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Abstract—We propose a framework based on Recurrent
Neural Networks (RNNs) to determine an optimal con-
trol strategy for a discrete-time system that is required
to satisfy specifications given as Signal Temporal Logic
(STL) formulae. RNNs can store information of a system
over time, thus, enable us to determine satisfaction of the
dynamic temporal requirements specified in STL formulae.
Given a STL formula, a dataset of satisfying system execu-
tions and corresponding control policies, we can use RNNs
to predict a control policy at each time based on the cur-
rent and previous states of system. We use Control Barrier
Functions (CBFs) to guarantee the safety of the predicted
control policy. We validate our theoretical formulation and
demonstrate its performance in an optimal control problem
subject to partially unknown safety constraints through
simulations.

Index Terms—Optimal control, neural networks,
autonomous systems.

I. INTRODUCTION

DUE TO their expressivity and similarity to natural lan-
guages, temporal logics have been used to formalize

specifications for cyber-physical systems. Control policies
enforcing the satisfaction of such specifications have been
derived [1], [2]. Our focus in this letter is Signal Temporal
Logic (STL) [3], which is interpreted over real-valued sig-
nals. STL is equipped with quantitative semantics, known as
robustness, that measures how strongly a signal satisfies a
specification [4]. This allows to map the problem of control-
ling a system under a STL specification to an optimization
problem with robustness as cost function [5], [6]. Optimizing
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the robustness, whether through a Mixed Integer Programming
(MIP) encoding [5] or a gradient-based method [7], [8],
[9], [10], [11], can be computationally expensive and might
not meet real-time requirements in practice. Moreover, the
optimization may converge to local optima, which might not
satisfy the STL specification.

To address these limitations, we propose a Recurrent Neural
Network (RNN) controller design for a dynamical system with
specifications given as STL formulae. The input to the RNN
is the current state of the system and the output is the control
that is predicted to maximize the STL robustness at that state.
The RNN is trained using imitation learning [12], in which
the dataset consists of samples (system executions) generated
by solving an optimization problem. A shallow RNN requires
limited computations, and thus, it can be used for real-time
control. Moreover, convergence can be improved by excluding
samples with robustness scores less than a specified threshold.

Employing neural networks (NN) in temporal logic control
was proposed recently. In [13], the authors used a feedforward
NN as a feedback controller to satisfy STL specifications. The
feedforward NN predicted the controller at each time only
based on the current state of the system. However, in general,
the satisfaction of a STL specification is history-dependent.
For example, if a specification requires an agent to visit region
A and then region B, it is not possible for the agent to know
whether it should move towards B given only the current
position - it needs to know whether it has visited A already.
For Linear Temporal Logic (LTL), the history-dependence
is addressed by translating the formulae into automata that
contain history information [6]. The authors of [14] trans-
lated (truncated) LTL specifications into a finite-state automata
and used reinforcement learning to train a feedforward NN
for predicting satisfying control policies. However, STL is
not equipped with such an automaton. In [15] and [16], the
specification is restricted to a fragment of STL, such that
the progress towards satisfaction can be checked with a par-
tial trajectory. Control policies are inferred using Q-learning.
Besides the restriction on the STL structure, these works also
require the initial partial trajectory to be known. Similarly,
the authors of [17] applied reinforcement learning methods
to learn control policies enforcing the satisfaction of STL
fragments. Most recently, [18] used a RNN-like recurrent com-
putation graph to compute robustness of STL formulae. By

2475-1456 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:19:51 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2132-8710
https://orcid.org/0000-0002-6537-5626
https://orcid.org/0000-0002-7141-2657


92 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

allowing back-propagation of robustness gradients, a controller
was synthesized to satisfy a STL formula.

RNNs have internal states (memory) units that can store
history. In this letter, we propose a feedback RNN controller,
which predicts the control policy at each state based on the
current state and the history of the system, to address the
history-dependence of STL satisfaction. One important advan-
tage of a feedback controller is its tolerance to disturbance. We
demonstrate that the feedback structure of RNNs allows us to
handle system disturbance and safety requirements that were
not known previously (during training). These are enforced
using Control Barrier Functions (CBF) [19].

