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Abstract— This paper addresses the control of a mobile robot
that has to accomplish a finite task in a partially unknown
static environment in minimum time. The task is expressed as
a syntactically co-safe Linear Temporal Logic (scLTL) formula
over a set of properties that can be satisfied at the regions
of a partitioned environment. The robot discovers a-priori
unknown properties upon covering the corresponding region by
its limited sensing range. Instead of resorting to an abstraction
of the hybrid system modeling the robot’s motion in the
environment, we propose an approach based on parameterizing
the continuous motion of the vehicle and introduce a measure
of violation that is used to enforce the satisfaction of the
specification. Then, we formulate a parametric Optimal Control
Problem (OCP), where the objective is a convex combination
of the overall time and the measure of violation function.
The OCP is solved in a receding horizon manner only upon
detecting previously unknown properties of the environment.
The approach is illustrated with a numerical case study.

I. INTRODUCTION

Recently, there has been a growing interest in automated
robot motion planning approaches that involve solving mul-
tiple tasks or visiting several locations in a complex environ-
ment. Linear Temporal Logic (LTL) has been identified as
a specification language particularly suitable for numerous
robotic assignments. The majority of the works on robot
control with temporal logic constraints assume an a-priori
given decomposition into high-level planning and low-level
control, which allows for focusing on the purely discrete path
planning and verification task, e.g., [1], [2], [3], potentially
including optimizing objectives [4]. Optimizing an objective
for a continuous system with a discrete specification can
also be addressed as a hybrid Optimal Control Problem
(OCP) by employing automata-based methods, e.g., [5],
[6], [7]. Alternatively, an LTL specification can be encoded
directly into a mixed-integer program to obtain the time-
discretized optimal control for mixed logical dynamical [8]
or differentially flat nonlinear systems [9].

Many robotic assignments involve uncertainties that have
to be considered in the control design process. Assuming that
a robot moving in an unknown environment is represented
by a non-deterministic discrete system, the control synthesis
problem with an LTL specification can be generally mapped
to the solution of a Rabin game [10]. If the probabilities
of the feasible transitions at each state are known, the
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problem reduces to finding a control policy for a Markov
Decision Process (MDP), such that a temporal logic formula
is satisfied [11]. Solutions can also be found by adapting
methods from probabilistic model checking [12], [13], where
a control policy is designed to maximize the probability of
satisfying the LTL specification [14]. Continuous dynamics
can be taken into account by employing discrete abstrac-
tions of the underlying hybrid system, such that the OCP
with a discrete high-level specification can be addressed in
a discrete optimization framework under the presence of
uncertainty [15], [16]. To the best of the authors’ knowledge,
there are no approaches that optimize the continuous motion
of a robot under the presence of uncertainty, while enforcing
LTL satisfaction guarantees without the use of discrete
abstractions.

In this paper we address the control of a robot with
continuous dynamics that has to minimize the overall time
for solving a task expressed as an scLTL formula over a
set of properties satisfied at the regions of a partitioned
environment. The robot can determine if an a-priori unknown
property can be satisfied at a region upon covering it with
its limited sensing range. Building on ideas from [17], [18],
[19], [20], where related hybrid OCPs were solved without
employing a discrete abstraction, we propose an approach
based on parameterizing the continuous motion of the ve-
hicle. To enforce the satisfaction of the specification and to
allow for efficient model checking, we introduce a measure
of violation function. Thus, the addressed OCP is approxi-
mately formulated as a parametric OCP, where the objective
is a convex combination of the overall time and the measure
of violation function. In contrast to standard model predictive
control approaches, we propose a receding horizon control
scheme that does not require time-discretization and where
optimization is performed only upon detecting previously
unknown properties of the environment, i.e., in an event-
driven manner. Even though the approach is presented for a
vehicle with forth order linear dynamics, its applicability is
not restricted to such systems only, since many systems can
be described by double integrators upon applying feedback
linearization [21] or can be transformed into a suitable form
that allows convex optimization along a parameteric curve
[22]. Our solution is suboptimal, but tractable and scalable in
the size of the environment, the proposition set and the length
of the specification formula, while guaranteeing correctness.

The remaining paper is organized as follows. In Sec. II,
we introduce the addressed problem and a running example.
Then, we present our solution (Sec. III) and apply it to the
running example (Sec. IV). Finally, we summarize the results
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and discuss possible extensions in Sec. V.

