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Abstract— We propose a novel approach for filtering that
is inspired by Complex Cell Networks (CCN) in the primary
visual cortex of mammals; our aim is to emulate the robustness
of the biological system, showing graceful degradation in face
of gross deterioration of the input. Instead of relying on energy
minimization as in frequency-based filter design, or on Bayes’
theorem as in statistical filtering, our formulation is founded
on three principles that have been observed in real neural
responses: 1) winner-take-all, where perceptual ambiguity is
solved by focusing on the strongest signal; 2) persistence, where
information is fused across time to lessen the impact of noise,
outliers, and temporary cancellations in the input data; and
3) boundedness, where the responses in the filter are bounded to
be non-negative and below a maximum value. In neuroscience,
the typical goal is to find models that match and explain
measurements from a biological system. In this paper, we take
an engineering approach, where we encode the three properties
above as mathematical constraints, and find filter parameters
that guarantee convergence of the filter (for constant, bounded
inputs), optimize bounds on the convergence rate, and improve
sparsity of the filter kernel; overall, the filter is obtained from
the solution to a Linear Program (LP). As a proof-of-concept,
we integrated the proposed filter architecture with a neural
network to estimate the vehicle speed solely based on camera
images in extremely noisy environments.

I. INTRODUCTION
Fitering, in broad terms, aims to improve the reliability and

accuracy of signals recovered from noisy measurements. It
is ubiquitous in controls [13], localization [25], robot vision
[7], signal processing [5], and finance [11] (to name just a
few). A typical example is to estimate information about the
state of a vehicle (e.g., the speed of a self-driving car) based
on an input signal obtained from a sensor (e.g., a video from
a front-mounted camera). In real-world situations, the input
is corrupted, sometimes severely, by noise and hard-to-model
exogenous disturbances (e.g., bad weather or dust in front
of the camera). The goal of filtering is to extract an output
signal that is as close as possible to the ground truth.

Filtering algorithms can be roughly divided into stochastic
Bayesian-based and deterministic frequency-based methods.
Stochastic Bayesian-based methods [8], [23] are the most
common in robotics. In this approach, each signal is rep-
resented as a Markov random process, and estimation is
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performed by predicting its distribution and updating it
with measurements at each time step. For linear-Gaussian
systems, the optimal solution is given by the Kalman Filter
(KF) [16]. For nonlinear systems, popular approaches are
the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter [15], which, however, give only approximate
solutions to the underlying complete Bayesian problem.
Kalman Filtering methods and their extensions have been
widely applied, e.g., to pose tracking, visual odometry, and
Simultaneous Localization And Mapping (SLAM) [10], [21].
Their fundamental limitation is the assumption that the noise
has always a Gaussian distribution, which makes them ill-
suited to deal with outliers and other gross disturbances
of the input signal. Particle filters [14] represent arbitrary
distributions of estimated variables as mixtures of Gaussian
random variables (particles). Compared to the KF and its
extensions, particle filters can give approximate solutions for
nonlinear non-Gaussian systems, but have significantly larger
computational costs that limit their scalability.

Frequency-based methods assume that the noise can be
separated from the main signal and removed based on
differences in the frequency representations. In this field,
the 1¤ filter [6] is a low-pass filter that reduces lag and
jitter by varying the cutoff frequency based on the rate of
change of the input signal. The authors of [17] proposed
a double exponential smoothing-based method (DESP) for
tracking signals, which proposes a linear filter based on the
approximation of the system as a second-order integrator.
In this particular line of work, the focus is on minimizing
the computation overhead (with respect to the KF, which is
already considered fast for stochastic approaches). However,
similarly to the KF, these approaches are sensitive to outliers.

While the primary focus of the paper is on a novel filter
formulation, we do include a proof-of-concept test on a
velocity estimation task from monocular images. We estimate
the vehicle speed using a convolutional neural network and
then apply our filter to improve reliability. For this problem,
Visual Odometry (VO) and Visual Inertial Odometry (VIO)
algorithms are standard solutions. These methods provide
accurate results in general. However, they can be brittle and
completely fail when the stream of images is corrupted.