This idea is related to [14], where CBFs were used as shields
to guarantee safety for both training and execution phases of
a reinforcement learning framework. The authors of [20] also
trained a NN-based controller using imitation learning with
CBF safety requirements. In contrast to our work, which uses
RNN to accomplish STL specifications, [20] did not consider
temporal logic specifications, and the NN was solely used
to solve an optimization problem with CBF constraints in a
reachability problem.

II. NOTATION AND PRELIMINARIES

A. Signal Temporal Logic (STL)
An n-dimensional real-valued signal is denoted as S =

s0s1 . . . , where sk ∈ R
n, k ∈ Z≥0. The STL syntax [3] is

defined and interpreted over S:

ϕ:=�| μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2, (1)

where ϕ, ϕ1, ϕ2 are STL formulae, � is the logical True, μ
is a predicate over signals, ¬ and ∧ are the Boolean negation
and conjunction operators. The Boolean constant ⊥ (False)
and disjunction ∨ can be defined from �, ¬, and ∧ in the
usual way. I = [a, b] = {k ∈ Z≥0 | a ≤ k ≤ b; a, b ∈
Z≥0} denotes a bounded time interval and U is the temporal
until operator. The temporal operators eventually and always
are defined as FIϕ:=�UIϕ and GIϕ:=¬FI¬ϕ, respectively.
ϕ1UIϕ2 states that “ϕ2 becomes true at some time point within
I and ϕ1 must be always true prior to that.” FIϕ is satisfied
if “ϕ becomes True at some time in I” while GIϕ is satisfied
if “ϕ is True at all times in I”. Predicates are of the form
μ := l(sk) ≥ 0, where l : R

n → R is a Lipschitz continuous
function.

The STL qualitative semantics determines whether a sig-
nal S satisfies a given specification ϕ, i.e., S |= ϕ, or
not, i.e., S �|= ϕ. Its quantitative semantics, or robustness,
assigns a real value to measure how much a signal satisfies
ϕ. Multiple functionals have been proposed to capture the
STL robustness [4], [8], [10], [11]. In this letter, we use the
Arithmetic-Geometric Mean (AGM) robustness [9] which is
a sound score, i.e., a strict positive robustness indicates sat-
isfaction of the specification, and a strict negative robustness
indicates violation. However, the frameworks presented in this
letter are applicable to all robustness functionals in literature. As
opposed to the traditional robustness [4], which only captures
the most extreme satisfaction (or violation), AGM employs
arithmetic and geometric means over all the satisfying (or vio-
lating) sub-formulae and time points in a formula and can
highlight the level and frequency of satisfaction. We denote
the AGM robustness of ϕ at time k with respect to signal S by
η(ϕ, S, k). For brevity, we denote η(ϕ, S, 0) by η(ϕ, S). The

time horizon of a STL formula ϕ denoted by hrz(ϕ) is the
smallest time point in the future for which signal values are
needed to compute the robustness at the current time [21].

B. Discrete-Time Dynamics and Control Barrier
Functions

Consider a discrete-time control system given by

qk+1 = f (qk, uk), (2)

where qk ∈ Q ⊂ R
n is the state (q0 is the initial state) and

uk ∈ U ⊂ R
m is the control input at time k, and f :Q×U → Q

is a Lipschitz continuous function. Let u0:K−1 denote the con-
trol sequence u0 . . . uK−1. The system trajectory q0q1 . . . qK
generated by applying u0:K−1 starting at q0 is denoted by
q(q0, u0:K−1).

Let b : R
n → R. The set C = {q ∈ R

n | b(q) ≥ 0} is called
(forward) invariant for system (2) if all its trajectories remain
in C for all times, if they originate in C.

The function b is a (discrete-time, exponential) Control
Barrier Function (CBF) [22] for system (2) if there exist an
α ∈ [0, 1], and for each qk there exists a uk ∈ U such that:

b(q0) ≥ 0

b(qk+1) + (α − 1)b(qk) ≥ 0, ∀k ∈ Z≥0, (3)

where qk+1, qk, and uk are related by (2). The set C is invariant
for system (2) if there exists a CBF b as (14). This invariance
property is usually referred to as safety. In other words, the
system is safe if it stays inside the set C.