Notation. For a set S, |S| and 2S denote its cardinality and
the set of all of its subsets (power set), respectively. 0m,n
represents an m× n matrix with zero entries. If m = 1, we
write 0n. In is an identity matrix with dimension n.

II. PROBLEM STATEMENT

In this section we introduce the OCP for a vehicle that
has to minimize the time for satisfying a temporal logic
assignment in a partially unknown environment. We assume
that the specification is given only in terms of the position
of the robot and that a solution of the problem exists.
For simplicity of presentation, the problem is formulated
for a vehicle that moves deterministically with forth order
dynamics. We will outline how the presented methods can
be applied for more complex motion models later.

A. Environment

Consider the environment Y ⊂ R2 and its regular dis-
cretization with grid points wk denoting the center points of
the regions Wk, forming a set W = {W1, . . . ,WK} with
∪kWk ⊆ Y, k ∈ {1, . . . ,K}. Let Πs denote a finite set of
assignments π that can be solved at known regions Wπ ⊂W
of the environment (e.g. “visit the base”). Further, let Πd

denote a finite set of requests π that can be serviced at a-
priori unknown regions Wπ ⊂ W (e.g. “assist a person in
danger” in a rescue assignment or “avoid”, if it is occupied
by an obstacle). Thus, Πs ∪Πd will be referred to as the set
of atomic propositions in the standard “logic jargon”.

B. Vehicle model

Consider a vehicle with position y ∈ Y , velocity v ∈ R2

and state x = [y v]T ∈ X that evolves with continuous
dynamics

ẋ(t) = f(x, u) =

[
02,2 I2

02,2 02,2

]
x(t) +

[
02,2

I2

]
u(t), (1)

driven by the piecewise continuous control signal u :
[0, tf ] → U := {ũ ∈ R2 : ‖ũ‖ ≤ 1}, where tf is the free
final time. The robot is equipped with an omni-directional
sensor footprint of size r > 0 around its current position
y(t), hence covering the area

O(y(t)) = {ỹ ∈ R2 : ‖y(t)− ỹ‖ ≤ r}, (2)

where for any k, ∀ỹ ∈ Wk, ‖ỹ − wk‖ < r. Since the
regions Wπ ⊂ W , where π ∈ Πd is true, are a-priori
unknown, satisfying π is assumed to be preceded by a
corresponding detection proposition δπ . Accordingly, let all
detection propositions form the finite set ∆ and define the
augmented atomic proposition set

Π = ∆ ∪Πs ∪Πd. (3)

The overall system is modeled by a hybrid automa-
ton H = (Q,X,U, f,E, Inv, G,R, Init). The discrete state
q(t) = (q1, q2) at time t consists of q1 ∈ 2Π denoting
the set of atomic propositions that are currently true, and
q2 ⊆ 2(Πs∪Πd)×W capturing the set of all currently known

pairs (π,wk) of atomic propositions π ∈ (Πs ∪ Πd) and
regions Wk ∈ W . Thus, the overall discrete state set is
given by Q ⊆ 2Π × 2(Πs∪Πd)×W . As Q is finite, the set
of discrete state transitions (or events) E ⊆ Q × Q is also
finite. Let E be partitioned into E1 ∪ E2 ∪ E3, where for
q = (q1, q2), q′ = (q′1, q

′
2) ∈ Q,

E1 = {(q, q′) : q′1 = q1 ∪ {δπ}, q′2 = q2 ∪ {(π,wk)}}

is the set of events that capture detections of a-priori un-
known request regions,

E2 = {(q, q′) : q′1 = q1 ∪ {π}, (π,wk) ∈ q2}

is the set of events that correspond to entering a known
request region, and

E3 = {(q, q′) : q′1 = q1 \ {π}, (π,wk) ∈ q2}

is the set of events that correspond to leaving a known request
region. With the introduced sensor paradigm (2), assume that
a detection of a proposition at Wk occurs, when the distance
between the current robot position y(t) and the center point
wk of Wk becomes r. Defining the set

X(π,wk)=

{
{x : ‖y(t)−wk‖=r}, if π ∈ ∆,

{x : ỹ ∈Wk}, else,

we obtain the invariant map Inv : Q→ 2X with

Inv(q)=X\(∪qX(π,wk)),

the guard map G : E → 2X with

G((q, q′))= ∪q′ X(π,wk),

and the (trivial) reset map R : E ×X → X with R(e, x) =
x, ∀(e, x) ∈ E×G(e). The initial state set is Init ⊂ (Q×X).
Consider a time line τ partitioned into N + 1 intervals, i.e.,