More broadly, our work is part of the area of bioinspired
algorithms, which have been used in several domains, includ-
ing SLAM [20], controls [18] and path planning [19]. The
most relevant work to ours is [24], in which the dynamic
model of neurons with manually tuned gains is exploited as a
low-pass filter in order to smooth the jumps of a backstepping
tracking controller. Compared to this category of works, our

IEEE Control Systems Letters paper presented at
2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2806-6/$31.00 ©2023 AACC 2887

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 05:20:28 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20
bins

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ag

ni
tu
de

Output
Input

(a)

0 5 10 15 20
bins

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ag

ni
tu
de

Output
Input

(b)

0 5 10 15 20
bins

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ag

ni
tu
de

Output
Input

(c)

0 5 10 15 20
bins

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ag

ni
tu
de

Output
Input

(d)

Fig. 1: Desired properties and progression of the filter for a simple constant input signal. The input and output
signals(histograms) are plotted as red and blue bars, respectively. 1a-1c show the progression of the filter. 1a is the
output of the filter initially , 1b is an example in the transition phase and 1c is the output of the filter after convergence. 1c
demonstrates (P1). Although the input contains multiple modes, only the global maximum is amplified. 1c and 1d are two
sequential frames, illustrating (P2) behavior . While the input signal is flattened immediately, the filter still holds the position
of the last peak due to its short-time memory.

paper is the only one focusing on filtering with principled
guarantees on the behavior of the filter.

Regarding to work in neuroscience, this paper builds on the
observed behavior of complex cell layers in the primary visual
cortex of mammals. A standard model for this behavior was
first given in [4], which proposed a histogram-based filter with
two layers: a first layer with a bank of tuned-response neurons
that respond to a specific narrow range of the input signal
(called stimulus in neuroscience), and the second layer with
recursive neurons that implement a linear convolution (with
a cos(·)-shaped kernel) followed by a rectifying nonlinearity
(ReLU function). This model was proposed to capture three
important properties of real biological systems:
(P1) Winner takes all: If the input signal has multiple local

maxima, the model amplifies the part of the signal in
correspondence to the global one (see Figure 1c for an
illustration); this selectivity can be achieved only with
some type of nonlinearity in the model.

(P2) Sustained activity: The model include a form of short-
term memory that allows it to compensate for significant
but short-lived input disturbances (e.g., temporary occlu-
sions of the stimulus, see Figure 1d for an example); this
is implemented through the recursive connections of the
neurons in the second layer.

(P3) Boundedness: The neuron responses are always positive
and bounded; this implies a form of stability, since this
property prevents unbounded responses.

The model given in [4], while being able to qualitatively
capture behaviors (P1)-(P3), has several shortcomings (see
also Section III-B) First, it uses a cosine kernel, which is a
hand-crafted choice, and does not appear to be optimal under
any particular criterion. Second, the kernel and additional
parameters of the filter need to be manually tuned in order to
obtain stability (for which [4] does not give formal results);
in fact, this model does not enforce an upper limit on the
output signal. Third, the proposed kernel has support over the
entire domain of the input histogram, which implies direct
connections between every pair of neurons in the second
layer; this requires more computations, and is not biologically

realistic.
Finally, the LP formulation of our problem is reminiscent

of the work in [3]; however, in that case it was used for
synthesizing controllers for navigating in an environment,
while here we consider different sets of constraints derived
from the filtering problem.

Paper contributions. We propose a novel filtering technique
that generalizes the filter architecture of [4], but formally
encodes properties (P1)-(P3) into a Linear Program (LP),
whose solution provides all the filter coefficients. In addition
to providing some theoretical guarantees on the behavior of
the filter, we show through our proof-of-concept that, by
mimicking the properties of biological systems, our filter
shows promising robustness and computational properties
where traditional solutions from robotics can be fragile.

Our main contributions can be summarized as:
• We introduce a neuro-inspired filter that reduces the

effect of outliers and noise by following the global max-
imum of a signal in real time with minimal processing.

• We provide a more systematic method to model a
complex cell network in primary visual cortex, and
find the model parameters through a linear optimization
problem with linear and Control Barrier Function (CBF)
constraints to guarantee the desired properties.

