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Abstract— In this paper we consider a setting where a robotic
vehicle is commissioned to provide surveillance in an area
where there are multiple targets, while satisfying a set of high
level, rich specifications expressed as Linear Temporal Logic
formulas. Each target has an associated reward. The goal of
the vehicle is to maximize the cumulative collected reward while
satisfying the given high level task specification. By the nature
of a surveillance mission, targets points of interest are detected
in real time around the current location of the vehicle; hence we
employ a receding horizon controller to compute the optimal
path of the vehicle inside a subset of the mission space. This
paper provides a framework which guarantees that the overall
trajectory of the system satisfies the desired linear temporal
logic specification, while the control decisions are made based
on local information obtained in real time.

I. INTRODUCTION

Motion planing and control of mobile robots to achieve
complex tasks is a fundamental problem in robotics that has
been addressed from many perspectives. Traditional motion
planning approaches focus on dealing with the complexity of
the environment and of the robot dynamics, while restricting
the motion specification language to simple primitives of the
type “Go from A to B and avoid obstacles” [13]. This is
not rich enough to describe a large class of tasks of interest
in practical applications. The accomplishment of the mission
might require the attainment of either A or B, convergence
to a region (“reach A eventually and stay there for all future
times”), visiting targets sequentially (“reach A, and then B,
and then C”), surveillance (“reach A and then B infinitely
often”), or the satisfaction of more complicated temporal and
logic conditions about the reachability of regions of interest
(e.g., “Never go to A. Don’t go to B unless C is visited.”).

Recent advances in formal verification and control theory
show that it is possible to develop computational frameworks
allowing for motion planning and control from rich specifi-
cations. First, several abstraction techniques for linear and
nonlinear systems ([1], [8], [9], [18], [19]) suggest that the
motion of a vehicle in an environment can be represented as
a system with finitely many states, such as a finite transition
system. Second, it has been shown that the expressivity of
temporal logics, such as Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) [2], is enough to capture
a large class of robotic applications [3], [10], [12], [14],
[18]. Third, it has been shown that it is possible to generate
control strategies for finite transition systems from temporal
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logic specifications by adapting existing model checking and
game-theoretic techniques [11]. Fully automated frameworks
for robot deployment from LTL specifications have been
developed by combining the three ingredients above [12].

While the works enumerated above bridge some of the
gap between control theory, robotics, and formal verification,
several questions still remain to be answered. In particular,
the connection between optimality, correctness, and locality
of information is not well understood. Consider, for example,
a scenario in which the motion of a robot in an environment
is modeled as a weighted finite transition system, where
the weights capture the costs to be paid to travel from one
region to another. Assume that rewards of different values
can appear and disappear in the regions. Also assume that
the robot can only sense rewards in a neighborhood of its
current position. From a control point of view, it is desirable
to design control strategies that minimize the travel costs and
maximize the collected reward. From a formal verification
perspective, we want to make sure that the produced trajec-
tories satisfy a temporal logic specification, such as safety
or surveillance. The question is how to compromise between
these two desiderata, and produce optimal and provably safe
control strategies.

In this paper, we provide a partial answer to the above
question. Motivated by the abstraction results enumerated
above, we assume that the motion of the robot is modeled
as a finite and deterministic weighted transition system. We
assume that rewards with unknown dynamics appear and
disappear at the states and that the robot can only sense
these rewards locally. We focus on motion specifications
given as LTL formulas over a set of time-invariant properties
assigned to the states. We propose a control strategy in the
form of an infinite iteration of a receding horizon controller,
which is computed based on local reward information. To
ensure the satisfaction of the temporal logic specification,
we draw inspiration from LTL model checking and construct
a product automaton between the transition system and
the Büchi automaton generating the language satisfying the
LTL formula [2]. Following a procedure that resembles the
construction of discrete Lyapunov functions, we propose an
algorithm for assignment of costs to the states of the product
automaton. These costs are used by the receding horizon
controllers in such a way that progress is continuously made
towards satisfying the specification (i.e., towards satisfying
the Büchi acceptance condition) and at the same time the
collection of local rewards is maximized. Our solution is
complete in the sense that a control strategy satisfying the
LTL specification will always be found if one exists.