III. PROBLEM STATEMENT AND APPROACH

In this section, we formally state the STL control synthe-
sis problem and its direct solution, which is later used to
generate the dataset for training RNN controllers (detailed in
Section IV).

Consider system (2) starting at q0 ∈ R
n and a differentiable

cost function J(uk, qk+1) representing the cost of ending up
at state qk+1 by applying control input uk at time k. Assume
that temporal logic requirements are given by a STL formula ϕ
interpreted over the system states q0 . . . qK where K is the final
planning horizon. For simplicity, we assume that K = hrz(ϕ).
However, K could be any integer greater than or equal to
hrz(ϕ). Suppose there are N safety requirements given as CBF
constraints bi(qk) > 0 (see Section II-B), where i = 1, . . . , N,
k = 0, . . . , K. Let b:Rn → R

N , where b = (b1, . . . , bN), and
b(qk) > 0 is interpreted componentwise.

Given system dynamics (2), cost function J, STL formula
ϕ, initial state q0 and safety requirement b(qk) > 0, we
want to find a control sequence u0:K−1 that maximizes the
STL robustness η(ϕ, q(q0, u0:K−1)) as well as minimizing
the cost function

∑K−1
k=0 J(uk, qk+1) and satisfying the safety

requirements b(qk) > 0, k = 0, . . . , K.
Synthesizing the control sequence u0:K−1 in one shot and

applying it to the entire planning horizon forms an open loop
controller. However, this formulation would fail to satisfy the
specifications if the actual system trajectory deviates from the
synthesized one due to the existence of disturbances in the
system dynamics or changes in the safety constraints (e.g.,
moving obstacles). Instead, we propose to find the optimal
control at each time based on the current and past1 states

1State history is necessary to decide STL satisfaction, see Sections I
and II-A

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:19:51 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RECURRENT NEURAL NETWORK CONTROLLERS FOR SIGNAL TEMPORAL LOGIC SPECIFICATIONS SUBJECT 93

Fig. 1. Overall approach: Left: Safe trajectories are generated using gradient-based optimization and CBF; Middle: Safe and satisfying trajectories
(with positive robustness) and the corresponding reference controls are added to a state-control dataset; Right: a RNN is trained on the dataset to
predict reference controls for STL satisfaction. A safe feedback RNN controller is synthesized using CBF.

of the system, which gives a history-dependent state feed-
back controller. Specifically, at each time k, the optimization
variable uk:K−1 covers the rest of the time and the feedback
information includes the current state qk and the history trajec-
tory q0 . . . qk−1 (this property is called history-dependence of
STL). However, solving the optimization problem at each time
is time-consuming, which is a problem for real-time imple-
mentations. Moreover, the optimization may converge to a
local optimum (negative robustness). We address these lim-
itations by training a RNN to predict the control policy at
each time. NNs execute very fast. They can take a long time
to train, but this computation is performed off-line (before
deployment). Our goal is to make the RNN controller flexi-
ble, i.e., we want the trajectories generated from the predicted
RNN control input to be able to meet the STL specifications
under various safety constraints (e.g., unforeseen or dynamic
safety constraints), without a need to re-train the RNN when
the safety constraints change.

In order to generate a dataset for a flexible RNN, we decom-
pose the optimization problem at each time into two problems:
Pb. 1 and Pb. 2. The solution to Pb. 1 provides a reference
control sequence that gives the “direction” towards the satis-
faction of the STL formula but does not consider the safety
constraints. In Pb. 2, the first control input (input at the current
time) in the reference control sequence is modified (if needed)
using CBFs to provide a safe control which is applied to the
system to move to the next state. Pb. 1 and Pb. 2 are recur-
sively solved at each time until the final time is reached, as
shown in Fig. 1 (left). At each time, the current (safe) system
state and the (possibly unsafe) reference control are added to
ordered sequences of previous states and previous reference
controls, respectively. At the final time, the two sequences are
combined as a data pair to generate a state-control dataset, on
which the RNN is trained (middle of Fig. 1). This framework
enables the RNN to predict the reference control at each time
based on the current state and the history trajectory. The ref-
erence control drives the next state of the system towards STL
satisfaction, and is modified by solving Pb. 2 to ensure it is
safe as shown in Fig. 1 (right).