• In a proof-of-concept application, we use our filter to
track a vehicle’s neural network-estimated velocity. This
neural network estimates vehicle speed from images
streamed from a mounted camera. Our filter improves
the overall performance in the presence of outliers that
are in general challenging for standard neural network
approaches; this is true, in particular, when some frames
are intermittently and heavily corrupted, thanks to the
short memory built in the filter. As a result, our filter
allows to estimate the speed of a vehicle more robustly
than existing visual odometry (VO) approaches.

Paper outline. The remainder of the paper is organized as
follows. Section II, contains our notation and preliminaries.
We formulate the desired properties of the filter as linear
constraints in section III. Section IV introduces our filter
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(a)

(b)

Fig. 2: Comparing our proposal architecture (2b)of complex
layer with the prior one(2a). By introducing Vsum neuron
the number of connection is greatly reduced since neurons
are connected more locally.

architecture and our design approach based on a Linear
Program. Section V analyzes the non-linearity of the proposed
filter and presents results on boundedness and stability of
the non-linear model. Finally, Section VI demonstrates the
application of our filter to a VO task as a proof of concept
evaluation.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Definitions and notation

We use [v]i to indicate the i-th element (bin) of a vector
v and J for a set of indices with cardinality n. We use ej
to denote a unit vector with all the entries equal to zero
except for [ej ]j = 1. A Rectified Linear Unit function [1] is
denoted by ReLU. We use 1 to denote the vector of all ones.
We consider a 1-D continuous discrete-time random process
x ∈ I and a partition of the domain, I =

⋃n
i=1 Ii, where

each Ii is a disjoint interval.
Definition 1: A histogram hist of x is defined as a non-

normalized probability mass function over the elements of
Ii such that [hist(x)]i is proportional to the probability of x
falling in the i-th element Ii.

Example 1: In our proof of concept case study, we cast
the problem of estimating the speed (i.e., magnitude of

the velocity) x of a camera mounted on a vehicle as a
classification problem. The elements of the partition Ii
represent different bins for the value of x. Our goal is to find
the weights of a neural network that outputs a vector h ∈ Rn

as a prediction for hist(x).
The following definitions are used to simplify the discus-

sion of the constraints for our Linear Programming solution.
Definition 2: The mode index of a histogram v is defined

as im = argmaxi[v]i; the mode m(h) of a histogram is
defined as the center of the interval Iim . The margin of the
mode is given by [h]im −maxi ̸=im [h]i.

Definition 3: Given two vectors g ∈ Rd1 , v ∈ Rd2 , with
d2 > d1, the same-size convolution g ∗ v is defined as

[v ∗ g]k =
∑

1≤j≤d2

[g]j [v]k−j+1, k ∈ {1, . . . , d2}. (1)

Fact 1: There exists a matrix Ak ∈ Rd1,d2 such that

[v ∗ g]k = vTAkg (2)
Proof: The matrix Ak has 1’s in correspondence of the

terms in the summation (1), and zeros elsewhere.

B. Zeroing Control Barrier Functions for Linear Constraints

In this paper we will derive dynamic constraints based on
Zeroing Control Barrier Functions (ZCBFs) [2]. We review
the theory below, but restricted to the specific case of linear
constraints (although ZCBFs can generally be applied also to
nonlinear differentiable constraints). For the sake of brevity,
we define subsets of R based on simple linear inequalities of
the form C≤M = {x : x ≤ M}, and C≥M = {x : x ≥ M},
where x ∈ R,M ∈ R. The following proposition provides
a condition on a state x ∈ R that makes these sets forward
invariant.

Proposition 1: Given any constant c > 0 and x(0) = x0 ∈
C<M (respectively, x0 ∈ C>M ), if ẋ satisfies

ẋ+ c(x−M) ≤ 0

(respectively, ẋ+ c(x−M) ≥ 0),
(3)

for all t > 0, then x(t) ∈ C<M (respectively, x(t) ∈ C>M )
for all t > 0.

Proof: The claim is a corollary of [2, Proposition 3].

III. PROBLEM FORMULATION

For our problem we consider a continuous time random
process x(t) ∈ R, for which we assume that we observe an
histogram h = hist(x) + ε ∈ Rn, where ε is a stochastic
process that can have a multimodal distribution, contain
outliers, or cancel x completely for brief periods of time.

