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Abstract— This paper studies the design of controllers that
guarantee stability and safety of nonlinear control affine sys-
tems with parametric uncertainty in both the drift and control
vector fields. To this end, we introduce novel classes of robust
control barrier functions (RCBF) and robust control Lyapunov
functions (RCLF) that facilitate the synthesis of safety-critical
controllers in the presence of parametric uncertainty using
quadratic programming. Since the initial bounds on the system
uncertainty may be highly conservative, we present a data-
driven approach to reducing such bounds using input-output
data collected online. In particular, we leverage an integral set-
membership identification algorithm that iteratively shrinks the
set of possible system parameters online and guarantees stabil-
ity and safety during learning. The efficacy of the developed
approach is illustrated via numerical examples.

I. INTRODUCTION

Two fundamental concepts in modern nonlinear control
theory are (asymptotic) stabilization and safety: requiring a
closed-loop system to eventually reach a desired state and
requiring a closed-loop system to never do anything “bad,”
respectively. The former property can often be enforced by
constructing a suitable control Lyapunov function (CLF) –
a Lyapunov function candidate whose derivative can be
made negative at each state by appropriate control action
[1], [2]. When the property of safety is formalized using
set-theoretic notions (i.e., a system is considered safe if
its closed-loop trajectories remain within some prescribed
safe set at all times), similar Lyapunov-based techniques can
be transposed to design controllers enforcing safety of the
closed-loop system. In particular, the concept of a control
barrier function (CBF) plays a role dual to that of CLFs
for safety, allowing one to synthesize control inputs at each
state that ensure the desired safe set is forward invariant
[3], [4]. When the underlying system is control affine, CLFs
and CBFs facilitate the computation of inputs guaranteeing
stability and safety using quadratic programming, which has
allowed for safe and stable control of complex nonlinear
systems such as autonomous vehicles, bipedal robots, and
multi-agent systems (see [4] for a survey of applications).

One limitation of traditional quadratic program (QP)-
based CLF/CBF controllers is their strong reliance on an
accurate system model. Since the mathematical models used
for control design are generally a simplification of the
true underlying system dynamics, it is essential that any
controller take into account model uncertainties stemming
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from external disturbances, unknown parameters, and other
unmodeled dynamics. This paradigm has been well noted in
the literature and as a result there are many works that take
robust [5]–[10], adaptive [11]–[13], or data-driven [14]–[18]
approaches to accounting for uncertainty in the mathematical
models used to generate safe and stable controllers.

Although many approaches have been successfully devel-
oped for handling uncertainty in the system drift dynamics
or uncertainty stemming from additive disturbances [5], [7],
[8], [11]–[13], it is often more challenging to extend such
approaches to systems with actuation uncertainty. The main
technical challenge in such an extension stems from the
difficulty in developing linear constraints on the control
input whose satisfaction is sufficient for stability/safety. A
popular approach to overcoming this challenge is to derive
conic constraints on the control input whose satisfaction
is sufficient for safety, which can then be embedded in a
second order cone program (SOCP) [15], [16], [18]. SOCPs
are convex but generally more computationally intensive to
solve than a QP. Other approaches avoid the construction
of a SOCP by using the vertex representation a convex set
containing the uncertainty as constraints in a QP [6], [17].
Although this approach leads to control synthesis using a
QP, the number of constraints can grow rapidly in higher
dimensions. For example, the vertex representation of an n-
dimensional hyperrectangle results in 2n constraints, whereas
the halfspace representation only results in 2n constraints.