There are two main advantages of training the RNN on the
reference control (instead of the safe control) and using CBF to
guarantee safety. First, we can accommodate safety constraints
different from those in the dataset. Otherwise, if the RNN was

trained on the safe control, it would assume the safety con-
straints in the dataset used for training always exist. Second,
the final trajectory is guaranteed to be safe independent of the
performance of the RNN. Even though safety of the predicted
control input is guaranteed after RNN, we still solve Pb. 2 dur-
ing dataset generation to enlarge the search space (i.e., explore
more states that might appear due to various safety constraints
and include more data in the dataset).

We propose two versions of Pb. 1 - either can be used
depending on the structure and length of the STL formula.

Problem 1.A (Reference Control): Given system dynam-
ics (2), cost function J, STL formula ϕ, current state qk and
history trajectory q0 . . . qk−1, reference control uref

k:K−1 at time
k ∈ [0, K − 1] is found by:

uref
k:K−1 = arg max

uk:K−1
η(ϕ, q0 . . . qk−1q(qk, uk:K−1))

− λ

K−1∑

j=k

J(uj, qj+1)

s.t. uj ∈ U ⊂ R
m, j = k, . . . , K − 1

qj+1 = f (qj, uj), j = k, . . . , K − 1 (4)

By solving Pb. 1.A at time k, we find a reference trajectory
q(qk, uk:K−1) which along with the history trajectory satisfies
the STL formula, i.e., q0 . . . qk−1q(qk, uk:K−1) |= ϕ.

Example 1: Consider a robot in a 2-dimensional workspace
in Fig. 2(a). The specification is to “eventually visit RegA or
RegB within [1,10] and eventually visit RegC within [11,20]
and always avoid Obs”, written as a STL formula:

ϕ1 = (F[1,10](RegA ∨ RegB)) ∧ (F[11,20]RegC)

∧ (G[0,20]¬Obs), (5)

with hrz(ϕ1) = 20. Consider the trajectory from Fig. 2(a), and
(current) state q9 at time k = 9. The blue trajectory q0 . . . , q8
is the history trajectory, and the red trajectory q10 . . . q20 is
the synthesized trajectory from the solution of Pb. 1.A.

If the horizon of ϕ is large, Pb. 1.A may become
prohibitively expensive. If ϕ = G[0,k1]φ, we can use a
model predictive control (MPC) approach [23] to shorten the
optimization (planning) horizon. Let hφ = hrz(φ) and let
hp denote the (shorter) prediction horizon. Instead of opti-
mizing the entire trajectory over K = k1 + hφ steps, in
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Fig. 2. (a): History trajectory (blue) and trajectory to be optimized (red)
at time k = 9. (b) and (c): Reference control uref

4 at time k = 4 steering
the robot to the red point and safe control ucbf

4 steering the robot to
the blue point. The history trajectory, current state q4, and reference
control uref

4 are the same in (b) and (c). The positions of the obstacles
are different, which result in different ucbf

4 .

a MPC framework, we optimize the trajectory for the next
H = hp+hφ steps by recursively maximizing the robustness of
G[0,hp]φ with respect to the partial trajectory q(qk, uk:k+H−1),
k = 0, 1, . . . , K−H. For example, at time k = 0, we maximize
the robustness of G[0,hp]φ with respect to q0, q1, . . . , qH ; at
k = 1, we maximize the robustness of G[0,hp]φ with respect to
q1, q2, . . . , qH+1, etc. We need to ensure that, when moving
forward, the satisfaction of φ that was obtained during the
previous optimizations still holds. Therefore, when maximiz-
ing the robustness of G[0,hp]φ with respect to the partial
trajectory starting from time k, we need to enforce the robust-
ness of φ to remain positive at the previous hφ − 1 steps [23].
Formally, we have:

