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Abstract— We consider the problem of controlling a het-
erogeneous multi-agent system required to satisfy temporal
logic requirements. Capability Temporal Logic (CaTL) was
recently proposed to formalize such specifications for deploying
a team of autonomous agents with different capabilities and
cooperation requirements. In this paper, we extend CaTL to
a new logic CaTL+, which is more expressive than CaTL
and has semantics over a continuous workspace shared by
all agents. We define a novel robustness metric for CaTL+,
which is sound, differentiable almost everywhere and eliminates
masking, which is one of the main limitations of existing
traditional robustness metrics. We formulate a control synthesis
problem to maximize CaTL+ robustness and propose a two-step
optimization method to solve this problem. Simulation results
are included to illustrate the increased expressivity of CaTL+
and the efficacy of the proposed control synthesis approach.

I. INTRODUCTION

Planning and controlling multi-agent systems from tempo-
ral logic specifications is a challenging problem that received
a lot of attention in recent years. In [1], the authors used
distributed formal synthesis to allocate global task specifi-
cations expressed as Linear Temporal Logic (LTL) formulas
to locally interacting agents with finite dynamics. Related
works [2]–[4] proposed extensions to more realistic models
and scenarios. The authors of [5] used Signal Temporal
Logic (STL) and Spatial Temporal Reach and Escape Logic
(STREL) as specification languages to capture the connec-
tivity constraints of a multi-robot team.

The above approaches do not scale for large teams. Very
recent work has focused on development of logics and
synthesis algorithms specifically tailored for such situations.
The authors of [6] proposed Counting LTL (cLTL), which
is used to define tasks for large groups of identical agents.
Counting constraints specify the number of agents that need
to achieve a certain goal. As long as enough agents achieve
the goal, it does not matter which specific subgroup does
that. Similar ideas are used in Capability Temporal Logic
(CaTL) [7]. The atomic unit of a CaTL formula is a task,
which specifies the number of agents with certain capability
that need to reach some region and stay there for some
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time. Since agents can have different capabilities, CaTL is
appropriate for heterogeneous teams. Unlike cLTL, CaTL is a
fragment of STL, and allows for concrete time requirements.

The expressivities of both cLTL and CaTL are limited by
the definition of counting constraints and tasks, respectively.
For example, neither cLTL nor CaTL can require that “3
agents eventually reach region A” without requiring that the
3 agents reach region A at the same time. This can be
restrictive. Consider, for example, a disaster relief scenario,
where a team of robots needs to deliver supplies to an
affected area. We require that enough supplies be delivered,
i.e., enough robots eventually reach the affected area, rather
than enough robots stay in the affected area at the same
time. In fact, a robot is supposed to go on to the next
task after drop off the supply without waiting for the other
robots. To solve this problem, an extension of cLTL, called
cLTL+, was proposed in [8], where a two-layer LTL structure
was defined. However, cLTL+ can not specify concrete time
requirements. To address this limitation, we extend CaTL
to a novel logic called CaTL+, which has a two-layer
structure similar to cLTL+. The authors of [9] extended STL
with integral predicates, which also enables asynchronous
satisfaction, but it can only specify how many times a service
is needed. A CaTL+ task can specify the number of agents
that need to satisfy an arbitrary STL formula. Another related
work is CensusSTL [10], which is also a two-layer STL
that refers to mutually exclusive subsets of a group, rather
than capabilities of agents. Also, [10] focuses on inference
of formulas from data, rather than control synthesis.

CaTL has both qualitative semantics, i.e., a specification
is satisfied or violated, and quantitative semantics (known
as robustness), which defines how much a specification is
satisfied. The robustness of CaTL is an integer representing
the minimum number of agents that can be removed from
(added to) a given team in order to invalidate (satisfy) the
given formula. Such a robustness metric is discontinuous
and cannot represent how strongly each task is satisfied.
In this paper, we define a novel quantitative semantics for
CaTL+, called exponential robustness, which is continuous
and measures how strongly a task is satisfied. A higher
robustness indicates more agents reach the region and stay
closer to the center for a longer time. The proposed exponen-
tial robustness also eliminates masking (i.e., only considering
the most satisfying or violation points), which is a limitation
of existing traditional robustness measures [11].