In this paper we develop a QP framework for robust
stabilization and safety of nonlinear control affine systems
with parametric uncertainty in both the system drift and
control directions. The key to our approach is to leverage the
dual of an auxiliary linear program (LP) to convert bilinear
constraints on the control input and uncertain parameters that
arise from accounting for the worst-case model uncertainty
into linear constraints whose satisfaction is sufficient for
stability/safety. These linear constraints essentially allow us
to use a halfspace representation of a given (polytopic)
uncertainty set, rather than a vertex representation such as in
[6], [17], which scales more favorably to higher dimensions.
Since the initial bounds on the system uncertainty may
be highly conservative, we leverage a data-driven approach
in which input-output data collected online is used to re-
duce the bounds on the system uncertainty during run-time
while maintaining stability/safety guarantees. This reduction
in uncertainty is accomplished using a novel integral set-
membership identification (SMID) algorithm for continuous-
time systems that does not require knowledge of the state
derivative. Although nonparametric approaches [14]–[18]
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account for more general classes of uncertainty, we argue that
our parametric approach is more practical — the structure
of the dynamics for many relevant systems, such as those
in robotics, are well known but often possess uncertainty in
parameters such as inertia, friction, damping, etc.

Contributions: The contributions of this paper are three-
fold. First, we present a novel duality-based approach to
develop affine constraints on the control input of systems
with parametric uncertainty in both the drift and control
vector fields; such constraints can be embedded in a QP to
compute robust safe and stabilizing controllers. Second, we
outline a novel integral SMID algorithm that learns the true
set of possible system parameters using data collected online,
and reduces the level of uncertainty in the system model at
run-time. Third, we present numerical examples comparing
the performance of the developed method with and without
the SMID algorithm active. Due to space limitations, all
proofs and additional numerical examples are provided in
an extended version of this paper [19].

Notation: For a continuously differentiable function h :
Rn → R and a vector field f : Rn → Rn we use Lfh(x)
to denote the Lie derivative of h along f . The operator ∥·∥
denotes the 2-norm. A continuous function α : R → R is
an extended class K function if α(0) = 0 and α is strictly
increasing. For x ∈ Rn, diag(x) ∈ Rn×n returns a diagonal
matrix whose elements are the components of x. The notation
1n := [1 · · · 1]⊤ ∈ Rn stands for a vector of ones.

II. PRELIMINARIES

Consider a nonlinear control affine system of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the system state, u ∈ U ⊆ Rm is the
control input, f : Rn → Rn is a locally Lipschitz vector
field modeling the system drift, and g : Rn → Rn×m is a
locally Lipschitz matrix whose columns capture the control
directions. Given a locally Lipschitz feedback control policy
k : Rn → Rm, let x : I → Rn be the resulting solution of
the closed-loop system (1) under the control signal u(t) =
k(x(t)) defined on some maximal interval of existence I ⊆
R≥0. We say that a closed set C ⊂ Rn is forward invariant
for the closed-loop system (1) if any solution x(·) starting in
C satisfies x(t) ∈ C for all t ∈ I. As set invariance is often
synonymous with safety, we refer to sets C that are forward
invariant for (1) as safe sets. In this paper, we consider safe
sets characterized as the zero superlevel set of a continuously
differentiable function h : Rn → R as

C := {x ∈ Rn |h(x) ≥ 0}. (2)

The concept of a control barrier function (CBF) [3] provides
a constructive tool for the design of controllers that render
sets of the form (2) forward invariant and thus safe.

Definition 1 ([3]). A continuously differentiable function
h : Rn → R is said to be a control barrier function (CBF)
for (1) on a set C as in (2) if there exists an extended class

K function α such that for all x ∈ C

sup
u∈U

{Lfh(x) + Lgh(x)u} ≥ −α(h(x)). (3)

Importantly, a CBF h induces a set-valued map Kcbf(x)
that associates to each x ∈ C a set Kcbf(x) ⊆ U of control
values satisfying the condition from (3) as

Kcbf(x) := {u ∈ U |Lfh(x)+Lgh(x)u ≥ −α(h(x))}. (4)

For each x ∈ C, (4) captures affine constraints on the control
input, allowing control values satisfying the CBF condition
(3) to be computed by solving the quadratic program (QP)

min
u∈U

1
2∥u− kd(x)∥2

subject to Lfh(x) + Lgh(x)u ≥ −α(h(x)),

where kd : Rn → Rm is any locally Lipschitz nominal
control policy. The main result with regards to CBFs is that
applying any locally Lipschitz control policy contained in
Kcbf(x) to (1) renders C forward invariant for the closed-
loop system [3]. The proofs of many CBF-related results are
facilitated by the following comparison lemma.