Problem 1.B (Reference Control using MPC): At time k ∈
[hφ − 1, K − H], given system dynamics (2), cost function
J, STL formula ϕ = G[0,k1]φ, current state qk and history
trajectory qk−hφ+1 . . . qk−1, find reference control uref

k:k+H−1
2:

uref
k:k+H−1 = arg max

uk:k+H−1
η(G[0,hp]φ, q(qk, uk:k+H−1))

− λ

k+H−1∑

j=k

J(uj, qj+1)

s.t. uj ∈ U ⊂ R
m, j = k, . . . , k + H − 1

qj+1 = f (qj, uj), j = k, . . . , k + H − 1

η(φ, qk−hφ+1+i, . . . , qk−1q(qk, uk:k+i)) > 0,

i = 0, . . . , hφ − 2. (6)

The solution to Pb. 1.A or Pb. 1.B is the reference control
without considering safety constraints. The reference control at
the current time uref

k will be added to the sequence of reference
controls for dataset generation, and subsequently modified to
satisfy the safety constraints:

Problem 2 (Safe Control): At time k ∈ [0, K − 1], given
system dynamics (2), current state qk, safety constraints
b(qk) > 0, and reference control uref

k (possibly unsafe), safe
control policy ucbf

k is found by:

ucbf
k = arg min

uk
‖uk − uref

k ‖2

s.t. b(f (qk, uk)) + (α − 1)b(qk) > 0,

uk ∈ U ⊂ R
m (7)

Remark 1: We assume CBF parameters are tuned such that
control inputs that satisfy all CBF constraints always exist.

2Note that, when k < hφ − 1 or k > K − H, the corresponding horizons
in (6) need to be modified [23].

Remark 2: The safe control might violate the STL speci-
fication. In this letter, we prioritize safety over specification
satisfaction.

Example 2: At time k = 4, the reference control uref
4 , which

steers the robot from Ex. 1 to satisfy ϕ1 (go to RegA), is com-
puted from Pb. 1. Assume that there are 4 circular obstacles
appearing at time k = 4, as shown in Fig. 2(b) and Fig. 2(c),
under the reference control uref

4 , the robot will collide with one
of the obstacles. However, by solving Pb. 2, we can modify the
reference control to ucbf

4 to avoid collision. With the same STL
formula and current state and history trajectory, the reference
control uref

4 is determined, while the safe control ucbf
4 depends

on the different positions of obstacles (Fig. 2(b) and 2(c)).
Since the positions of obstacles when testing (deploying) the
RNN are unforeseen, we save the current state q4 and the
reference control uref

4 into the dataset to teach the RNN the
reference control towards STL satisfaction. When testing the
RNN, we modify its output depending on the positions of
obstacles at that moment.

Direct solution The method used to generate the dataset,
which we refer to as the direct solution, is summarized below.
At each time k, we solve Pb. 1.A or Pb. 1.B, depending on
the structure of ϕ, to get a reference control sequence uref

k:K−1
or uref

k:k+H−1. We take uref
k and modify it by solving Pb. 2 to

get the safe control input ucbf
k . By applying ucbf

k to the system
dynamics (also adding a disturbance w ∈ W ⊂ R

n such that
qk+1 = f (qk, ucbf

k )+w to further enlarge the exploration space),
we find the next state qk+1, and Pb. 1 and Pb. 2 are recursively
solved until the final time is reached. Both Pb. 1 and Pb. 2 are
solved using gradient based optimization methods.

IV. RNN CONTROLLER SYNTHESIS

In this section, we describe our approach in using the direct
solution for dataset generation and training RNN controllers.

Dataset Generation In order to create a dataset for RNN,
we generate a set of M random initial states qi

0, i = 1, . . . , M,
and corresponding safety constraints bi(qk) > 0, k = 0, . . . , K,
i = 1, . . . , M. For each qi

0 and associated bi, we can use
the direct solution to generate a safe trajectory denoted by
Qi = {q0 . . . qK}i and the corresponding reference control
sequence denoted by Ui = {uref

0 . . . uref
K−1}i. Together, (Qi, Ui)

is considered as a paired state-control data. If Qi has positive
robustness, i.e., η(ϕ, Qi) > 0, the state-control pair (Qi, Ui) is
added to the dataset D (as illustrated in Fig. 1).