We also formulate and solve a centralized control synthe-
sis problem from CaTL+. Control synthesis for cLTL [6],
cLTL+ [8], CaTL [7] and STL with integral predicates [9]
are solved in a graph environment using a (mixed) Integer
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Fig. 1: An earthquake emergency
response scenario. M is the entire
square workspace. Inita and Initg
are the initial regions for the aerial
and ground vehicles. C is where
the agents pick up supplies. B is
a bridge and the 2 rectangles R
correspond to the river. V1 and V2

are 2 affected villages.

Linear Program (ILP), where the controls are transitions
between vertices in a graph. In this paper, we consider a
continuous workspace shared by all agents. Each agent has
its own discrete time dynamics with continuous state and
control spaces. We propose a two-step optimization: a global
optimization followed by a gradient-based local optimization
to obtain the controls that maximize CaTL+ robustness.

II. SYSTEM MODEL AND NOTATION

Let |S| be the cardinality of a set S. We use bold symbols
to represent trajectories and calligraphic symbols for sets. For
z ∈ R, we define [z]+ = max{0, z} and [z]− = −[−z]+.
Consider a team of agents labelled from a finite set J . Let
Cap denote a finite set of agent capabilities. We assume that
the agents operate in a continuous workspace S ⊆ Rns .

Definition 1. An agent j ∈ J is a tuple Aj =
⟨Xj , xj(0), Capj ,Uj , fj , lj⟩ where: Xj ⊆ Rnx,j is its state
space; xj(0) ∈ Xj is its initial state; Capj ⊆ Cap is its
finite set of capabilities; Uj ⊆ Rnu,j is its control space;
fj : Xj × Uj → Xj is a differentiable function giving the
discrete time dynamics of agent j:

xj(t+ 1) = fj
(
xj(t), uj(t)

)
, t = 0, 1, . . . ,H − 1, (1)

where xj(t) and uj(t) are the state and control at time t,
H is a finite time horizon determined by the task (detailed
later); lj : Xj → S is a differentiable function that maps the
state of agent j to a point in the workspace shared by all
agents (this enables heterogeneous state spaces):

sj(t) = lj
(
xj(t)

)
, t = 0, 1, . . . ,H. (2)

The trajectory of an agent j, called an individual trajec-
tory, is a sequence sj = sj(0) . . . sj(H). We assume that
∪j∈JCapj = Cap.

Given a team of agents {Aj}j∈J , the team trajectory
is defined as a set of pairs S = {(sj , Capj)}j∈J , which
captures all the individual trajectories with the corresponding
capabilities. Let Jc = {j | c ∈ Capj} be the set of agent
indices with capability c. Let uj = uj(0) . . . uj(H − 1) be
the sequence of controls for agent j.

Example. Consider an earthquake emergency response sce-
nario. The workspace S ⊂ R2 is shown in Fig. 1. There are
4 ground vehicles j ∈ {1, 2, 3, 4} and 2 aerial vehicles j ∈
{5, 6}, totaling 6 robots indexed from J = {1, 2, 3, 4, 5, 6}
in the workspace. A river R runs through this area and
a bridge B goes across the river. All ground vehicles are
identical. The dynamics fj , j ∈ {1, 2, 3, 4} are given by

px,j(t+ 1) = px,j(t) + vj(t) cos θj(t),

py,j(t+ 1) = py,j(t) + vj(t) sin θj(t),

θj(t+ 1) = θj(t) + ωj(t),

(3)

where the state xj is the 2D position and orientation
[px,j py,j θj ], the control uj is the forward and angular
speed [vj ωj ], the state space Xj = Xg ⊂ R3, the
control space Uj = Ug ⊂ R2, the initial state xj(0) is a
singleton randomly sampled in region Initg with randomly
sampled orientation θj ∈ [ 14π,

3
4π]. The function lj(xj) =

[px,j py,j ] = sj maps the state of agent j to a position
in the workspace S. The identical capabilities are given by
Capj = {“Delivery”, “Ground”}, j ∈ {1, 2, 3, 4}. All the
aerial vehicles are identical. For j ∈ {5, 6}, fj are given by

px,j(t+ 1) = px,j(t) + vx,j(t),

py,j(t+ 1) = py,j(t) + vy,j(t),
(4)