τ := ([t0, t1]︸ ︷︷ ︸
τ0

, . . . , [tN , tN+1]︸ ︷︷ ︸
τN

), t0 = 0, tN+1 = tf , (4)

where N is the finite number of events. The input is an
ordered set of functions u = (u0, . . . , uN ), where un : τn →
U are absolutely continuous functions for n ∈ {0, . . . , N}.
Thus, if ζ = (τ, q, x)u is an execution of the hybrid automa-
ton H for an input signal u, q = (q0, . . . , qN ) is a discrete
state trajectory with qn : τn → Q, qn = const,∀t ∈ τn, x
is the continuous state trajectory with x = (x1, . . . , xN ) and
xn : τn → X are absolutely continuous functions. The cost
of an execution is

tf =

N∑
n=0

(tn+1 − tn). (5)

Let the labeling function L : E → 2Π return the set of
propositions satisfied upon a transition, i.e. L(q, q′) = q′1.
Then, let a word be the infinite sequence of labels produced
by an execution ζ of H, i.e., L(ζ) = L((τ, q, x)u) =
q1(t0)q1(t1) . . . (with a slight abuse of notation).
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TABLE I
ATOMIC PROPOSITIONS FOR THE EXAMPLE.

π Proposition

πb Visit base
πk Observe Wk

δp Detect person
πp Assist person
δo Detect obstacle
¬πo Avoid obstacle
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Fig. 1. Time-optimal rescue assignment for a mobile robot.

C. Specification

The robot has to satisfy a specification captured by an
scLTL formula [23] over the set of atomic propositions Π.
Roughly, an scLTL specification is build up from elements in
Π, combined into a formula by Boolean operators ¬ (nega-
tion), ∧ (conjunction), ∨ (disjunction), ⇒ (implication), and
temporal operators: X (next), U (until) and F (eventually).
The semantics of scLTL are defined over infinite words
σ = σ0σ1 . . ., where ∀i, σi ∈ 2Π. A word σ satisfies the
formula φ, if it holds at the first position of the word σ.
Intuitively, Xφ states that the formula φ becomes true in
the next position of a word, φ1Uφ2 expresses that φ1 is
true until φ2 becomes true in a word, and Fφ requires that φ
becomes true at some position in a word. While the semantics
of scLTL are defined over infinite words, their satisfaction
is guaranteed in finite time. A detailed description of the
syntax and the semantics of scLTL is beyond the scope of
this paper and we kindly refer the reader to [13], [23] for
a more extensive treatment. With the introduced labeling
function, an execution ζ|u satisfies an scLTL formula φ,
if its corresponding word L(ζ|u) satisfies φ, denoted by
L(ζ|u) � φ.

D. Problem formulation

The addressed OCP reads as follows.

Problem 1. Given a hybrid system H and a specification as
an scLTL formula φ over Π, find a control trajectory u that
minimizes (5) subject to L(ζ|u) � φ.

Example. Consider an environment Y = [0, 5]2 discretized
by a regular grid with constant dg = 1, such that W =
{W1, . . . ,W100}. The environment contains the a-priori
known Πs = {πb} ∪ {πk}k∈{0,...,K}, and a-priori unknown
proposition sets Πd = {πo, πp} with corresponding detection

proposition set ∆ = {δo, δp} with statements as given in
Table I, associated with the respective regions, depicted in
Fig. 1. The dynamics of a quadrotor, maintaining a constant
altitude above the ground, are reduced to (1), with initial
continuous state x0=04. The size of the vehicle’s sensing
range is r=

√
2dg .

For a rescue assignment in Y , the vehicle has to observe
regions Wk ∈ W and avoid a priori unknown obstacles
(e.g. trees) at Wk upon their detection, until a missing
person is detected. Upon detection, it has to assist the person
by visiting its location before returning to the base. This
specification is represented by the scLTL formula

φ :=(expl Uδp) ∧ assist ∧ (δo ⇒ (¬πo)), (6)

with assist= (δp⇒((¬πbUπp)∧Fπb)), expl=
∧K
k=1(Fπk).

The above problem is challenging due to its inherent non-
convexity and the lack of complete knowledge of the envi-
ronment. In contrast to the majority of related approaches,
the solution presented in the following does not require
computing a finite discrete abstraction of H or discretizing
time, and the OCP needs to be re-solved only upon detecting
previously unknown propositional relations.