Lemma 1 ([20]). Consider a locally Lipschitz extended class
K function α and let ḣ : [t1, t2] → R be absolutely continu-
ous. Provided h(x(t1)) ≥ 0 and ḣ(x(t)) ≥ −α(h(x(t))) for
almost all t ∈ [t1, t2], then h(x(t)) ≥ 0 for all t ∈ [t1, t2].

Typically CBFs are used in conjunction with control
Lyapunov functions (CLFs) [1], [2] to synthesize control
policies guaranteeing stability and safety.

Definition 2 ([4]). A continuously differentiable positive
definite function V : Rn → R≥0 is said to be a control
Lyapunov function (CLF) for (1) on a set D if there exists a
class K function γ such that for all x ∈ D

inf
u∈U

{LfV (x) + LgV (x)u} ≤ −γ(V (x)). (5)

Similar to CBFs, the condition in (5) constitutes an affine
constraint on the control input, allowing stabilizing control
inputs to be computed at any x ∈ D by solving a QP [2]–[4].

III. PROBLEM FORMULATION

The primary objective of this paper is to develop CBF-
based control policies for systems of the form (1) with
parametric uncertainty in the vector fields f, g. To this end,
we consider the following uncertain nonlinear system

ẋ = f(x) + g(x)u+∆f(x) + ∆g(x)u, (6)

where f, g capture known nominal components of the dy-
namics and ∆f : Rn → Rn, ∆g : Rn → Rn×m represent
unknown dynamics, assumed to satisfy the following:

Assumption 1. The uncertain dynamics ∆f, ∆g can be
decomposed as

∆f(x) =

p∑
i=1

∆fi(x)θfi = F (x)θf ,

∆g(x)u =

m∑
i=1

∆gi(x)θgiui = G(x)diag(u)θg
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where F (x) := [∆f1(x) · · · ∆fp(x)] ∈ Rn×p and G(x) :=
[∆g1(x) · · · ∆gm(x)] ∈ Rn×m are known matrix-valued
functions and θf := [θf1 · · · θfp ]⊤ ∈ Rp, θg :=
[θg1 · · · θgm ]⊤ ∈ Rm are vectors of unknown parameters.

The above assumption implies that (6) can be seen as
affine in the parameters, i.e.,

ẋ = f(x) + g(x)u+ φ(x, u)θ, (7)

where φ(x, u) := [F (x) G(x)diag(u)] ∈ Rn×(p+m) is a
composite regression matrix and θ := [θ⊤f θ⊤g ]

⊤ ∈ Rp+m

is a composite vector of uncertain parameters.

Assumption 2. There exist known constants θi, θi ∈ R for
all i ∈ {1, . . . , p+m} and a hyperrectangle Θ := [θ1, θ1]×
· · · × [θp+m, θp+m] ⊂ Rp+m such that θ ∈ Θ.

Assumption 2 implies the set of possible parameters Θ
admits a halfspace representation as Θ = {θ ∈ Rp+m |Aθ ≤
b}, where A, b capture linear halfspace constraints.

Problem 1. Given the uncertain system (7) satisfying As-
sumptions 1-2 and a safe set C ⊂ Rn as in (2), find a control
policy u = k(x) that guarantees the forward invariance of C
and/or asymptotic stability of the origin.

IV. A DUALITY-BASED APPROACH TO ROBUST
STABILITY AND SAFETY

A. Robust Control Barrier Functions

In this section, we develop a CBF approach that robustly
accounts for all possible realizations of the system uncer-
tainty to address Problem 1. Importantly, we show how
this can be accomplished while retaining the traditional QP
structure used in CBF approaches by exploiting the dual of
a particular linear program (LP). We begin by introducing
the notion of a robust CBF for systems of the form (7).