This work is an extension of our previous result from
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[12], which can be seen as a particular case of the problem
considered here when there is no reward, the robot can sense
all the environment states for all times, and the optimization
is over the weights of the transitions. It also relates to [3],
where a global controller was obtained as a solution of
a temporal logic game, for which a winning strategy was
guaranteed under some assumptions about environmental
events. A receding horizon approach to generate a control
from a temporal logic formula was also considered in [18],
where a control strategy was computed by dividing the
control synthesis problem into smaller sub-problems in a
receding horizon like manner. Note that in both these works
the specification was restricted to the GR(1) fragment of
LTL, whereas here we allow for full LTL expressivity.

Due to space limitations, results in this paper are stated
without proof. Proofs of all results can be found in the
technical report [5]. Furthermore, [5] analyzes computational
complexities of our proposed approach in detail.

II. PRELIMINARIES

Definition 1: A weighted finite transition system (TS) is
a tuple T = (Q, q0, δ, ω,Π, h), where Q is the finite set of
states; q0 ∈ Q is the initial state; δ : Q 7→ 2Q is the transition
function; ω is a weight function that assigns positive values
to all the transitions (i.e., to all pairs (q1, q2) for which q2 ∈
δ(q1)); Π is a finite set of atomic propositions; and h : Q 7→
2Π is an output map on the states of T .

Atomic propositions are properties that can be either true
or false at each state of the TS. At state q, π ∈ h(q) if and
only if π is true at state q. We call q2 a successor state of
q1 if q2 ∈ δ(q1). A trajectory or run of the TS is an infinite
sequence r = q0q1... where qi+1 ∈ δ(qi) for all i ≥ 0. A
run r generates a word o = o0o1... where oi = h(qi).

We employ Linear Temporal Logic (LTL) to describe
high level motion specifications. A detailed description of
the syntax and semantics of LTL is beyond the scope of
this paper and can be found in [2]. Roughly, an LTL
formula is build up from a set of atomic propositions Π,
standard Boolean operators ¬ (negation), ∨ (disjunction), ∧
(conjunction), and temporal operators © (next), U (until),
3 (eventually), 2 (always). The semantics of LTL formulas
are given over infinite words o in 2Π, such as the words
generated by a TS T . A word satisfies an LTL formula φ if
φ is true at the first position of the word; 2φ means that φ is
true at all positions of the word; 3φ means that φ eventually
becomes true in the word; φ1 Uφ2 means that φ1 has to hold
at least until φ2 is true. More expressivity can be achieved by
combining the above temporal and Boolean operators (more
examples are given later). We say a run r satisfies φ if and
only if the word generated by r satisfies φ.

Definition 2: (Büchi Automaton) A Büchi automaton is
a tuple B = (SB, SB0,Σ, δB, FB), where SB is a finite set of
states; SB0 ⊆ SB is the set of initial states; Σ is the input
alphabet; δB : SB × Σ → 2SB is a transition function; and
FB ⊆ SB is the set of accepting states.

A Büchi automaton accepts a word over Σ if at least one
of the corresponding runs intersects with FB infinitely many

times. For any LTL formula φ over Π, one can construct a
Büchi automaton with input alphabet Σ ⊆ 2Π accepting all
and only words over Π that satisfy φ ([20]). We refer readers
to [7], [17] and references therein for efficient algorithms
and freely downloadable implementations to translate a LTL
formula over Π to a corresponding Büchi automaton B.

Definition 3: (Product Automaton) A weighted product
automaton A = T × B is a tuple (SA, SA0, δA, ωA, FA),
where SA = Q× SB is the set of states; SA0 = {q0}× SB0

is the set of initial states; δA : SA 7→ 2SA is the transition
function defined as (qj , sl) ∈ δA((qi, sk)) if and only if
qj ∈ δ(qi) and sl ∈ δB(sk, h(qi)); ωA : SA × SA 7→
R+ is a positive-valued weight function inherited from T ,
defined as ωA((qi, sk), (qj , sl)) = ω(qi, qj), where (qj , sl) ∈
δA((qi, sk)); and FA = Q×FB is the set of accepting states.