III. SOLUTION

The solution is based on the following key aspects: (i) re-
stricting the motion of the robot to a family of curves, whose
shape is determined by a finite number of parameters; (ii)
introducing a function that represents a measure of violation
of the specification by the trajectory of the vehicle that is
used for model checking, and an approximate continuously
differentiable version of it used for optimization; and (iii)
solving an OCP w.r.t. the parameters of the curve by iterative
gradient-based optimization and model checking.

A. Motion parameterization

Let the robot’s position in Y be described by the para-
metric equation y(t) = c(s(t), θ), where s(t) denotes the
position of the robot along the curve c, θ ∈ Rp is a parameter
vector that controls the shape and course of c, and c is
twice continuously differentiable with respect to time and
θ. The normed Euclidean arc-length variable s(t) ∈ [0, 1] is
monotonically increasing over t ∈ [0, tf ], such that s(0) = 0
at the initial position, and s(tf ) = 1 at the final position. Due
to their rich expressiveness in terms of motion behaviors, in
this work we employ Fourier series of respective order Γ1

and Γ2, i.e.,

y(t) = c(s, θ) =

[
a1

0+
∑Γ1

γ=1 a
1
γ sin (4π2γf1s+φ

1
γ)

a2
0+
∑Γ2

γ=1 a
2
γ sin (4π2γf2s+φ

2
γ)

]
, (7)

where f1 and f2 are base frequencies, a1
0 and a2

0 are zero
frequency components, a1

γ and a2
γ are amplitudes for the

sinusoid functions with frequency γf1 and γf2, and φ1
γ and

φ2
γ are phase differences with respect to the (γ+1)-th term

of y1 or y2. Since only the ratio of f1 and f2 (and not their
absolute values) determines the shape of (7), f1 is treated
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as a free parameter, while f2 = const. Thus, the param-
eter vector of (7) is θ=[f1, A1, A2,Φ1,Φ2]T , where A1 =[
a1

0, . . . , a
1
Γ1

]T
, A2 =

[
a2

0, . . . , a
2
Γ2

]T
, Φ1 =

[
φ1

1, . . . , φ
1
Γ1

]T
and Φ2 =

[
φ2

1, . . . , φ
2
Γ2

]T
. With i ∈ {1, 2}, the derivative

of (7) w.r.t. θ is ∇θyi =
[
∂yi
∂f1

∂yi
∂A1

∂yi
∂A2

∂yi
∂Φ1

∂yi
∂Φ2

]T
.

For a robot that starts at y(0) = y0, we obtain ai0 = y0,i −∑Γi

γ=1 a
i
γ sin (φiγ) for i ∈ {1, 2}. Note that our elaborations

are not restricted to this type of parametric functions.
Since our goal is to solve an approximate OCP w.r.t. θ, the

first question is how to obtain the optimal control u for H for
moving along the curve for a given θ. Let the first and second
derivatives of (7) w.r.t. s be given by c′(θ, s) = ∂c/∂s and
c′′(θ, s) = ∂2c/∂s2, respectively. Further, let ṡ = ds/dt and
s̈ = d2s/dt2 denote the time derivatives. For the velocity
and the acceleration along (7), we respectively obtain

ẏi=
dci(s, θ)

dt
=c′i(s, θ)ṡ, ÿi=

d2ci(s, θ)

dt2
=c′′i (s, θ)ṡ2+c′i(s, θ)s̈.

for i ∈ {1, 2}, and (1) is equivalently restated as

c′′i (s, θ)ṡ2 + c′i(s, θ)s̈ = ui(s), i ∈ {1, 2}. (8)

The curve (7) can be traversed in time

Jt =

∫ tf

0

dt =

∫ s(tf )

s(0)

1

ṡ
ds. (9)

Introducing the nonlinear substitutions α(s) = s̈ and β(s) =
ṡ2 such that β′(s) = 2α(s), for a fixed θ we obtain the OCP

min
α,β,u

Jt =

∫ 1

0

1√
β(s)

ds,

s.t. (8), ‖u(s)‖ ≤ 1, s ∈ [0, 1], β′(s) = 2a(s),

β(0) = ṡ2
0, β(1) = ṡ2

te , β(s) ≥ 0.

