd with probability 1
n , since pω(ω(uk) = uk+εk) =

1
n , εk ∈ E (see the MDP fragment in Fig. 3). In the technical

report [CB12] we prove that M is a valid MDP.

VI. VEHICLE CONTROL STRATEGY

A. PCTL control policy generation

Formulas of PCTL are interpreted over states of an MDP

and are constructed by connecting properties from Π us-

ing standard Boolean operators, the temporal operator U
(“until”), and the probabilistic operator P . The requirement

that the vehicle maximizes the probability of satisfying

Specification 1 translates to the following PCTL formula:

φ : Pmax=?[¬πuU (¬πu ∧πp ∧P>0[¬πuU (¬πu ∧πd)])].
(6)

We use the PCTL control synthesis approach from

[LWAB10] to generate a control policy for the MDP M. The

tool takes as input an MDP and a PCTL formula φ and

returns the control policy that maximizes the probability of

satisfying φ , denoted μ , as well as the corresponding proba-

bility value, denoted V , where V : S → [0,1]. Specifically, for

s ∈ S, μ(s) ∈ A(s) is the action to be applied at s and V (s)
is the probability of satisfying the specification at s under

control policy μ . The tool is based on the off-the-shelf PCTL

model-checking tool PRISM (see [KNP04]). We use Matlab

to construct MDP M, which together with φ is passed to the

PCTL control synthesis tool. The computational complexity

of this step is as follows: Given U , E and K, the size of

the MDP M is bounded above by (|U | × |E|)K . The time

complexity of the control synthesis algorithm is polynomial

in the size of the MDP and linear in the number of temporal

operators in the formula.

B. Obtaining a vehicle control strategy

Let [w1,w1][w2,w2] . . . [wk,wk] be a sequence of mea-

sured intervals, where [wi,wi] = [ui + ε i,ui + ε i], ui ∈U and

[ε i,ε i] ∈ E , i = 1, . . . ,k. This corresponds to a unique path

through the MDP: s0
u1,[ε1,ε1]−−−−−→ s1

u2,[ε2,ε2]−−−−−→ s2 . . .sk−1
uk,[εk,εk]−−−−−→

sk, where each transition is induced by a choice of action and

the noise interval.

The desired vehicle control strategy is in the form of a

finite sequence Γ = {γ0,γ1, . . .γK−1}, where γ0 = μ(s0) ∈U
and γk : (U ×E )k →U , s.t. γk((u1, [ε1,ε1]) . . .(uk, [εk,εk])) =
μ(sk), for k = 1, . . . ,K − 1. At stage k, the control input

is uk = γk−1((u1, [ε1,ε1]) . . .(uk−1, [εk−1,εk−1])) ∈ U . Thus,

given a sequence of measured intervals, Γ returns the control

input for the next stage by mapping the sequence to the state

of the MDP; the control input corresponds to the optimal

action at that state.

Theorem 1: The probability that the system given by Eqn.

(1), under the control strategy Γ, generates a trajectory that

satisfies PCTL formula φ (Eqn. (6)) is bounded from below

by V (s0), where V (s0) is the probability of satisfying φ on

the MDP, under the control policy μ .

The result follows from the conservative approximation of

the uncertainty region and the MDP construction (formal

proof can be found in [CB12]). As a final remark, note

that the bound obtained in this work approaches the true

probability of satisfying φ in the theoretical limit, as Δε → 0.

VII. CASE STUDY

We considered the system given by Eqn. (1) and we used

the following numerical values: 1/ρ = π/3, Δt = 1.2, and

εmax = 0.06 with n = 3, i.e., Δε = 0.04. Thus, the maximum

actuator noise was approximately 6% of the maximum

control input.

Three case studies are shown in Fig. 4. The maximum

probability of satisfying PCTL formula φ (Eqn. (6)) on the

MDPs corresponding to cases A, B and C are 0.981, 0.874

and 0.892, respectively. For all three case studies, we found

that K = 6 was enough as a terminal time, and we found

the vehicle control strategies through the method described

in Sec. VI. To verify our result, we simulated the original

system under the obtained vehicle control strategies.

In Fig. 4, we show sample state trajectories and in Table

1 we compare the satisfaction probabilities obtained on the

MDP with the simulation based satisfaction probabilities

(number of satisfying trajectories over the number of gener-

ated trajectories). The results support Theorem 1, since the

simulation based probabilities are bounded from below by

the theoretical probabilities.

For each case study, the constructed MDP had approxi-

mately 20000 states. The Matlab code used to construct the

MDP ran for approximately 4 minutes on a computer with a

2.5GHz dual processor. The control synthesis tool generated

an optimal policy in about 1 minute.

VIII. CONCLUSION AND FUTURE WORK

We developed a feedback control strategy for a stochastic

Dubins vehicle such that the probability of satisfying a
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Fig. 4. 20 sample state (position) trajectories for cases A, B, and C (to be
read top-to-bottom). The unsafe, pick-up, and the drop-off regions are shown
in red, blue and green, respectively. Satisfying and violating trajectories are
shown in black and red, respectively. In case A, all state trajectories were
satisfying.

temporal logic statement over some environmental properties

is maximized. Through discretization and quantization, we

translated this problem to finding a control policy maximiz-

ing the probability of satisfying a PCTL formula on an MDP.

We showed that the probability that the vehicle satisfies

the specification in the original environment is bounded

from below by the maximum probability of satisfying the

specification on the MDP.

Future work includes extensions of this approach to con-

trolling different types of vehicle models, allowing for richer

temporal logic specifications, and experimental validations.
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