A run rA of A is accepted if and only if rA intersects
FA infinitely many times. We define the projection of a run
rA onto the TS T as γT (rA) = r = q0q1..., if rA =
(q0, s0)(q1, s1).... If φ is a LTL formula and B is its
corresponding Büchi automaton, then the projection of an
accepted run rA on T is a run of T that generates a word
satisfying φ ([6]).

III. PROBLEM FORMULATION AND APPROACH

In this paper, we assume that the motion of a robot
in an environment is modeled as a transition system T
(Def. 1). The set of states Q can be seen as a set of
labels for the regions in a partition of the environment.
Each transition corresponds to a controller driving the robot
between two adjacent regions. The weight function ω can
model the maximum time needed to travel between two
adjacent regions, the corresponding control effort, or the
distance between representative points in the regions.

Such a finite representation of robot motion can be ob-
tained by using popular partition schemes, such as trian-
gulations or rectangular grids, and hierarchical abstractions
of dynamical systems. For example, at the first level in
the hierarchy, the dynamics of the robot can be mapped
from its configuration space (state-space) to its work space,
or output space (e.g., position of a representative point of
the robot in the environment [4]). At the second level of
the hierarchy, feedback controllers for facet reachability and
invariance in polytopes ([1], [9]) can be used to construct a
finite representation of robot motion in the from of a TS.
One can guarantee that the initial dynamical system and
the abstraction T are “equivalent” by ensuring that they are
related by simulation and bisimulation relations [15].

Note that our TS T does not have inputs. In other words,
we assume that one can simply choose available transitions at
a state. This corresponds to a deterministic TS with inputs,
i.e., a system in which the choice of an available input at
a state uniquely determines the transition to the next state.
The particular control strategy that we develop in this paper
is based on this property.

We assume that the motion of the robot in the environment
is required to satisfy a rich specification given as an LTL
formula over a set of properties (see Sec. II). Note that a
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variety of robot surveillance tasks can be easily translated to
LTL formulas, e.g.: 1) Sequence: “first visit states satisfying
a, and then states satisfying b” (3(a ∧3b)) ; 2) Coverage:
“visit states satisfying a and states satisfying b, regardless
of order” (3a∧3b); 3) Patrolling: “achieve a sequence task
φ infinitely many times” (23φ); 4) Safety: “achieve task φ
and always avoid states satisfying c” (2¬c ∧ φ).

We assume that rewards (positive real numbers) are asso-
ciated to some of the states in Q in a time varying fashion.
A state with a reward is called a target. We do not make any
assumptions about the dynamics governing the appearance
/disappearance of rewards and the reward values, However,
we make the natural assumption that, at each time instant, the
robot can only “see” (sense) the rewards in a neighborhood
of its current state. We denote by W (q) ⊆ Q the set of
targets that the robot can sense when at state q ∈ Q, and
by R(q, qi), qi ∈ W (q) the positive awards associated with
the targets. Upon visiting a target, the robot collects the
corresponding reward, and the state is no longer a target.

Our goal is to generate a robot control strategy such
that the produced trajectory maximizes the collected reward
while at the same time satisfying the LTL specification. It is
important to note that, since we are interested in infinite robot
trajectories, it does not make sense to look for a strategy
that maximizes the total collected reward, since this can be
infinite. Rather, we aim to design a (local and real-time)
receding-horizon type controller that maximizes rewards
collected based on local information obtained at current state
q. Specifically, we consider the following problem:

Problem 1: Given a TS T and a LTL formula φ, design
a state-feedback control strategy that (1) maximizes the
collected reward from the local target set W (q) and (2)
ensures that the produced infinite trajectory satisfies φ.

As it will become clear in the next section, the control
strategy consists of infinitely many iterations of a state-
feedback receding horizon controller. At each state q, the
receding horizon controller provides a finite subsequence
(which we call a finite run) of a (infinite) run that maximizes
the collected reward from the local target set W (q). The
control strategy guarantees that the infinite run obtained by
repeatedly executing the real time controller and concatenat-
ing the finite subsequences satisfies the LTL specification.