Definition 3. A continuously differentiable function h :
Rn → R is said to be a robust CBF (RCBF) for (7) on
a set C ⊂ Rn as in (2) if there exists an extended class K
function α such that for all x ∈ C

sup
u∈U

inf
θ∈Θ

ḣ(x, u, θ) ≥ −α(h(x)), (8)

where ḣ(x, u, θ) = Lfh(x) + Lgh(x)u+ Lφh(x, u)θ.

Similar to the standard CBF case, let

Krcbf (x) :={u ∈ U |Lfh(x) + Lgh(x)u

+ inf
θ∈Θ

Lφh(x, u)θ ≥ −α(h(x))}

be, for each x ∈ C, the set of control values satisfying the
condition from (8). The following lemma shows that any
locally Lipschitz control policy k(x) ∈ Krcbf (x) renders C
forward invariant for the closed-loop system.

Lemma 2. If h is a RCBF for (7) over a set C as in (2),
Krcbf(x) is nonempty for each x ∈ C, and Assumptions 1-2
hold, then any locally Lipschitz control policy u = k(x)
satisfying k(x) ∈ Krcbf (x) for each x ∈ C renders C
forward invariant for the closed-loop system.

Although the above lemma demonstrates that the class of
CBF from Def. 3 provides sufficient conditions for safety,
this formulation is not appealing from a control synthesis
perspective. In particular, the minimax nature and coupling
of control and parameters in Def. 3 will lead to bilinear
constraints on the control and parameters and thus cannot
be directly cast as a QP. To remedy this, note that the inner
minimization problem from (8) can be written as the LP1:

inf
θ

Lφh(x, u)θ

subject to Aθ ≤ b.
(9)

The dual of (9) is

sup
µ≤0

b⊤µ

subject to µ⊤A = Lφh(x, u),
(10)

where µ is the dual variable. In light of (9) and (10) we show
in Theorem 1 that one can solve the following QP

min
u∈U, µ≤0

1
2∥u− kd(x)∥2

subject to Lfh(x) + Lgh(x)u+ b⊤µ ≥ −α(h(x))

µ⊤A = Lφh(x, u),

(11)

with decision variables u and µ, to compute a controller
satisfying the RCBF conditions from Def. 3.

Theorem 1. Let the assumptions of Lemma 2 hold. Then
any locally Lipschitz solution to (11), u = k(x), renders C
forward invariant for the closed-loop system.

Remark 1. An alternative way to replacing (9) with (10)
would be to use the fact that, for an LP, the optimum
value is achieved at a vertex of the feasible set. Therefore,
it is possible to replace the constraint given by (9) with
an enumeration of constraints obtained by replacing θ with
each corner of the feasible polyhedron Aθ ≤ b. In general,
however, this would result in a number of constraints that
grows combinatorially in the number of half spaces in Aθ ≤
b. Intuitively, this is avoided in (10) because the dual variable
µ automatically selects the worst-case corner.

B. Robust Control Lyapunov Functions

The duality-based approach developed for robust safety
naturally extends to robust stabilization problems using the
notion of a robust CLF for systems of the form (7). For all
results in this section we make the following assumption.

Assumption 3. The uncertain system (7) satisfies f(0) =
0, which implies that φ(0, 0) = 0 and the origin is an
equilibrium point of the unforced system.

Definition 4. A continuously differentiable positive definite
function V : Rn → R≥0 is said to be a Robust CLF (RCLF)
for (7) on a set D ⊆ Rn if there exists a class K function γ
such that for all x ∈ D

inf
u∈U

sup
θ∈Θ

V̇ (x, u, θ) ≤ −γ(V (x)), (12)

1Note that Lφh(x, u) is an affine function of u.
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where V̇ (x, u, θ) = LfV (x) + LgV (x)u+ LφV (x, u)θ.

Now consider the set

Krclf (x) :={u ∈ U |LfV (x) + LgV (x)u

+ sup
θ∈Θ

LφV (x, u)θ ≤ −γ(V (x))},

of all control values satisfying the condition from (12). The
following lemma shows that any locally Lipschitz controller
satisfying the conditions of Def. 4 renders the origin asymp-
totically stable for (7).