Example 1 (continued): Images from the camera can occa-
sionally be blurry, or have obstructed regions due to weather
conditions or large objects moving within the field of view
of the camera. This might cause the large deviations ε in the
observed histogram h.
Our goal is to produce a sequence of histograms v(t) which
is a filtered version of h such that m(v) is close to x.
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A. From Properties to Linear Constraints

We now revisit properties (P1)-(P3) to formally define them
as linear constraints on v and v̇.
(P1) implies that, over time, [v]im must grow faster than

other bins, i.e.,

˙[v]im − ˙[v]j ∈ C≥0, ∀j ∈ J , j ̸= im(h). (4)

(P2) requires that v is produced by some process that has
memory of past values, i.e., by a filter

v̇ = f(h, v; g), (5)

where g is a vector of parameters. The specific form of
the function f is very important to achieve stability and
other properties and is discussed in more detail below.

(P3) means that the values in v must be bounded from below
by zero, and from above by a (user-defined) constant
Mv , i.e.,

[v(t)]i ∈ C≥0 ∩ C≤Mv
∀i ∈ J . (6)

Additionally, we will focus on designing a filter that
satisfies all the properties (P1)-(P3) for all inputs h that
have the following properties: First, they are bounded as :

[h]i ∈ C≥0 ∩ C≤Mh
∀i ∈ J , j ̸= im(h). (7)

Second, [h]im is larger than other bins by at least δ, which
can be expressed as:

[h]im − [h]i ∈ C≥δ ∀i ∈ J , j ̸= im(h), (8)

where δ > 0 is an arbitrary small number. The only purpose
of constraint (8) is to exclude cases where we have two or
more modes that are exactly the same.

B. Existing model from neuroscience

Numerous studies have been conducted on the primary
visual cortex to mathematically model its responses [9].
According to these studies, in order to determine the direction
of movement, the visual information is first processed
by layers of simple cells (see Figure 3a for a schematic
representation of the overall process). In these simple layers,
each neuron is stimulated by (i.e., tuned to) the motion in
a specific direction. The output of this layer is often quite
noisy. For instance, in our example, multiple apparent motions
can appear in different directions can exist in different parts
of the image. The layer of simple cells is connected to a
layer of complex cells, which can robustly determine the
direction of movements by selectively amplifying the input
with the strongest response. Figure 1c shows an example.
The following dynamic model was proposed in [9] to capture
the behaviors of complex cells:

[v̇]i = −vi +ReLU([h]i + vTÃig0), (9)

where the kernel g0 is defined as [g0]i = −λ0 + λ1cos(2i),
with λ0, λ1 denoting tuning parameters. Note that in [9],
the domain I of the histogram represents a view-angle θ
in the range [−π/2, π/2], and the matrices Ãi (which are

(a)

(b)

Fig. 3: High-level system comparison between the biological
system (3a) and our version (3b . In the biological system,
the visual information is initially processed by simple cells,
whose output can have multi-excitation at each instance. These
cells are connected to complex cells, and they eliminate the
ambiguity of the input signal due to recurrent connections,
resulting in a short-time memory. In our case study, we
replicate this system. First, a convolutional neural network
(CNN) estimates the speed of the camera based on images.
Since it does not have any recurrent connections, it is prone
to noise. We add our filter to this pipeline to enhance the
robustness of the estimation by fusing the output of the CNN
through time.

analogous to the matrices Ai defined in Fact 1) implement
a cyclic convolution. While this model explicitly captures
(P2) and (P1), it does not completely enforce (P3). More
specifically, it does not enforce an upper bound (6), whereas
the response of a real neurons is always bounded.

IV. FILTER DESIGN

In order to achieve (P1)-(P3), we start from the architecture
of the previous model (9), but with two important differences.
First, we introduce an additional state in the filter that
approximately tracks the sum of all the bins; this allow the
kernel to be sparse. Second, instead of manually specifying
the coefficients g, we obtain them from the solution of a LP
whose constraints explicitly enforce (4)-(6).