In this paper we design a real time control strategy that
uses local reward information, maximizes the collected re-
ward locally, and at the same time guarantees satisfaction of
φ globally. To achieve this, we need a measure of “progress”
towards satisfying the formula. If our controller is designed
to always further this progress, then we can show that the
LTL formula is satisfied. Our approach in this paper is to
assign a suitable cost to each state of the product automaton.
This cost assignment will be computed off-line once, and
then it will be used on-line with the real time controller.
The cost assignment will be designed so that if used in
conjunction with our proposed control strategy, an accepting
state on the product automaton is reached in finite number of
transitions. Since this is repeated infinitely many times, the
acceptance condition of the product automaton is enforced.

IV. CONTROL DESIGN

In this section, we present the control strategy providing
a solution to Prob. 1. The central component of our control
strategy is a state feedback controller that produces a finite
run on the TS T . Formally, we define a finite run of T as
a finite sequence of states rf = q1...qn, where qi+1 ∈ δ(qi)
for all i = 1, ..., n− 1.

A. Cost Assignment

We first describe our cost assignment scheme. First,
given a TS T and a Büchi automaton B translated from
a LTL formula φ, we construct the product automaton
A = (SA, SA0, δA, ωA, FA) as defined in Def. 3. Our cost
assignment scheme applies a cost as a measure of progress
to each state of A.

The notion of distance between states created by the
weight function ωA (which is inherited from T ) assigned
on transitions of A is a natural choice to be used as the
progress metric. A finite run rfA on A is defined as a finite
subsequence of a run on A, similar to a finite run rf on T .
Now, let R(pi, pj) denote all possible finite runs from a state
pi ∈ SA to a state pj ∈ SA:

R(pi, pj) = {rfA = p1...pn|p1 = pi, pn = pj ;

pk+1 ∈ δA(pk) for k = 1, ..., n− 1}. (1)

Note that R(pi, pj) may not be a finite set due to possible
cycles in A, and n in (1) is arbitrary but finite and n ≥ 2.
We say pi reaches pj , or pj is reachable from pi, if R(pi, pj)
is not empty.

Next, we define a path length function with respect to a
finite run rfA = p1...pn as L(rfA) =

∑n−1
k=1 ωA(pk, pk+1).

Let |rfA| represent the number of states in rfA. We set
L(rfA) = 0 if |rfA| = 1.

We define a distance function from a state pi ∈ SA to
pj ∈ SA as follows:

d(pi, pj) =

{
minrfA∈R(pi,pj) L(rfA) if R(pi, pj) 6= ∅

∞ if R(pi, pj) = ∅
(2)

Since ωA is a positive-valued function, we have d(pi, pj) > 0
for all pi, pj ∈ SA. We note that given pj , d(pi, pj) for all
pi ∈ SA can be efficiently computed by several shortest path
algorithms [16], such as Dijkstra’s algorithm.

We say that a set A ⊆ SA is self-reachable if and only
if all states in A can reach a state in A (∀pi ∈ A, ∃pj ∈ A
such that R(pi, pj) 6= ∅). We define FA? to be the largest
self-reachable subset of FA. Now, using (2), we propose the
following cost function defined on all states pi ∈ SA:

J(pi) =

{
minpj∈FA? d(pi, pj), if pi /∈ FA?

0, if pi ∈ FA?
(3)

Clearly, J(pi) = 0 if and only if pi ∈ FA? . This cost encodes
the minimum distance from states in A to the set FA? .

We propose Alg. 1 to obtain the set FA? and the cost
measure J . This algorithm obtains the largest self-reachable
subset of FA by construction, because it starts with the whole
set FA and prunes out one by one states that can not reach a
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state in itself, until all states in the set satisfies the definition
of a self-reachable set.

Algorithm 1 Cost assignment algorithm, given a product
automaton A = (SA, SA0, δA, ωA, FA)

1: Compute d(pi, pj) for all pi ∈ SA and pj ∈ FA.
2: Set FA? = FA.
3: while there exist q ∈ FA? such that

min
pj∈FA? ,pi∈δA(q)

d(pi, pj) =∞

do
4: Remove q from FA? .
5: end while
6: Obtain J(pi) using the definition (3) for all pi ∈ SA.

Alg. 1 is run only once off-line (before deployment). The
costs J(pi) are saved in a look-up table to be used later in
conjunction with the real-time controllers.

Lemma 1: All accepting states in an accepted run rA of
A must be in FA? .

The corollary below follows directly from Lemma 1 and
the definition of J in (3) and FA? .