Feedback RNN Controller Due to the history-dependence
of STL, the control at each time depends on the current state
and the history trajectory. Formally, at each time k, uref

k =
g(q0, . . . , qk). Since neural networks are known to be universal
function approximators [24], the feedback function g can be
approximated by a RNN with weights (W1, W2):

hk = R(qk, hk−1, W1)

ûref
k = N (hk, W2), (8)

where hk is the RNN hidden state at time k, which encodes
the history trajectory, and ûref

k is the RNN output, which is
the predicted control policy. By passing the history trajectory
as the hidden state, as shown in Fig. 3, RNN can manage the
history-dependence of the STL satisfaction.

The RNN formulated in (8) is trained on the state-control
dataset D such that the prediction error between the reference

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:19:51 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: RECURRENT NEURAL NETWORK CONTROLLERS FOR SIGNAL TEMPORAL LOGIC SPECIFICATIONS SUBJECT 95

Fig. 3. Illustration of the feedback RNN controller.

control uref
k (from the dataset) and the predicted control ûref

k
at all times k = 0, 1, . . . K − 1 is minimized:

min
W1,W2

∑

D

K−1∑

k=0

‖N (R(qk, hk−1, W1), W2) − uref
k ‖2. (9)

To implement the RNN, we use a Long Short Term Memory
(LSTM) network [25]. Similar to [13], we also apply a hyper-
bolic tangent function on the RNN outputs (i.e., the predicted
control inputs at each time) in order to meet the control
constraints uk ∈ U .

To guarantee the safety of the trajectory, Pb. 2 is solved to
adjust ûref

k and obtain a safe control ûcbf
k . This safe control

ûcbf
k is applied to the system to steer it to the next state qk+1,

and the process is repeated until reaching the final time.

V. CASE STUDIES

In this section, we show the efficacy of our proposed RNN
framework and compare our results with the direct solution.
All algorithms were implemented in Python running on a Mac
with a 2.6GHz Core i7 CPU and 16GB of RAM. We used
Sequential Quadratic Programming (SQP) [26] to solve Pb. 1
and Pb. 2. The RNN was implemented using Pytorch [27].

We present two case studies, which illustrate the proposed
framework using Pb. 1.A (Case Study 1) and Pb. 1.B (Case
Study 2), respectively. For both, the cost function is defined as
J = 1

2

∑K−1
k=0 ‖uk‖2. The RNN structure consists of a LSTM

network with 2 hidden layers and 64 nodes in each layer.
The dataset D contains state-control pairs (Q, U) with random
initial states in a fixed region. The trained RNN controller is
tested on 1000 random initial states (in the same fixed region)
with random safety constraints.

Case Study 1: Consider the scenario from Ex. 1, and
assume the discrete-time dynamics of the robot is given by:

xk+1 = xk + vk

ωk
(sin (θk + ωk) − sin θk),

yk+1 = yk + vk

ωk
(cos θk − cos (θk + ωk)),

θk+1 = θk + ωk. (10)

q = (x, y, θ) is the state vector with position and orientation of
the robot, and the control input u = (v, ω) contains the forward
and angular speeds, where v ∈ [0, 1], ω ∈ [−0.5, 0.5].

Besides the fixed obstacle specified in Eq. (5), we assume
random circular obstacles emerge in the environment (see
Fig. 4). These obstacles are considered as additional safety
constraints that can be enforced by CBFs bi (from Eq. (3)):

bi(q) = (x − xo,i)
2 + (y − yo,i)

2 − r2
o,i, i = 1, 2, 3, 4 (11)

where (xo,i, yo,i) is the center of the ith circular obstacle and
ro,i is its radius.

Fig. 4. Trajectories generated using our RNN-CBF framework. Only
the solid obstacle (rectangle) was known during the RNN training. CBF
guarantees safety against the random unknown obstacles (circles) if
they exist.