where the state xj is the 2D position [px,j py,j ], the control
uj is the speed [vx,j vy,j ], the state space Xj = Xa ⊂ R2,
the control space Uj = Ua ⊂ R2, the initial state xj(0)
is a singleton randomly sampled in the region Inita, the
identity mapping lj(xj) = xj = sj maps the state of agent
j to a position in S. The identical capabilities are given
by Capj = {“Delivery”, “Inspection”}, j ∈ {5, 6}. For
this scenario, we assume the following set of requirements:
(1) 6 agents with capability “Delivery” should pick up
supplies from region C within 8 time units; (2) 3 agents with
capability “Delivery” should deliver supplies to the affected
village V1 within 25 time units, and 3 agents with capability
“Delivery” should deliver supplies to the affected village V2

within 25 time units; (3) the bridge might be affected by the
earthquake so any agent with capability “Ground” cannot go
over it until 2 agents with capability “Inspection” inspect
it within 5 time units; (4) agents with capability “Ground”
should always avoid entering the river R; (5) Since the load
of the bridge is limited, at all times no more than 1 agent
with capability “Ground” can be on B; (6) 6 agents with
capability “Delivery” should always stay in region M .

III. CATL+ SYNTAX AND SEMANTICS

In this section we introduce Capability Temporal Logic
plus (CaTL+), a logic used to specify requirements for multi-
agent systems. CaTL+ has two layers: the inner logic and the
outer logic. The proofs for all the results in this section are
omitted and can be found in [12].

A. Inner Logic

Definition 2 (Syntax [13]). Given an individual trajectory
s 1, the syntax of the inner logic can be defined as:

φ := True | µ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1U[a,b]φ2, (5)

where φ, φ1 and φ2 are inner logic (STL) formulas, µ is a
predicate in the form h

(
s(t)

)
≥ 0. We assume h : S → R is

differentiable in this paper. ¬, ∧, ∨ are the Boolean operators
negation, conjunction and disjunction respectively. U[a,b] is
the temporal operator Until, where [a, b] is the time interval

1For simplicity we drop the subscript j from s.
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containing all integers between a and b with a, b ∈ Z≥0. The
temporal operators Eventually and Always can be defined as
F[a,b]φ = TrueU[a,b]φ and G[a,b]φ = ¬F[a,b]¬φ.

The qualitative semantics of the inner logic, i.e., whether
a formula φ is satisfied by an individual trajectory s at time
t (denoted by (s, t) |= φ) is same as STL [13]. In plain
English, φ1U[a,b]φ2 means “φ2 must be True at some time
in [a, b] and φ1 must be True at all time points before that”.
F[a,b]φ states “φ is True at some time point in [a, b]” and
G[a,b]φ states “φ must be True at all time points in [a, b]”.

B. Outer Logic

The basic component of the outer logic, which with a
slight abuse of terminology we will refer to as CaTL+, is
a task T = ⟨φ, c,m⟩, where φ is an inner logic formula,
c ∈ Cap is a capability, and m is a positive integer. The
syntax of CaTL+ is defined over a team trajectory S as:

Φ := True | T | ¬Φ | Φ1∧Φ2 | Φ1∨Φ2 | Φ1U[a,b]Φ2, (6)

where Φ, Φ1 and Φ2 are CaTL+ formulas, T = ⟨φ, c,m⟩ is
a task, and the other operators are the same as in the inner
logic defined above. Before defining the qualitative semantics
of CaTL+, we introduce a counting function n(S, c, φ, t):

n(S, c, φ, t) =
∑
j∈Jc

I
(
(sj , t) |= φ

)
, (7)

where I is an indicator function, i.e., I = 1 if (sj , t) |= φ and
I = 0 otherwise. n(S, c, φ, t) captures how many individual
trajectories sj with capability c in the team trajectory S
satisfy an inner logic formula φ at time t. The qualitative
semantics of the outer logic is similar to the one of the inner
logic, except for it involves tasks rather than predicates.

Definition 3. A team trajectory S satisfies a task T =
⟨φ, c,m⟩ at t, denoted by (S, t) |= T , iff n(S, c, φ, t) ≥ m.

In words, a task T = ⟨φ, c,m⟩ is satisfied at time t if
and only if at least m individual trajectories of agents with
capability c satisfy φ at time t. The semantics for the other
operators are identical with the ones in the inner logic. We
denote the satisfaction of a CaTL+ formula Φ at time t by
a team trajectory S as (S, t) |= Φ. Note that specifying
no more than m agents with capability c that could satisfy
φ can be formulated as Φ = ¬⟨φ, c,m + 1⟩. Let the time
horizon of a CaTL+ formula Φ, denoted by hrz(Φ), be the
closest time point in the future that is needed to determine
the satisfaction of Φ. Note that cooperative inner logic is not
allowed in CaTL+ since φ is defined for one agent only.