A. Improving the sparsity of the filter

Intuitively, to enforce (P1), the update at one bin needs to
depend on the values of all other bins; a straightforward
implementation (as in the model (9)) leads to all-to-all
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connections between neurons (see Figure 2a for a pictorial
representation). As mentioned in the introduction, this not
only implies computations in the order of n2, but also is not
biologically realistic. Instead, we propose to split the kernel
g that appears in (9) into two parts: a kernel g0 that has a
small support, plus a term that depends on the average 1

n1
Tv.

For the latter, to avoid all-to-all connections, we introduce a
new state (neuron) vsum that approximately tracks the sum
1Tv. Consequently, the update for one neuron requires only
the values of a small number of nearby neurons, and the
value of the common neuron vsum

*, significantly reducing
connections (see Figure 2b for a pictorial representation).
This leads to the following model for our proposed filter:

[v̇]i = −[v]i +ReLU([h]i + vTAig0 − g1vsum),

v̇sum = g2

((∑
i∈I

[v]i

)
− vsum

)
,

(10a)

(10b)

where g0 is the local kernel, and g1 and g2 are scalars.
In model (10), it is necessary to specify the filter kernel g0

and the gains g1, g2 such that properties (4)-(8) and (11) are
satisfied. Furthermore, based on its definition, vsum should
closely track the sum over v with a reasonable error b. We
express this constraint using the following:

vsum(t)− 1Tv(t) ∈ C≥−b ∩ C≤b ∀t. (11)

B. Filter design

In this section we show how the filter coefficients g0, g1, g2
can be obtained from the solution of a Linear Program. For
convenience, we define the following shorthand notation:

g =
[
g0 g1 g2

]T
z =

[
h v vsum

]T
(12)

In order to proceed, we ignore the nonlinearity in the
dynamics (10), and substitute the ReLU with its argument.
As a result, the solution to the LP will guarantee that all
constraints and properties are satisfied on a subset of the joint
state-input space where all the ReLU’s are not active (i.e.,
their arguments are positive). We discuss the extension of
these guarantees to the entire state space in Section V.

As discussed in detail below, constraints (4), (6) and (11)
can be applied to our proposed model (10); in all cases, we
obtain constraints that are bilinear in the coefficients g and
the state x. While this is straightforward for (4), constraints
(6) and (11) are not as trivial because they apply to the states
v and vsum; therefore, we will use the ZCBF framework
reviewed in section II-B to obtain constraints where the
coefficients g appear explicitly.

1) Winner-takes-all constraint: Substituting the dynamics
(10) (ignoring the ReLU) into constraint (4), we have:

−([v]im − [v]i) + ([h]im − [h]i) + vT(Aim −Ai)g0 ≥ 0;

(13)

*The update of the single neuron vsum still needs access to the values
of all other neurons. We believe that our approach could be extended to the
case where vsum is computed by a sub-network of neurons using linear
consensus [22] at the expense of more computations and slower convergence.

for all i ∈ J ; expanding, and using the standard basis vectors
ei to pick individual entries in the state z we rewrite (13) as 0 0 0

Ai −Aim 0 0
0 0 0

 g +

ei − eim
eim − ei

0

T

z ≤ 0. (14)

2) Constraint on v(t): Based on Proposition 1, we con-
struct the following linear ZCBF constraint to enforce the
upper bound v(t) ∈ C≤Mv

from (6):

[v̇]i + c1([v]i −Mv) ≤ 0, (15)

with i ∈ J . Substituting (10) (ignoring the ReLU) we have

−[v]i + [h]i + (vTAig0 − g1vsum) + c1[v]i < c1Mv, (16)

which, in vector form becomes

vTAig0 − g1vsum + (c1 − 1)[v]i + [h]i < c1Mv. (17)

Finally, using the standard basis vectors ei to consider the
entire state, we have 0 0 0

Aj 0 0
0 −1 0

 g +

 ej
(c1 − 1)ej

0

T

z ≤ c1Mv. (18)

The lower bound v(t) ∈ C≥0 is automatically enforced by
our model, as detailed by the following.

Lemma 1: Assuming v(0) ≥ 0, the dynamics (10a) en-
sures that v(t) ≥ 0 for all t > 0.