Lemma 3. If V is a RCLF for (7) on a set D containing
the origin, Krclf (x) is nonempty for each x ∈ D, and
Assumptions 1-3 hold, then any locally Lipschitz control
policy u = k(x) satisfying k(x) ∈ Krclf (x) for each x ∈ D
renders the origin asymptotically stable for (7).

Following the same duality-based approach as in the pre-
vious section we can make the synthesis of robust stabilizing
controllers more tractable than as presented in Def. 4. The
dual of the LP supθ∈Θ LφV (x, u)θ is given by

inf
λ≥0

b⊤λ

subject to λ⊤A = LφV (x, u),
(13)

where λ is the dual variable. This allows to generate inputs
satisfying condition (12) by solving the following QP:

min
u∈U, λ≥0

1
2∥u∥

2

subject to LfV (x) + LgV (x)u+ b⊤λ ≤ −γ(V (x))

λ⊤A = LφV (x, u),
(14)

as shown in the following theorem.

Theorem 2. Let the assumptions of Lemma 3 hold. Then,
any locally Lipschitz solution to (14), u = k(x), renders the
origin asymptotically stable for the closed-loop system.

If the sufficient conditions of Theorems 1 and 2 are sat-
isfied, inputs enforcing stability and safety can be computed
for each x ∈ C by taking the solution to (14) as kd in (11).

V. ONLINE LEARNING FOR UNCERTAINTY REDUCTION

The previous section demonstrates how to robustly account
for system uncertainty to guarantee stability and/or safety;
however, the initial bounds on the system uncertainty may
be highly conservative, which could restrict the system from
exploring much of the safe set and, as illustrated in Sec.
VI, could produce controllers that require large amounts
of control effort to enforce stability and safety. A more
attractive approach is to leverage input-output data generated
by the system at run-time in an effort to identify the system
uncertainty, which can be used to reduce the conservatism
of the approach outlined in the previous section. To this end,
we present an integral variant of the SMID algorithm [21]
commonly employed in the model predictive control (MPC)
literature [22], [23] (and recently used in the CBF literature
[12]) to construct the set of possible system parameters that
are consistent with the input-output data observed at run

time. Since MPC methods typically operate in discrete-time,
classical SMID algorithms only require measurements of the
system state. When such approaches are used in continuous-
time [12], such an approach requires measurements or nu-
merical computations of state derivatives, which are gen-
erally unavailable or noisy, respectively. Taking inspiration
from [24], we outline in this section a SMID algorithm for
continuous-time systems that only requires knowledge of the
system state and control input.

Following the approach from [24], let ∆t ∈ R>0 be the
length of an integration window and note that over any finite
time interval [t − ∆t, t] ∈ I, the Fundamental Theorem of
Calculus can be used to represent (7) as∫ t

t−∆t

ẋ(s)ds︸ ︷︷ ︸
∆x(t)

=

∫ t

t−∆t

f(x(s))ds︸ ︷︷ ︸
F(t)

+

∫ t

t−∆t

g(x(s))u(s)ds︸ ︷︷ ︸
G(t)

+

∫ t

t−∆t

φ(x(s), u(s))ds︸ ︷︷ ︸
S(t)

θ.

Our goal is now to use the relation

∆x(t) = F(t) + G(t) + S(t)θ ∀t ≥ ∆t, (15)

to shrink the set of possible parameters Θ using input-
output data collected online. To this end, let H(t) :=

{∆xj(t), Fj(t), Gj(t), Sj(t)}M(t)
j=1 be a time-varying history

stack with M(t) ∈ N entries, where ∆xj(t) := ∆x(ti),
Fj(t) := F(ti), Gj(t) := G(ti), and Sj(t) := S(ti) for
some2 ti ∈ [∆t, t]. We allow for the number of entries in
the history stack M(t) to vary with time since the history
stack may be initially empty and redundant data may be
removed as new data becomes available [22], and denote by
M(t) = {1, . . . ,M(t)} the index set of data points at time t.
Letting {tk}k∈Z≥0

be a strictly increasing sequence of times
with t0 = 0, consider the corresponding sequence of sets