(10)

Since (9) is convex in terms of α(s), β(s) and u(s), the above
OCP is convex for convex input constraints and for particular
nonlinear motion dynamics without viscous friction [22].

Next we introduce a measure of violation function that
captures the specification and sensing constraints.

B. Measure of violation

In previous works, the satisfaction of an (sc)LTL formula
by a discrete-time linear system was enforced by defining
a real positive function that resembles a control Lyapunov
function over the corresponding dual automaton [6]. Follow-
ing this idea, we introduce the function Jφ : ζ|u → R≥0 that
denotes a measure of violation of φ by the hybrid execution
ζ|u parameterized by (7). For an execution ζ|u, we require
that Jφ(ζ|u) = 0, if L(ζ|u) � φ, and Jφ(ζ|u) > 0, if
L(ζ|u) 6� φ. Since we want to use this function for gradient-
based optimization, we also introduce an approximate con-
tinuously differentiable version of the measure of violation,
denoted by J̃φ : ζ|u → R≥0 with J̃φ(ζ|u) = 0, if L(ζ|u) � φ,
and J̃φ(ζ|u) > 0, if L(ζ|u) 6� φ.

For any scLTL formula φ over Π, there exists a Deter-
ministic Finite Automaton (DFA) Aφ with input alphabet
2Π that accepts all good prefixes of φ [23]. Let Aφ =

(Qφ,Σ,∆φ, Q0,φ, Qf,φ) be a DFA corresponding to the
scLTL formula φ, where Qφ is the finite set of states, Σ = 2Π

the input alphabet, ∆φ : Qφ × Σ → Qφ the transition
mapping, Q0,φ the set of initial states and, Qf,φ ⊂ Qφ the
set of final or accepting states. At time t ∈ [0, tf ), let Aφ̃ =
(Qφ̃,Σφ̃,∆φ̃, Q0,φ̃, Qf,φ̃) denote the projection ofAφ for the
atomic proposition set Π̃ = {π : ∃{(π,wk)} ∈ q2(t)} ⊂ Π.
Intuitively,Aφ̃ describes the subset of the specification φ̃ ⊂ φ
over the set of currently known propositional relations cap-
tured by the discrete state q2(t). Then, let the dual automa-
ton of Aφ̃ be given by AD

φ̃
= (QD

φ̃
,∆D

φ̃
, QD

0,φ̃
, QD

f,φ̃
, τD
φ̃

),
where QD

φ̃
= {(q, σ, q′) : (q, σ, q′) ∈ ∆φ̃}, ∆D

φ̃
=

{((q, σ, q′), (q′, σ, q′′)) : (q, σ, q′), (q′, σ, q′′) ∈ ∆φ̃}, QD0,φ̃ =

{(q, σ, q′) : q ∈ Q0,φ̃}, QDf,φ̃ = {(q, σ, q′) : q′ ∈ Qf,φ̃}
and τD

φ̃
: QD

φ̃
→ Σφ̃, τ

D
φ̃

((q, σ, q′)) = σ. Informally, the
dual of an automaton is constructed by interchanging its
states and its transitions. As the transitions of Aφ̃ become the
states of AD

φ̃
, every state (q, σ, q′) ∈ QD

φ̃
can be associated

with a measure of violation for σ, denoted by d(σ, y(t)).
Assuming that σ = π ∈ Π̃ is satisfied upon observing Wk,
let d(π, y(t)) = 0, if ‖y(t)−wk‖ ≤ r, and d(π, y(t)) = 1,
else. Let the corresponding approximate measure of violation
d̃(π, y(t)) be monotonically increasing with the Euclidean
distance Dk = D(wk, y(t))=‖y(t)−wk‖ outside of the
sensing range (2), which holds for example for

d̃(σ, y(t)) =

{
1− exp (−(Dk−r)2), if Dk>r,

0, else.
(11)

Similarly, if σ = π ∈ Π̃ is satisfied upon visiting Wk,
the measure of violation d(π, y(t)) = 0, if y(t) ∈ Wk,
and d(π, y(t)) = 1, else. A corresponding (conservative)
approximate measure of violation is obtained e.g. by

d̃(σ, y(t))=

{
1− exp (−(Dk−dg2 )2), if Dk>

dg
2 ,

0, else,
(12)

where dg is the grid constant. If π ∈ Π̃ is satisfied at Wk, the
measure of violation of σ = ¬π is d(σ, y(t)) = 1, if y(t) ∈
Wk, and d(σ, y(t)) = 0, else. A corresponding (conservative)
approximate measure of violation is e.g. given by

d̃(σ, y(t)) = max{0, 1− 2D2
k/d

2
g}2, (13)

where dg is the grid constant. Clearly, we can define a
measure of violation for σ = π1 ∧ π2 by d(σ, y) = (1 −
(1 − d(π1, y))(1 − d(π2, y))), and an approximate measure
of violation d̃(σ, y) analogously.