Proof: The dynamics (10) produces continuous trajec-
tories, since its right-hand side is continuous. Together with
the assumption that v(0) ≥ 0, this implies that the only way
to have [v]i < 0 is to have [v]i(t0) = 0 and [v̇]i(t0) < 0 for
some t0 ≥ 0. By way of contradiction, assume that such t0
exists. Then, the right-hand side of (10a) must be negative,
i.e., −[v]i + ReLU([h]i + vTAig0 − g1vsum) < 0 which
implies [v]i < 0. Since ReLU’s are always non-negative this
creates a contradiction.

3) Tracking constraint on vsum(t): As formalized by (11),
we desire vsum to track 1Tv with an error tolerance b.
Applying Proposition 1 to the first part of the constraint
vsum − 1Tv ∈ C≤b, we have

v̇sum − 1Tv̇ − c3(b− vsum + 1Tv) ≤ 0; (19)

substituting the dynamics (10) (ignoring the ReLU) we obtain

g2(1
Tv − vsum) + 1Tv − 1Th

− gT0 11
Tv + ng1vsum − c3(b− vsum + 1Tv) ≤ 0 (20)

which, in matrix form with the full state x, becomes 0 0 0
−11T 0 1

0 n −1

 g +

 −1
(1− c3)1

c3

T

z ≤ c3b. (21)

Following similar steps for the lower bound vsum−1Tv ∈
C≥−b we obtain: 0 0 0

11T 0 −1
0 −n 1

 g +

 1
(c4 − 1)1

−c4

T

z ≤ c4b. (22)
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Constraints (21) and (22) are the only ones relating the filter
coefficient g2 to the scalar coefficients g0, g1.

Remark 1: The ZCBF coefficients c1, c2, c3, c4 > 0 are
user-defined parameters. While any positive value will provide
the guarantees of Proposition 1, higher or lower values imply
that the trajectories of our system can approach the boundaries
of the constraints slower or faster, respectively. In practice,
higher values might risk to make infeasible the design problem
described in the section below.

C. Filter design via LP Formulation

In this section we use all the robust constraints (14)-(22)
and linear constraints (6), (11) into a feasibility LP.

First, we rewrite constraints (14)-(22) into a common form:

(Mjg + qj)
Tz ≤ rj ∀j ∈ R, (23)

where Mj are matrices, qj are vectors, rj are scalars, and R
is a set of indices mapping to the aforementioned constraints.

Next, we convert the (8) and (7) into the matrix form as
follows:

Cz ≤ d (24)

Which all the constraints (23) must hold Our filter design
problem is then to find coefficients g such that constraints (23)
are satisfied for all z such that (24); this can be formalized
into a linear min-max feasibility problem:

min
{δj}

∑
j

ωjδj

subject to

[
max
zj

(Mjg + qj)
Tzj

subject to Czj ≤ d

]
≤ rj + δj .

(25)

Where δj ≤ 0 denotes a slack variable representing safety
margins j-th constraint. The objective function is to maximize
a linear combination of safety margin with user-specified
weights denoted by ωj ≥ 0. Intuitively, the inner-level max
problem looks for the worst-case state z for the j-th constraint;
since this worst-case can be different for different constraints,
we need to have a separate variable zj for each constraint
j ∈ R.

Problem (25) is not an LP due to the presence of the inner
max and the bilinear nature of its objective; both of these
issues can be addressed by replacing the inner problem with
its dual:

min
∑
j

ωjδj

subject to


min
pj

− dTpj

subject to CTpj = −(Mjg + qj)

pi ≤ 0

 ≤ rj + δj ∀j,

which reduces to:

min
g,pj ,δj

∑
j

ωjδj

subject to − dTpj ≤ rj + δj ∀j
CTpj +Mjg = −qj ∀j
pj ≤ 0 ∀j.

(26)

Equation (26) is finally an LP, which can be solved using
standard linear optimization software packages.

V. CONSIDERING THE NON-LINEARITY OF THE MODEL

The solution to (26) ensures that (P1)-(P3) are satisfied for
all pairs of input and state such that [h]i+vTAig0−g1vsum ≥
0 for all i, i.e., the ReLU in (10) is not active. Property (P2)
(sustained activity) is captured by the dynamic nature of the
filter, and part of (P3) (non-negativity bound v ∈ C≥0) also
holds for the full nonlinear dynamics (10). In addition to
these, in this section, we show that property (P1) and the
full property (P3) also hold on a significant part of the state
space, for constant inputs, and if the kernel g0 is a scalar,
i.e., g0 ∈ R.