Example. (continued) Reaching a circular or rectangular
region can be formulated as an inner logic formula easily.
For brevity, we use s ∈ B (other regions are the same) to
represent the inner logic formula of reaching region B. The
requirements in the previous example can be formulated as
CaTL+ formulas: (1) Φ1 = ⟨F[0,8]s ∈ C, “Delivery”, 6⟩;
(2) Φ2 = ⟨F[0,25]s ∈ V1, “Delivery”, 3⟩ ∧
⟨F[0,25]s ∈ V2, “Delivery”, 3⟩; (3) Φ3 = ¬⟨s ∈
B, “Ground”, 1⟩U[0,5]⟨s ∈ B, “Inspection”, 2⟩ ; (4)

Φ4 = G[0,25]⟨¬(s ∈ R), “Ground”, 4⟩; (5) Φ5 =
G[0,25]¬⟨s ∈ B, “Ground”, 2⟩; (6) Φ6 = G[0,25]⟨s ∈
M, “Delivery”, 6⟩. The overall specification for the system
is Φ =

∧6
i=1 Φi, with hrz(Φ) = 25.

C. CaTL+ Quantitative Semantics

The qualitative semantics defined above provides a True
or False value, meaning that the CaTL+ formula is satisfied
or not. In this section, we define its quantitative semantics
(robustness), which is a real value that measures how much
a formula is satisfied. We introduce a robustness metric for
CaTL+, called exponential robustness. For the definition of
an alternative robustness based on traditional robustness [11],
we refer the reader to [12]. Using exponential robustness
makes the optimization process for control synthesis easier.

For simplicity, we give the definition of CaTL+ robustness
in a structured manner. We show that a robustness metric
for CaTL+ can be captured by only the robustness for
conjunction and task. According to the De Morgan law,
disjunction can be replaced by conjunction and negation, i.e.,
Φ1∨Φ2 = ¬(¬Φ1∧¬Φ2). Meanwhile, the temporal operator
“always” and “eventually” can be regarded as conjunction
and disjunction evaluated over individual time steps. For any
robustness metric, the robustness of a predicate h

(
s(t)

)
≥ 0

is h
(
s(t)

)
and the robustness of ¬Φ is the negative of the

robustness of Φ (see [14] for details).
We use η(s, φ, t) and η(S,Φ, t) to denote the exponential

robustness of the inner and outer logic. We begin our discuss
from the definition of soundness:

Definition 4 (Soundness). A robustness metric η(S,Φ, t) is
sound if for any formula Φ, η(S,Φ, t) ≥ 0 iff (S, t) |= Φ.

Consider the conjunction over M subformulas with robust-
ness η1, . . . , ηM . Similar to [14], we first define an effective
robustness measure, denoted by ηconji , i = 1, . . . ,M , for
each subformula:

ηconji :=


ηmine

ηi−ηmin
ηmin ηmin < 0

ηmin(2− e
ηmin−ηi

ηmin ) ηmin > 0

0 ηmin = 0

(8)

where ηmin = min(η1, . . . , ηM ). The relation between ηconji

and ηi is shown in Fig. 2a and Fig.2b. Intuitively, (8) ensures
that ηconji has the same sign with ηmin, ∀i = 1, . . . ,M , and
ηconji increases monotonically with ηi. Note that ηconji = ηi
when ηi = ηmin. We define the exponential robustness for
conjunction as (9) which ensures soundness:

Aexp(η1, . . . , ηM ) = βηmin + (1− β)
1

M

M∑
i=1

ηconji , (9)

where β ∈ [0, 1] balances the contribution between ηmin

and the mean of ηconji (same sign as ηmin). The exponential
robustness turns to be the traditional robustness when β = 1.