Ξ0 =Θ

Ξk ={θ ∈ Ξk−1 | − ε1n ≤ ∆xj(tk)−Fj(tk)− Gj(tk)

− Sj(tk)θ ≤ ε1n, ∀j ∈ M(tk)},

which is the set of all parameters that approximately satisfy
(15) for each j ∈ M(tk) with precision3 ε ∈ R>0. In
practice, the set Ξk can be computed by solving, for each
i ∈ {1, . . . , p+m}, the pair of LPs

θki = argmin
θ

θi

s.t. ∆xj(tk)−Fj(tk)− Gj(tk)− Sj(tk)θ ≤ ε1n ∀j
∆xj(tk)−Fj(tk)− Gj(tk)− Sj(tk)θ ≥ −ε1n ∀j
Ak−1θ ≤ bk−1,

(16)

2The interpretation of the relation Fj(t) := F(ti) is that Fj(t) is the
value of F stored in the jth slot of the history stack at time t, which may
have been recorded as some past time ti ≤ t.

3The constant ε can be seen as a parameter governing the conservativeness
of the identification scheme, which can be used to account for disturbances,
noise, unmodeled dynamics, and/or numerical integration errors.
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θ
k

i = argmax
θ

θi

s.t. ∆xj(tk)−Fj(tk)− Gj(tk)− Sj(tk)θ ≤ ε1n ∀j
∆xj(tk)−Fj(tk)− Gj(tk)− Sj(tk)θ ≥ −ε1n ∀j
Ak−1θ ≤ bk−1,

(17)
where θi is the ith component of θ and Ak−1, bk−1 capture
the halfspace constraints imposed by Ξk−1. The updated set
of possible parameters is then taken as

Ξk = [θk1 , θ
k

1 ]× · · · × [θkp+m, θ
k

p+m]. (18)

The following result shows that the true parameters always
belong to the set of possible parameters generated by the
integral SMID scheme.

Lemma 4. Provided that Assumptions 1-2 hold and the
sequence of sets {Ξk}k∈Z≥0

is generated according to (16)-
(18), then Ξk ⊆ Ξk−1 ⊆ Θ and θ ∈ Ξk for all k ∈ Z≥0.

The following propositions demonstrate that if h and V
are a RCBF and RCLF, respectively, for (7) with respect to
the original parameter set Θ, then they remain so for the
parameter sets generated by the SMID algorithm.

Proposition 1. Let h be a RCBF for (7) on a set C ⊂ Rn

in the sense that there exists an extended class K function α
such that (8) holds for all x ∈ C. Provided the assumptions
of Lemma 4 hold, then

sup
u∈U

inf
θ∈Ξk

ḣ(x, u, θ) ≥ −α(h(x)),

for all x ∈ C and all k ∈ Z≥0.

Proposition 2. Let V be a RCLF for (7) on a set D ⊆ Rn in
the sense that there exists a class K function γ such that (12)
holds for all x ∈ D. Provided the assumptions of Lemma 4
hold, then

inf
u∈U

sup
θ∈Ξk

V̇ (x, u, θ) ≤ −γ(V (x)),

for all x ∈ D and all k ∈ Z≥0.

Remark 2. Each uncertainty set generated by the SMID
algorithm induces a different control policy and hence a
different closed-loop system. Thus, as the uncertainty set
is updated over time, the original system (7) becomes
a switched system with switching instances taking place
whenever the uncertainty set is updated. Since the derivative
of the RCLF along each subsystem is bounded by the
same negative definite term, the RCLF serves as a common
Lyapunov function [25, Ch. 2], thereby preserving stability
under arbitrary switching.