Corollary 1: An accepted run rA of A originating at p
exists if and only if J(p) 6=∞. Furthermore, all states in an
accepted run rA have finite cost.

As a consequence, by looking up the cost assignment J ,
we find initial states of T from which there do not exist a
satisfying run, where all states in SA0 have infinite cost.

The following lemma is another property of the cost
function which will be useful later.

Lemma 2: If pi ∈ A and J(pi) ∈ (0,∞), then there is
at least one state pj ∈ δA(pi), such that J(pj) < J(pi).

B. Receding Horizon Controllers

In this sub-section we present the controllers P initA (SA0)
and PA(p) that produce finite runs rfA on A, assuming that
the cost J defined in (3) is accessible from a look-up table.
The feedback controller we use to produce solutions to Prob.
1 is obtained as the projection of P initA (SA0) (if current
state is the initial state) or PA(p) (if otherwise) onto T . The
projection function for finite runs, γT (rfA) = rf , is defined
in the same way as in the case of infinite runs.

We design PA(SA0) and PA(p) as receding horizon
controllers in the sense that they maximize the reward
collected over finite runs with path length no more than a
pre-defined “planning horizon length” T . Since the weight
function ωA is inherited from T , the projection of the
resultant optimal finite run onto T also has path length
no more than T . We choose T large enough such that
T ≥ maxpi,pj∈SA,pj∈δA(pi) ωA(pi, pj), which implies that
no single edge-weight is higher than the horizon length.

First we propose the controller PA(p) for a given state
p = (q, s) in A. We aim to design PA(p) such that
repeated executions of the controller produce an accepted
run on A originating from p. The idea to achieve this is
the following: we design a “pre controller” P preA (p) and let

PA(p) = P preA (p) if J(p) ∈ (0,∞). Repeated executions
of P preA (p) drive the system from any state p on A, where
J(p) ∈ (0,∞), to a state in FA? in a finite number of
transitions, while maximizing the reward collected locally.
We also design a “post controller” P postA (p) and let PA(p) =
P postA (p) if J(p) = 0. P postA (p) drives the system from a
state in FA? to a state pi ∈ A such that J(pi) 6=∞. At this
point if J(pi) > 0, then the pre controller takes over and
again drives the system to a state in FA? in finite number of
transitions. If J(pi) = 0, then the post controller is executed
again. This process repeats infinitely many times so that the
set FA? (which is a subset of FA) is visited infinitely many
times, and thus the acceptance condition is enforced.

To begin, we define a cumulative reward function on a
finite run rfA as <(rfA,W (q)) =

∑
qi∈τ(rfA,W (q))R(q, qi),

where τ(rfA,W (q)) is the set:

τ(rfA,W (q)) = {qi|qi ∈W (q) and qi is in γT (rfA)}.

It is apparent that <(rfA,W (q)) ≥ 0 and is finite. Then, we
define the pre controller to be:

P preA (p) = arg max
rfA=p1...pn

<(rfA,W (q)),

subject to: p1 ∈ δA(p), J(pn) < J(p),

ωA(p, p1) + L(rfA) ≤ T. (4)

Remark 1: Finding a solution for (4) involves exploring
and searching finite runs in a sub-graph of the graph corre-
sponding to the product automaton A. The states of this sub-
graph are {pi ∈ SA|d(p, pi) ≤ T}, since we do not consider
finite runs with the last state further than T away from the
current state p. This fact demonstrates the local nature of our
controller, as the control decision rfA is always made on this
sub-graph (depending on T and p). As a result, to compute
P preA (p), only a local portion of the product automaton A
around p needs to be constructed and explored. The same
remark can be made later for P postA (p) and P initA (SA0).

The optimal run computed by P preA (p) only requires that
the cost on the last state of the finite run to be lower than the
current state. This allows the controller to produce runs that
go “out of the way” to grab rewards associated with targets.

Before we can use P preA (p) in the control algorithm, we
have to first verify that it always has a solution.

Lemma 3: Optimization problem P preA (p) always has at
least one solution for all p where J(p) ∈ (0,∞).