Now consider a task T = ⟨φ, c,m⟩. For brevity, let
ηj = η(sj , φ, t) when φ and t are clear from the context.
We reorder {ηj}j∈Jc from the largest to the smallest, i.e.,
ηj1 ≥ . . . ≥ ηjm ≥ . . . ≥ ηjn , where jk ∈ J , k = 1, . . . , n,
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(a) ηmin > 0 (b) ηmin < 0

(c) ηjm > 0 (d) ηjm < 0

Fig. 2: (a), (b): Relation between ηconj
i and ηi while holding ηmin

constant and ηi ̸= ηmin. (c), (d): Relation between ηtask
jk

and ηtask
jk

(α = 1) while holding ηjm constant and k ̸= m.

n = |Jc|. Note that ηjm is the critical mth largest robustness.
We define another effective robustness ηtaskjk

for each jk,
k = 1, . . . , |Jc|:

ηtaskjk
:=


2α(eηjm − 1)

1 + e−α(ηjk
−ηjm )

ηjm > 0,

−2α(e−ηjm − 1)

1 + eα(ηjk
−ηjm )

ηjm ≤ 0,

(10)

where α > 0. The relation between ηtaskjk
and ηjk is shown

in Fig. 2c and Fig. 2d (α = 1). Similar to conjunction, (10)
ensures that ηtaskjk

has the same sign with the critical ηjm ,
∀k = 1, . . . , |Jc| and ηtaskjk

increases monotonically with
ηjk . Note that ηtaskjk

= sgn(ηjm)α(e|ηjm |− 1) when k = m.
Again, we define the exponential robustness for a task as the
mean of ηtaskjk

to ensure soundness:

η(S, ⟨φ, c,m⟩, t) = 1

|Jc|

|Jc|∑
k=1

ηtaskjk
. (11)

When α → ∞, the exponential robustness of a task only
depends on ηjm . The exponential robustness for CaTL+ is
recursively constructed from (9) and (11). In the following,
we discuss the properties of the exponential robustness.

Proposition 1. Exponential robustness for CaTL+ is sound.

In an optimal control problem, such as the one considered
in Sec. IV, it is desirable to have a differentiable robustness
allowing for gradient based optimization methods.

Proposition 2. The exponential robustness η(S,Φ, t) is
continuous everywhere and differentiable almost everywhere
with respect to individual trajectories sj , j ∈ J .

Although exponential robustness is not differentiable ev-
erywhere, in a numerical optimization process it rarely gets
to the non-differentiable points. Moreover, these points are
semi-differentiable, so even if they are met, we can still use
the left or right derivative to keep the optimization running.

The most important advantage of the exponential robust-
ness over traditional robustness is that it eliminates masking.
In short, the traditional robustness only takes into account

the minimum robustness in conjunction. All the other sub-
formulas have no contribution to the overall robustness. For
example, consider formula F[0,5](s > 3). Two trajectories
1, 1, 1, 1, 5 and 1, 2, 3, 4, 5 get the same traditional robustness
score of 2, though it is obvious that the later is more robust
under disturbances. The exponential robustness addresses
this masking problem by taking into account the robustness
for all subformulas, all time points, and all agents. As a
result, the exponential robustness rewards the trajectories that
satisfy the requirements at more time steps and with more
agents. From an optimization point of view, our goal is to
synthesize controls that maximize the CaTL+ robustness.
If we use the traditional robustness, at each optimization
step we can only modify the most satisfying or violating
points. This may decelerate the optimization speed or even
result in divergence. The exponential robustness makes the
robustness-based control synthesis easier, and makes the
results more robust. Formally, we have:

Definition 5. [mask-eliminating] The robustness of an op-
erator O(η1, . . . , ηM ) has the mask-eliminating property if
it is differentiable almost everywhere, and wherever it is
differentiable, it satisfies:

∂O(η1, . . . , ηM )

∂ηi
> 0, ∀i = 1, . . . ,M, (12)

A robustness metric of CaTL+ has the mask-eliminating
property if both conjunction and task satisfy (12).

Proposition 3. Exponential robustness of CaTL+ has the
mask-eliminating property.

The mask-eliminating property of exponential robustness
tells us that the increase of any component in conjunction or
task results in the increase of the overall robustness.

Remark 1. By standard derivations, it can also be
proved that, ∂Aexp/∂ηmin > ∂Aexp/∂ηi, ∀ηi ̸= ηmin.
The further ηi is from ηmin, the smaller the partial
derivative will be. Meanwhile, ∂η(S, ⟨φ, c,m⟩, t)/∂ηjm ≥
∂η(S, ⟨φ, c,m⟩, t)/∂ηjk , ∀k ̸= m. The further ηjk is from
ηjm , the smaller the partial derivative will be. This is helpful
because ηmin and ηjm are the most critical components
which decide the satisfaction of the formula.