Upon a detection δπ at position y(t), which corresponds
to a transition (q, q′) ∈ ∆φ with δπ ∈ σ, we obtain the
projected automaton Aφ̃ as described above, set its initial
state set to Q0,φ̃ = {q′}, and compute the corresponding
dual automaton AD

φ̃
. Then, let the set of all finite paths from

q̄ = (q′, σ, q′′) ∈ QD
φ̃

to QD
f,φ̃

in AD
φ̃

be denoted by Yq̄ , i.e.,

Yq̄={q̄ = q̄0q̄1 . . . q̄l :l ∈ N, i=0, . . . , l−1, q̄0 = q̄,

(q̄i, q̄i+1) ∈ ∆D
φ̄ , q̄l ∈ Q

D
f,φ̃
}. (14)
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With (7), the measure of violation of ζu w.r.t. an automaton
path q̄ ∈ Yq̄ is given by the sum of the minimal correspond-
ing measures of violation and sequencing constraints, i.e.,

Jq̄(ζ|u) =

l−1∑
i=0

( min
si∈[0,1]

d(σi, c(si, θ)) + max{0, si − si+1}).

Thus, the measure of violation (and, analogously, the approx-
imate measure of violation) of an execution ζu reads

Jφ(ζ|u) = min
q̄∈Yq̄

Jq̄(ζ|u). (15)

Example. At time t = 0, by projecting Aφ corresponding to
the scLTL formula (6) for Π̃, we obtain Aφ̃ denoting the
subformula φ̃ = expl. Since expl corresponds to visiting
all K regions in an arbitrary order, the corresponding
measure of violation (and analogously approximate measure
of violation) is Jφ̃(ζ|u)=

∑K
k=1 minsk∈[0,1] d(σi, c(sk, θ)).

Remark 1. Note that the expressions used for the approxi-
mate measure of violation are not unique – any continuously
differentiable function that fulfills the boundary conditions of
the corresponding measure of violation can be employed.

C. Optimization

Introducing the tuning parameter µ ∈ [0, 1) allows for
an appropriate weighting of the potentially antagonistic cost
portions for the overall time (9) and for violating the speci-
fication (15), leading to the approximate cost

Ĵ = µJt + (1− µ)J̃φ. (16)

Minimizing (16) w.r.t. θ will be accomplished by a gradient-
based algorithm. As the continuous dynamics of the vehicle
are not changing over the time line τ , the gradient of (16)
(omitting function arguments) is given by

∇θĴ=

∫ 1

0

µ∇θ
1

ṡ
ds+(1− µ)∇θJ̃φ. (17)

Since the only terms in (8) that depend on θ are c′i(s, θ) and
c′′i (s, θ), we solve (10) for the current θ to obtain u(s) and
J∗t , and the first term in (17) is computed by

∇θ
1

ṡ
= ∇θ

√
c′1(s, θ)c′′2(s, θ)− c′2(s, θ)c′′1(s, θ)

c′1(s, θ)u2 − c′2(s, θ)u1
.

To obtain J̃φ and ∇θJ̃φ, we solve a set of optimization
problems for each automaton path q̄ ∈ Yq̄ . The latter is
computed using the following derivatives. With ∂Dk

∂θ =
1
Dk

((y1−w1,k)∇θy1+(y2−w2,k)∇θy2) and omitting func-
tion arguments, for (11) (and analogously for (12)), we obtain

∇θd̃=

{
2(Dk−r) exp (−(Dk−r)2)∂Dk

∂θ , if Dk>r,

0, else,

and for (13),

∇θd̃=− 4

d2
g

max{0, 1−2D2
k

d2
g

}∂Dk

∂θ
.