Next we show that the pre controller drives a state on A to
one in FA? in a finite number of transitions. We first define
a concatenation operator ⊕ for finite runs r1

fA = p1
1...p

1
n1

and r2
fA = p2

1...p
2
n2

such that, if p2
1 ∈ δA(p1

n1
), then

r1
fA ⊕ r2

fA is a finite run p1
1...p

1
n1
p2

1...p
2
n2

, and undefined
if p2

1 /∈ δA(p1
n1

). We also use the notation ⊕Ni=1r
i
fA to

indicate repeated concatenation of N finite runs (N could
be ∞). Then, we define K (K finite) repeated executions
of P preA (p) as P preAK(p) = ⊕Ki=1P

pre
A (pi−1

ni−1
), where p0

n0
= p

and P preA (pi−1
ni−1

) = pi1...p
i
ni

, assuming that J(pi−1
ni−1

) > 0 for
i = 1, ...,K. We then provide the following theorem:
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Theorem 1: Given p such that J(p) ∈ (0,∞), there
exists K bounded above by a constant such that P preAK(p)
is a finite run ending at a state pKnK

where J(pKnK
) = 0.

Now we propose a receding horizon controller P postA (p)
that computes a control decision when p ∈ FA? (thus J(p) =
0). To ensure satisfaction of the acceptance condition of A,
we must drive the state to one where the cost is finite (such
a state must exist by definition of FA? ). Hence, we have:

P postA (p) = arg max
rfA=p1...pn

<(rfA,W (q)),

subject to: p1 ∈ δA(p), J(pn) 6=∞,
ωA(p, p1) + L(rfA) ≤ T. (5)

Since J(p) = 0, P postA (p) always has a solution because
there exist qi ∈ δA(p) where J(qi) 6=∞.

Finally, we propose the controller P initA (SA0) which is
executed for the initial state q0. This controller takes the
input of the set SA0 because the Büchi automaton B can
have a set of initial states SB0. As a result, we can pick the
initial state of A from the set SA0 = {q0} × SB0. Define
S?A0 to be S?A0 = {pi ∈ SA0|J(pi) 6=∞}. We define:

P initA (SA0) = arg max
rfA=p1...pn

<(rfA,W (q0)),

subject to: ∃p0 ∈ S?A0 s.t. p1 ∈ δA(p0),

J(pn) 6=∞, ωA(p0, p1) + L(rfA) ≤ T.
(6)

If S?A0 is empty, due to Corollary 1, there does not exist
a run on T starting at q0 satisfying φ. If S?A0 is not empty,
then P initA (SA0) always has a solution due to Lemma 2.

C. Control Algorithm

The overall control strategy for the TS T is given in Alg.
2. After some off-line computation (i.e., before deployment),
the algorithm generates an on-line, receding horizon con-
troller P (q), which is a map from Q to the set of finite runs
over Q such that P (q) = q1...qn, where q denotes the current
state of T and q1 ∈ δ(q), means that the robot needs to visit
the sequence of states q1...qn.

Remark 2: In the on-line portion of Alg. 2, we always
update the target node set W (q) before we make a control
decision (see lines 3 and 5). We can increase the update
frequency of W (q), or design the algorithm so that the con-
troller recomputes the control decision when W (q) changes.
These alternative choices of control strategies may offer
better performance in terms of reward collection, but they
also have increased computational complexities.

Finally, we show that Alg. 2 always implements a run
r satisfying the given specification φ, assuming such a run
from q0 exists. Thus, Prob. 1 is solved.

Theorem 2: Assume that there exists a satisfying run
originating from q0 for a TS T and a LTL formula φ.
Then, the application of Alg. 2 to T and φ results in a run
r = q0q1, ... of T satisfying φ.

Algorithm 2 Control algorithm for T = (Q, q0, δ, ω,Π, h),
given a LTL formula φ
Executed Off-line:

1: Construct a Büchi automaton B = (SB, SB0,Σ, δB, FB)
corresponding to φ.

2: Construct the product automaton A = T × B =
(SA, SA0, δA, ωA, FA).

3: Execute Alg. 1 to compute J(pi) for all pi ∈ SA.
Executed On-line:

1: if ∃p0 ∈ SA0 such that J(p0) 6=∞ then
2: Update target set W (q0) and rewards R(q0, qi).
3: Obtain P initA (SA0) = rfA = p1...pn. Set P (q0) =

γT (P initA (SA0)) = rf = q1...qn. Control T to
implement rf . Set q = qn, p = pn.