Remark 2. The exponential robustness for conjunction it-
self forms a novel robustness of STL, which has desired
properties including soundness and mask-eliminating (the
conjunction satisfies (12)). Other robustness metrics includ-
ing Arithmetic-Geometric Mean (AGM) robustness [15] and
learning robustness [14] are also sound and partially solve
the masking problem, but none of them satisfy the mask-
eliminating property (as shown in Fig. 3). The smooth max-
min robustness from [16], [17] has the mask-eliminating
property, but loses soundness (in a necessary and sufficient
sense). To the best of our knowledge, exponential robust-
ness is the first that satisfies both of these two properties.
Sample behaviors of Aexp(η1, η2) for different η1 and η2
are depicted in Fig. 3. We can see that traditional and AGM
robustness have 0 partial derivatives and learning robustness
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(a) η1 = −1 (b) η1 = 1

Fig. 3: Robustness of the conjunction A(η1, η2) for the traditional
[11], AGM [15], learning [14], smooth max-min [17] and exponen-
tial (β = 0) metrics as a function of η2 with fixed values of η1.

has negative partial derivatives at some points, while smooth
max-min robustness violates soundness.

D. Relationship between CaTL and CaTL+

The syntax and qualitative semantics of CaTL are similar
to the outer logic of CaTL+, with two main differences. The
first is the definition of a task. In CaTL, a task is defined
as a tuple T ′ = ⟨d, π, {ci,mi}i∈IT ⟩, where d is a duration
of time, π is an atomic proposition specifying a region, ci
is a capability and mi is a positive integer. A CaTL task
is satisfied if, between [0, d], each of the regions labeled
as π contains at least mi agents with capability ci for all
{ci}i∈IT . There is no inner logic in CaTL. Second, the ILP
encoding requires that CaTL formulas contain no negation,
while CaTL+ may contain negations as in (5) and (6).

Proposition 4. With a given set of agents and the corre-
sponding capabilities, specifications given by CaTL are a
proper subset of specifications given by CaTL+.

Intuitively, a CaTL task can only specify the number of
agents that should “always” exist in a region in a duration of
time. All the other temporal and Boolean operators have to
be outside the task. In contrast, CaTL+ is more expressive
because a CaTL+ task can specify a full STL formula in the
inner logic. E.g., a CaTL+ task can be T = ⟨F[a,b]φπ, c, m⟩.
This task is satisfied if m agents satisfy φπ in [a, b] syn-
chronously or asynchronously. A CaTL formula can only
specify F[a,b−1]⟨1, π, {c,m}⟩ which requires synchronous
satisfaction. Note that by introducing new capability to each
agent, the CaTL+ task T = ⟨F[a,b]φπ, c, m⟩ can be
transformed into an equivalent CaTL formula with combi-
natorially many conjunctions and disjunctions. However, the
resulting CaTL formula will be very complex, which might
make the control synthesis intractable.

Moreover, CaTL+ formula can contain negations, which
is absent from CaTL. So CaTL+ can specify more specifica-
tions including “no more than m agents could visit a region”.

The robustness definitions of CaTL+ and CaTL are also
very different. CaTL robustness represents the minimum
number of agents that can be removed from a given team in
order to invalidate the given formula. It is not directly related
to the trajectory of each agent. It is sound, but without the

continuity, differentiability and mask-eliminating properties
of CaTL+ (exponential) robustness.

Another difference is that CaTL is defined on a discrete
graph environment. The controls synthesized using ILP is a
sequence of transitions between the vertices of the graph. In
contrast, CaTL+ is defined on a continuous workspace. Each
agent has its own dynamics and continuous control space.

IV. CONTROL SYNTHESIS USING CATL+

In this section, we formulate and solve a CaTL+ control
synthesis problem. In order to avoid unnecessary motions of
the agents, we introduce a cost function over the controls.
The overall optimization problem combines minimizing this
cost with maximizing the CaTL+ (exponential) robustness.