TABLE I
COMPUTATION TIMES FOR THE DIRECT AND RNN SOLUTIONS

The procedure described in the direct solution (with Pb. 1.A)
is applied to generate a dataset, considering λ = 0 in (4) and
α = 0.7 in (7). The norm in (7) is also modified to (vk −
vref

k )2 + γ (ωk − ω
ref
k )2 where γ = 0.03 in order to encourage

the robot to turn instead of slowing down when approaching an
obstacle. Generating a dataset of 500 (satisfying) trajectories
takes about 2 hours, and training the RNN on this dataset for
300 epochs takes about 2 minutes.

The success rate (obtaining safe and satisfying trajectories)
for the RNN solution is 99.5%. Fig. 4 shows sample tra-
jectories for random initial conditions and safety constraints
(circular obstacles in Fig. 4a and 4b) obtained by applying
the safe control ûcbf . As illustrated, by separating the CBF
from the RNN controller, safety constraints are guaranteed to
be satisfied, even for previously unknown safety constraints,
and independent of the performance of the RNN (Fig. 4a and
Fig. 4b). Moreover, since the RNN is trained on the reference
control inputs, the trajectory generated from the predicted con-
trol inputs avoids unnecessary re-directions when no additional
safety constraints exist (Fig. 4c).

The average normalized robustness for the trajectories gen-
erated by the RNN solution is 0.0425, and for the trajectories
in dataset D from the direct solution (all of which are trajec-
tories with positive robustness) is 0.0423. Since the random
obstacles serve as disturbances during dataset generation,
no additional disturbances are added, hence the robustness
comparison of both solutions is fair. This suggests that the
performance of the RNN controller is as good as the direct
solution. Computation times for the direct solution and the
RNN solution are shown in Tab. I. The comparison confirms
that the proposed RNN controller is much faster and suitable
for real-time synthesis and planning applications.

Case Study 2: Consider a discrete-time system given by:

xk+1 = xk + ux,k,

yk+1 = yk + uy,k, (12)

in a configuration shown in Fig. 5a. q = (x, y) is the
state vector, and u = (ux, uy) is the control input with
U = [−0.6, 0.6]2. The specification is “for all times in [0, 7],
eventually visit RegA every 3 steps and eventually visit RegB
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Fig. 5. A trajectory generated using our RNN-CBF framework satisfies
ϕ2 while remaining in the safe region (the green circle).

every 3 steps”, which translates to the STL formula:

ϕ2 = G[0,7](F[0,3]RegA ∧ F[0,3]RegB). (13)

With φ = F[0,3]RegA ∧ F[0,3]RegB, we have hφ = 3. Let q0
be a random position inside RegB. We use Pb. 1.B to find
reference control inputs and generate a dataset D based on
the direct solution procedure. In this example, we set hp = 0,
λ = 10−6, and α = 0.8. We also add a random disturbance
w ∈ [−0.05, 0.05]2 to the system dynamics when generating
the dataset. Safety is specified as a circular region (Fig. 5):

b(q) = −(x − xsafe)
2 − (y − ysafe)

2 + r2
safe, (14)

with (xsafe, ysafe) and rsafe being its center and radius.
Generating a dataset of 1000 satisfying trajectories takes

about 40 minutes and training the RNN for 300 epochs takes
about 2 minutes. Fig. 5a shows a sample trajectory obtained
by applying the safe control ûcbf . As illustrated in Fig. 5b, the
system periodically visits RegA and RegB every 3 steps. In this
example, the RNN controller produces satisfying trajectories
with a success rate of 100%. The computation times for the
direct solution and RNN solution are 2.252s and 0.00885s,
respectively, which also illustrates the advantages of the RNN
controller for real-time applications.

VI. CONCLUSION AND FUTURE WORK

We proposed a RNN framework to synthesize feedback
control policies for a system under STL specifications. We
used CBF to modify the control policies predicted by the
RNN to guarantee safety, even in cases where safety con-
straints were unknown during the RNN training phase. We
showed that our proposed RNN-CBF solution can be exe-
cuted in real-time, while guaranteeing safety and achieving
high success rate for STL satisfaction. Future research inves-
tigates utilizing the proposed RNN framework in model-free
reinforcement learning approaches for control synthesis under
STL specifications.
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