4: loop
5: Update target set W (q) and rewards R(q, qi).
6: Let PA(p) = P preA (p) if J(p) > 0 and PA(p) =

P postA (p) if J(p) = 0. Obtain PA(p) = rfA =
p1...pn. Set P (q) = γT (PA(p)) = rf = q1...qn.
Control T to implement rf . Set q = qn, p = pn.

7: end loop
8: else
9: There is no run originating from q0 that satisfies φ.

10: end if

V. EXAMPLE

In this section we demonstrate our proposed algorithm
with an example. For this example, T has 100 states, which
are at the vertices of a rectangular grid with cell size 10 (see
Fig. 1(a)). The distance function ω measures the Euclidean
distance between states, and there is a transition between two
states if the distance between them is less than or equal to 15.
We assume that the robot can “sense” targets within a disk of
radius 30 centered at its position. We randomly generate the
set of targets W (q) within this neighborhood from a uniform
distribution for every iteration of Alg. 2. The reward values
for the targets in W (q) are generated by uniform sampling
from the range 10-25. We choose the horizon length T = 30.

We assume that the set of atomic propositions is Π =
{a, b, c, d}. The assignment of atomic propositions to the
states of T is shown in Fig. 1(a) and the corresponding
caption. Note that some states satisfy more than one atomic
proposition. We consider the following safe surveillance
specification: “Avoid states satisfying a for all times; visit
states satisfying b and then states satisfying either c or d,
infinitely often.” The specification translates to the following
LTL formula: φ = 2¬a ∧2(3(b ∧3c) ∨3(b ∧3d)).

Some snapshots from the robot run produced by applying
the method developed in this paper are shown in Figs. (1(b)
- 1(i)). From these figures, we can see that the trajectory
of the robot is satisfying the surveillance specification and
maximizing rewards collected locally. In Fig. 2, J(p) at the
beginning of each loop in Alg. 2 are shown for about 70
iterations of loops. As expected, states in FA? (which are
accepting states with 0 cost) are repeatedly reached.
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(a) (b) J(p0) = 0 (c) word: bb b
c

(d) J(p) = 10 (e) word: bb b
c
b
c
bb (f) J(p) = 0

(g) word: bb b
c
b
c
bbbb (h) J(p) = 30 (i) w: bb b

c
b
c
bbbbb b

c
b
c

Fig. 1. Robot deployment corresponding to the given specification φ. The
TS T and the assignment of atomic propositions to its states are shown
in (a): for b, c, and d, the states inside a rectangle are assigned the atomic
propositions with the corresponding color; the states satisfying a are plotted
with a bigger radius than other states. Figures (b)-(i) show snapshots from
the deployment, where (b), (d), (f), and (h) show the positions of the robot
(red) corresponding to updates of W (q) and R(q, qi) and (c), (e), (g), and
(i) show the corresponding optimal finite runs (orange). In all the snapshots,
the targets are shown in green circles, where the radii of the circles are
proportional to the associated rewards.

Fig. 2. Cost of the current state of A (J(p)) at the beginning of each
iteration of Alg. 2 for 70 iterations.

In terms of computation time, the translation of the for-
mula to a Büchi automaton, the construction of the product
automaton, and the cost assignment on the product automa-
ton took 2 sec, 1 sec, and 21 sec, respectively. Each loop in
Alg. 2 took about 2 sec. All computation was performed on
a MacBook Pro with a dual core processor at 2.5 GHz.

VI. CONCLUSIONS AND FINAL REMARKS

In this paper, we considered a scenario in which a robot
with limited sensing capabilities is required to satisfy tem-
poral logic motion specifications globally, while at the same
time maximizing the reward collected from targets that are
sensed locally. We developed a control strategy that makes
local control decisions in terms of maximizing the reward

while ensuring eventual satisfaction of the specification.
For future work, we plan to accommodate more realistic

scenarios than the one considered in this paper. Specifically,
we will investigate the use of Markov Decision Processes
(MDP) and Partially Observable Markov Decision Processes
(POMDP) to model the robot motion and of probabilistic
temporal logic such as probabilistic LTL (PLTL) and proba-
bilistic CTL (PCTL) as specification languages.
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