Problem 1. Given a workspace S, a set of agents {Aj | j ∈
J }, a CaTL+ formula Φ with time horizon H , and a
weighted cost function C(·) ≥ 0, find a control sequence
uj for each agent that maximizes the objective function:

max
uj ,j∈J

η(S,Φ, 0)− [η(S,Φ, 0)]+
γ

·
∑
j∈J

C(uj)

s.t. xj(t+ 1) = fj(xj(t), uj(t)),

uj(t) ∈ Uj , t = 0, . . . ,H − 1,

lj(xj(t)) = sj(t), j ∈ J , t = 0, . . . ,H,

(13)

where γ is a parameter satisfying

γ ≥ sup
uj∈Uj ,j∈J

∑
j∈J

C(uj). (14)

Due to the soundness of the robustness, η(S,Φ, 0) < 0
means that the CaTL+ formula Φ is not satisfied. In such
situations, we focus on increasing the robustness without
considering the cost C. When Φ is satisfied, i.e., η(S,Φ, 0) >
0, we try to minimize the cost at the same time. But mini-
mizing the cost will never override the priority of satisfying
the specification, because when (14) is true, the cost cannot
change the sign of the objective function. Hence, a positive
objective ensures the satisfaction of the specification Φ.

Next, we propose a solution to Pb. 1. The objective
function in (13) is highly non-convex, which means that there
might exist many local optima. To avoid getting stuck at such
points, we apply a two-step optimization: a global optimiza-
tion followed by a local optimization. The result of the global
optimization provides a good initialization for the local
search, so the local optimizer is able to reach a point near the
global optimum (for a highly non-convex function obtaining
the exact global optimum is very difficult). Specifically, for
the global optimizer, we use Covariance Matrix Adaptation
Evaluation Strategy (CMA-ES) [18], which is a derivative-
free, evalution-based optimization approach. Note that CMA-
ES is primarily a local optimization approach, but it has
also been reported to be reliable for global optimization with
large population size [19]. For the local optimizer, we apply
gradient-based method Sequential Quadratic Programming
(SQP) [20]. An important issue in gradient-based optimiza-
tion is to compute the gradient efficiently. STLCG [21]
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Fig. 4: Trajectories obtained
solving Pb. 1. Brown and pur-
ple trajectories are for the aerial
vehicles, the other trajectories
are for the ground vehicles.
Each agent’s positions between
adjacent time points are con-
nected by straight lines.

provides a way to compute the gradient of STL robustness.
We adapt STLCG such that it works for the exponential
robustness of CaTL+. Hence, we can obtain the gradient of
the objective in (13) automatically and analytically.

V. SIMULATION RESULTS

In this section we evaluate our algorithm on the earthquake
emergency response scenario used as a running example
throughout the paper. All algorithms were implemented in
Python on a computer with 3.50GHz Core i7 CPU and 16GB
RAM. For CMA-ES we used the pymoo [22] library. For
SQP, we used the scipy package [23].

Consider the map shown in Fig. 1. The control constraints
Ug and Ua for both ground and aerial vehicles are set to
[−1, 1] × [−1, 1]. We used l2-norm as the cost function in
(13), i.e., C(uj) = ∥uj∥2. Let γ = 1000, satisfying (14).

We applied CMA-ES followed by SQP to solve Pb. 1.
Fig. 4 shows the resulting individual trajectories for each
agent. The resulting team trajectory satisfies the specifi-
cation Φ. Note that the agents do not need to stay in
a region at the same time to satisfy a task like Φ1 =
⟨F[0,8]s ∈ C, “Delivery”, 6⟩ or Φ2 = ⟨F[0,25]s ∈
V1, “Delivery”, 3⟩ ∧ ⟨F[0,25]s ∈ V2, “Delivery”, 3⟩. In
fact, on the premise of satisfying Φ1, the two aerial vehicles
depart from region C to inspect the bridge before all the
ground vehicles reach region C. Moreover, both villages V1

and V2 are visited by 4 agents though the requirement is 3,
which makes the exponential robustness higher.

VI. CONCLUSION AND FUTURE WORK

We introduced a new logic called CaTL+, which is con-
venient to specify requirements for multi-agent systems over
continuous workspace and is strictly more expressive than
CaTL. We defined a quantitative semantics for CaTL+, called
exponential robustness, which is sound, differentiable almost
everywhere, and has the mask-eliminating property. A two-
step optimization strategy was proposed for control synthesis
from CaTL+ formula. The simulation results illustrate the
efficacy of our approach. One limitation is that we do
not consider inter-agent collisions and the behavior of the
system between adjacent time points. In future work, we will
investigate incorporating a lower level controller that ensures
the correct dense-time behavior and collision avoidance. We
also plan to employ more efficient optimizers.
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