A. Property (P1): Winner takes all

Proposition 2: If ReLU(m(h)+vTAimg0−g1vsum) > 0,
then (4) holds, i.e., all the bins decrease faster than the mode.

Proof: When the LP problem (26) is feasible, it implies
that the inequality (14) holds. For a given element i ̸= im, if
its ReLU argument is not active, i.e., ReLU([h]i+vTAig0−
g1vsum) is strictly greater than zero, then [v̇]im > [v̇]i as
desired. Based on (14), and since the output of ReLU is
always positive:

− [v]im +ReLU(m(h) + vTAimg0 − g1vsum) ≥ −[v]i

Which implies that v̇im > [v̇]i also when ReLU is equal to
zero for [v]i

B. Property (P3): Boundedness and convergence

The full nonlinear dynamics (10) can be seen as a hybrid
system where each mode is defined based on whether the
ReLU function is zero or not for [v]i. We denote each mode
with PQ, where Q ⊂ {1, · · · , n} indicates which ReLU
terms are active (non-zero) in each vi. Note that the dynamics
is linear in each mode.

We first focus on mode Pim , and show that it contains
a stable equilibrium. In the following, we show that v∗ is
stable equilibrium point.

Proposition 3: Let v∗ be a state where [v]i = 0, except
for i = im. The following is an equilibrium for the dynamics
(10) restricted to mode Pim :

[v∗]j = 0 ∀j ̸= im,

[v∗]im =
[h]im

1 + g1 − eTimAig0
,

v∗sum = [v∗]im .

(27)

If, in addition, g2 − g0 + 1 ≥ 0, g1 ≤ g2 and g2 > 0, then
the equilibrium is stable.

Proof: By substituting [v̇]im for [v̇]i and assuming [v̇]i,
i ̸= im, one can prove that v̇ = 0 at v∗. Let ẋ = Ax+Bh be
a shorthand for the linear dynamics ẋv = Axv +Bh where
xv = [v, vsum] and A ∈ Rn+1,n+1 obtained by restricting
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(a) (b) (c)

Fig. 4: An example of disrupted images in our scenario. 4a is an image in KITTI dataset, 4b and 4c are the same image
with blur noise and obstruction noise added, respectively.

(10) to mode Pim . Each row of A (Ai) is equal to:

Ai = [0 0 · · · −1︸︷︷︸
i

· · · 0] ∀i ̸= im(v), i ̸= n+ 1

Aim = [0 0 · · · −1 + g0︸ ︷︷ ︸
im

0 · · · g1]

An+1 = [g2 g2 · · · − 1]

(28)

Since the filter dynamics (10) is invariant to im, so character-
istic polynomial of A is independent of im. Hence, without
loss of generality we can calculate it for the special case that
im = n

(−λ− 1)(n−1)(λ2 + λ(g2 − g0 + 1) + g1g0 − g0g2) (29)

If g2 − g0 + 1 ≥ 0, g1 ≤ g2 and g2 > 0 all eigenvalues are
in the left-half plane.
A similar procedure can be applied for the case where the
dimension of g0 is greater than one.

Remark 2: The constraint g2−g0+1 ≥ 0, g1 ≤ g2 can be
added to the LP (26) to ensure stability, although in all our
tests this was not necessary to obtain a stable filter (i.e., the
solution (26) naturally satisfied this additional constraint).

Conjecture 1: For any arbitrary h that satisfies (7), (8),
system (10) traverses modes PQ until it reaches Pim , where
it converges to v∗.

Propositions 2 and 3 provide the intuition that, [v]im
grows faster and other bins decrease until their ReLU become
inactive (i.e., ReLU argument is strictly negative) which is
equivalent of mode Pim where it converges to v∗. We have
seen this in practice, but we are not able to prove it rigorously.