The above derivatives are evaluated for the corresponding
optimal si, which denotes the position along the curve that

Algorithm 1 Receding horizon control optimization
Input: Set of partitions W = {W1, . . . ,WK} with center

points wk in environment Y ; scLTL formula φ over Π =
Πs ∪ Πd; robot with sensor range r and dynamics de-
scribed by the hybrid automaton H; curve y(t) = c(s, θ)
with finite parameter vector θ; optimization parameters
ε > 0, κ ∈ (0, 1)

Output: The optimal control u|∗[0,tf ]

1: if (∨δ∈∆y(tn) � δ) ∨ (t0 = 0) then
2: Set µ = 1.
3: Compute u∗(s|[0,1]) and J∗t through (10) for θ.
4: Construct Jφ̃ and J̃φ̃ for φ and q(tn).
5: while Jφ̃(ζ|u∗) > 0 do
6: Set µ = κµ.
7: repeat
8: Compute u∗(s|[0,1]) and J∗t through (10) for θ.
9: Compute Ĵ(θ) and ∇θĴ(θ)|Y with µ, and update

θ through (18).
10: until |∇θĴ(θ)|Y | < ε
11: end while
12: return u∗(s|[0,1])
13: end if

yields the minimal value of d̃. The optimal si, solving the
inner optimization problem, is computed by using a gradient-
projection algorithm. Then, for a given µ, (16) is minimized
by the gradient-based algorithm for the parameter θ

θz+1 = θz − ηz ∇θĴ(θz)
∣∣∣
Y

(18)

where {ηz}, z = 0, 1, . . . is a properly selected step-
size sequence for the projection of the gradient onto the
feasible position space Y . The algorithm terminates when
|∇θĴ(θz)|Y | < ε for a pre-specified threshold ε.

This leads to the proposed solution, summarized in Alg. 1.
At t=0 or upon a detection of a previously unknown propo-
sitional relation, (10) is solved and the current measure of
violation Jφ̃ (used for model checking) and its approximation
J̃φ̃ (used for optimization) are computed as described above.
As long as the current solution violates the specification (line
5), (10) and (18) are solved iteratively, where µ decreases
with each iteration, thus increasing the importance of J̃φ̃ over
Jt in the optimization. The algorithm returns the optimal
control input trajectory, when a non-violating execution is
found. The soundness and completeness of the proposed
procedure are summarized in the following proposition.

Proposition 1. Alg. 1 yields a control u with L(ζ|u) � φ, if
a solution to Problem 1 exists.

Proof. Consider a hybrid execution ζu that violates φ, i.e.
L(ζ|u) 6� φ, and u was obtained by Alg. 1. The corresponding
measure of violation is Jφ(ζ|u) > 0, by definition. However,
Alg. 1 cannot return an input u that produces an execution
with Jφ(ζ|u) > 0 (line 5). Under the assumption that a
solution exists and since the underlying OCPs are convex,
the loop terminates in finite time.
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Fig. 2. Snapshots of the robot’s motion at detection instants and the final
time tf obtained with Alg. 1. Executed trajectories are denoted by a solid,
and planned trajectories by dotted lines.

Alg. 1 relies on repetitively solving a finite set of OCPs
by gradient projection and convex optimization, which both
run in polynomial time.

IV. CASE STUDY

The methods were implemented in MATLAB and all
computations were performed on an Intel R© Core

TM
i7 2.20

GHz processor with 8 GB RAM. The DFAAφ corresponding
to the scLTL specification φ was obtained with scheck [24].
The OCP (10) was solved with SeDuMi. A (pseudo-)random
initial parameter vector θ0 (that satisfies the initial condition
y(0)) with Γ1 = Γ2 = 2 was chosen, as well as ε = 10−4

and κ = 0.8. Figure 2 shows snapshots of the robot’s motion
at detection instants and the final time, obtained by applying
Alg. 1. On average, online re-computation took 10.6 s. Note
that the code was written without a particular emphasis on
computational efficiency. Note that the convergence speed
and the quality of the outcomes strongly depend on θ0 and
the step size selection method for gradient optimization.

V. CONCLUSIONS

We addressed the time-optimal control of a robot with
limited sensing range that has to satisfy a specification given
as a syntactically co-safe linear temporal logic formula in
a partially unknown environment. Our approach was based
on parameterizing the continuous motion of the vehicle
and employing a measure of violation function to enforce
the satisfaction of the specification. Then, we formulated a
parametric optimization problem for minimizing the overall
time and the measure of violation that has to be re-solved
only upon detecting previously unknown properties of the
environment. Further work will focus on extending the

approach for full LTL specifications or a team of robots.
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