VI. NUMERICAL EXAMPLES

We consider the scenario from [5], [26], which involves
a two-dimensional system of the form (1) with f(x) =
[θ1x1 + θ2x2 θ3x

3
1]

⊤ ∈ R2 and g(x) = [0 θ4x2]
⊤ ∈ R2,

where θ1 = −0.6, θ2 = −1, θ3 = 1, θ4 = 1 are the
uncertain parameters. This system can be recast in the form
of (7) by defining f(x) = [0 0]⊤, g(x) = [0 0]⊤, F (x) =

−4 −3 −2 −1 0 1

−2

0

2

SMID update at t = ∆t

x1

x
2

SMID Robust
Baseline ∂C

Fig. 1. Trajectory of the nonlinear system under various controllers.
The solid blue curve depicts the trajectory with SMID, the dotted orange
curve depicts the trajectory without SMID, the purple curve illustrates the
trajectory under a standard CBF-QP with exact model knowledge, and the
black curve denotes the boundary of the safe set.

[x1 x2 0; 0 0 x3
2], G(x) = [0 x2]

⊤ with θf = [θ1 θ2 θ3]
⊤

and θg = θ4. The uncertain parameters are assumed to lie in
the set Θ = [−1.2,−0.2]×[−2,−0.1]×[0.5, 1.4]×[0.8, 1.2].
The objective is to regulate the system to the origin while
remaining in a set C ⊂ R2 characterized as in (2) with
h(x) = 1 − x1 − x2

2. The regulation objective is achieved
by considering the RCLF candidate V (x) = 1

4x
4
1 + 1

2x
2
2

with γ(s) = 1
2s and the safety objective is achieved by

considering the RCBF candidate with h as above and α(s) =
s3. Given a RCLF, RCBF, and uncertainty set Θ, one can
form a QP as noted after Theorem 2 to generate a closed-loop
control policy that guarantees stability and safety provided
the sufficient conditions of Theorems 1 and 2 are satisfied.
To illustrate the impact of the integral SMID procedure,
simulations are run with and without SMID active, the results
of which are provided in Fig. 1-2. The parameters associated
with the SMID simulation are ∆t = 0.3, ε = 0.1, M = 20.
The M data points in LPs (16) and (17) are collected using
a moving window approach, where the M most recent data
points are used to update the uncertainty set. As illustrated
in Fig. 1 the trajectory under the RCLF-RCBF-QP achieves
the stabilization and safety objective with and without SMID;
however, the trajectory without any parameter identification
is significantly more conservative and is unable to approach
the boundary of the safe set. In contrast, the trajectory with
SMID is able to approach the boundary of the safe set as
more data about the system becomes available. In particular,
both trajectories follow an identical path up until t = ∆t,
at which point the set of possible parameters is updated,
causing the blue curve (SMID) to deviate from the orange
curve (no SMID) in Fig. 1. In fact, even after the first
SMID update the blue curve closely resembles the purple
curve, which corresponds to the trajectory under a CBF-
QP with perfect model knowledge. Although the parameters
have not been exactly identified by the end of the simulation
(see Fig. 2), the modest reduction in uncertainty offered by
the SMID approach greatly reduces the conservatism of the
purely robust approach.
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Fig. 2. Set-based estimate of the uncertain parameters for the nonlinear system. From left to right, the plots illustrate the uncertainty set Θ projected onto
the θ1 × θ2, θ1 × θ3, and θ1 × θ4 axes, respectively. In each plot the pale rectangle represents the original uncertainty set, the dark rectangle represents
the final uncertainty set generated by the SMID algorithm, and the dot represents the true values of the parameters.

VII. CONCLUSIONS

This paper introduced a methodology for robust stabiliza-
tion and safety of nonlinear control systems in the presence
of parametric uncertainty in both the drift and control vector
fields. Crucial to this approach are a class of robust CBF and
CLF that facilitate the computation of safe and stable control
inputs using quadratic programming even when uncertain
terms appear alongside the control input. The key insight
enabling this approach was that the dual of an auxiliary LP
can be used to convert bilinear constraints on the control
and parameters into linear constraints that can be embedded
within a QP. This robust approach was then combined
with data-driven techniques in the form of a novel integral
SMID algorithm that allows for the level of uncertainty to
be reduced online while maintaining stability and safety
guarantees. Potential directions for future research include
an investigation into feasibility of the proposed QPs.
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