VI. IMPLEMENTATION AND CASE STUDY

We solve (26) for n = 16 bins and a scalar kernel g0 ∈ R,
obtaining the following: g0 = 0.998, g1 = 0.621, g2 =
80 for b = 1.6, δ = 0.1, c3 = c4 = 800, c1 = c2 = 100.
To demonstrate the performance of this filter, we trained a
convolutional neural network to estimate the velocity of a
vehicle given the video stream of a camera mounted on top of
it. The input of the neural network is two sequential frames
with size [128, 512] and the output is the discrete distribution
of speed probability with 16 bins. The speed range in our
dataset is between 0-16m/s which is distributed uniformly
among the output bins.

The CNN consists of three convolution blocks and four
fully connected layers with Relu activation functions with
[4096, 1024, 256, 15] neurons, respectively. A softmax acti-
vation function is applied as the last layer to classify to get

(a) (b)

Fig. 5: Example in which the CNN cannot estimate the speed
correctly due to the presence of an outlier (the truck crossing
the street)

a probabilistic class across 16 possible probabilistic classes.
Each convolution block includes convolutional layers with 64
channels and a 3×3 filter, followed by a batch normalization
layer and a ReLU activation function.

We use a mean square loss function with Adam optimizer
for 25 epochs with a constant learning rate 0.0001. The raw
grayscale images of the KITTI dataset [12] are used for both
training and validation.

The proposed architecture was able to estimate the vehicle
speed with 95% and 91% accuracy for training and validation,
respectively. However, in some more challenging scenarios,
such as when an pedestrian or a car crosses, the network
could return an incorrect estimation. One example is shown
in Figure 5.

Since the output is essentially a histogram, we applied
our filter in order to make the estimation more robust and
evaluated its performance in a very noisy scenario as well.
In order to simulate disrupted frames, we blur or add black
boxes, as demonstrated in Figure 4. We add these disrupted
frames with different frequencies and evaluate the accuracy of
our system with and without the filter. The result is plotted in
Figure 6. The horizontal axis represents the ratio of disrupted
frames, indicating one frame out of nf frames is disrupted,
where nf is a natural number in the range of [2, 10], and the
vertical axis is the accuracy of speed estimation. The neural
network is not trained for these scenarios; hence, its accuracy
increases linearly as the number of disrupted frames decreases.
Whereas the accuracy of filtered estimation does not change
significantly after a while as the number of disrupted frames
decreases, indicating the effectiveness of the filter short-time
memory.

The robustness of our filter introduces lag to the estimation.
The filter lag can be adjusted based on the change rate of the
signal and noise by two hyperparameters; b in (11) and the
simulation time-step ∆t. Note that, our filter is continuous
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Fig. 6: The effect of the filter on estimating the velocity of a
vehicle based on a disrupted stream of images. The horizontal
axis shows the ratio of number of disrupted frames. In results
denoted by (D), frames are fed to the pipeline twice in order
to decrease the lag.

in time, but in order to implement it we have to make it
discontinuous with the time-step ∆t. To further counteract
this, the filter can be run multiple times for each image; this
effectively increases the convergence rate and reduces lag.
However, if repeated too many times, the performance can
actually decrease because corrupted frames become more
frequent as well.

VII. CONCLUSION

In this paper, we introduced a novel filtering method
inspired by the behavior of complex cell networks. The filter
parameters are derived from an optimization problem. This
optimization problem returns the optimal filter coefficients
such that the filter selectively amplifies the mode of the
input histogram while having (P1)-(P3) properties. Similar
to biological systems, as demonstrated by our case study,
our filter exhibits promising robustness with the minimum
required computation. Due to its short-term memory, this
filter is able to efficiently reduce the effect of outliers, which
is difficult to achieve with conventional methods.

As a case study, we utilized this filter to improve the
robustness of the estimation of the speed of a vehicle based
on a neural network. Other approaches incorporate other
measurements, such as IMU to overcome visual measurement
problems; however, we showed our filter provides robust
estimation solely relying on a stream of images.

Future work:. One of the consequences of the robustness
of this filter is the lag, which becomes more significant as
the rate of change of the input signal increases. By taking
the system model into account, we intend to reduce lag and
improve accuracy. In addition, there are some missing parts in
IV. In order to complete it, first we need to prove conjunction
(1). Second, Propositions3,2 assume ReLU term of [v]im is
active, and we must demonstrate that it becomes active sooner
than other bins regardless of the initial condition.
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