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a b s t r a c t

This paper develops a model-based reinforcement learning (MBRL) framework for learning online
the value function of an infinite-horizon optimal control problem while obeying safety constraints
expressed as control barrier functions (CBFs). Our approach is facilitated by the development of a
novel class of CBFs, termed Lyapunov-like CBFs (LCBFs), that retain the beneficial properties of CBFs
for developing minimally-invasive safe control policies while also possessing desirable Lyapunov-like
qualities such as positive semi-definiteness. We show how these LCBFs can be used to augment a
learning-based control policy to guarantee safety and then leverage this approach to develop a safe
exploration framework in a MBRL setting. We demonstrate that our approach can handle more general
safety constraints than comparative methods via numerical examples.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Learning-based control methods, such as reinforcement learn-
ng (RL), have shown success in solving complex control prob-
ems. Although such methods have demonstrated success in
imulated environments, the lack of provable safety guarantees
as limited the application of these techniques to real-world
afety–critical systems. To address these challenges, the field of
afe learning-based control has emerged with the objective of
ensuring the safety of learning-enabled systems. The concept of
safety in control systems is often formalized through the forward
invariance (Blanchini, 1999) of designated safe sets. Popular ap-
proaches to safe learning include reachability analysis (Fisac et al.,
2019), model predictive control (Gros & Zanon, 2020; Hewing,
Wabersich, Menner, & Zeilinger, 2020; Li, Kalabić, & Chu, 2018),
and barrier functions (BFs) (Cheng, Orosz, Murray, & Burdick,
2019; Taylor, Singletary, Yue, & Ames, 2020). Similar to how
Lyapunov functions are used to study the stability of equilibrium
points without computing a system’s solution, BFs (Ames et al.,
2019; Ames, Xu, Grizzle, & Tabuada, 2017; Panagou, Stipanovic,
& Voulgaris, 2016; Tee, Ge, & Tay, 2009; Wieland & Allgöwer,
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2007; Willis & Heath, 2004) allow for one to study the invariance
of sets without explicitly computing a system’s reachable set.
Motivated by the need for general tools that facilitate the design
of controllers with safety guarantees, the concept of a control BF
(CBF) was introduced in Ames et al. (2019, 2017) andWieland and
Allgöwer (2007), and has been successfully applied to systems
such as autonomous vehicles and multi-agent systems (Ames
et al., 2019).

In this paper we unite CBFs and model-based reinforcement
learning (MBRL) to develop a safe exploration framework for
jointly learning online the dynamics of an uncertain control
affine system and the optimal value function/policy of an infinite-
horizon optimal stabilization problem. Our approach is facili-
tated by the class of Lyapunov-like barrier functions introduced
in Panagou et al. (2016), which are used to develop a partially
model-free robust safeguarding controller that can be combined
with an arbitrary learning-based control policy to guarantee
safety. This safeguarding controller is leveraged to build upon
the MBRL framework from Kamalapurkar, Rosenfeld, and Dixon
(2016), Kamalapurkar, Walters, and Dixon (2016) and Kamala-
purkar, Walters, Rosenfeld, and Dixon (2018) to develop a safe
exploration scheme in which the value function is learned online
via ‘‘simulation of experience’’. In this approach, the tension
between exploration and safety is addressed by simulating on-
the-fly an approximated model of the system at unexplored
points in the state space to generate data for learning the value
function without risking safety violation of the original system.
We provide proofs of convergence of this approximation scheme
and demonstrate numerically the advantages of our approach
over related safe online RL approaches.

https://doi.org/10.1016/j.automatica.2022.110684
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elated work. The online RL method considered herein is rooted
n the seminal work of Vamvoudakis and Lewis (2010), where
echniques from adaptive control (Krstić, Kanellakopoulos, & Koko
ović, 1995) were used to solve online an unconstrained infinite-
orizon optimal control problem for a nonlinear system with
nown dynamics. This approach was quickly extended to un-
ertain systems using model-free and model-based RL methods
see Kiumarsi, Vamvoudakis, Modares, & Lewis, 2017; Lewis,
rabie, & Vamvoudakis, 2012 for surveys of model-free meth-
ds and Kamalapurkar et al., 2018 for a monograph of model-
ased methods). Although various extensions have been proposed
ver the past decade, these techniques have been limited to
nconstrained problems or those with actuator constraints (Dep-
ula, Bell, Doucette, Curtis, & Dixon, 2020; Vamvoudakis, Mi-
anda, & Hespanha, 2015). More recently, these RL techniques
ave begun to consider safety constraints by incorporating BF-

based terms in the problem’s cost function (Cohen & Belta, 2020;
Greene, Deptula, Nivison, & Dixon, 2020; Mahmud, Hareland,
Nivison, Bell, & Kamalapurkar, 2021; Marvi & Kiumarsi, 2021;
Yang, Vamvoudakis, & Modares, 2020). The approaches from Green
et al. (2020), Mahmud et al. (2021) and Yang et al. (2020) rely on
a barrier Lyapunov function (BLF) (Tee et al., 2009) based system
transformation to map a constrained optimal control problem to
an unconstrained one, which can then be solved using existing
approaches. However, these techniques are limited to rectangular
state constraints (i.e., the safe set is a hyperrectangle), which do
not encompass the complex safety specifications, such as collision
avoidance, encountered in applications such as robotics. These
BF-based techniques were generalized to safe sets defined by
the zero-superlevel set of a general continuously differentiable
function in Cohen and Belta (2020) and Marvi and Kiumarsi
(2021) by including a CBF-based term in the problem’s cost
function, which was inspired by the motion planning frame-
work from Deptula, Chen, Licitra, Rosenfeld, and Dixon (2020).
However, as argued in Mahmud et al. (2021), the approaches
from Cohen and Belta (2020), Deptula, Chen, Licitra, Rosenfeld,
and Dixon (2020) and Marvi and Kiumarsi (2021) are facilitated
by the strong assumption that the resulting value function is
continuously differentiable - a condition that may fail to hold
for various systems and safe sets. Although the aforementioned
approaches have demonstrated success in practice, an important
limitation faced by Cohen and Belta (2020), Deptula, Chen, Licitra,
Rosenfeld, and Dixon (2020), Greene et al. (2020), Mahmud et al.
(2021), Marvi and Kiumarsi (2021) and Yang et al. (2020) in
the context of safety–critical control is the use of the resulting
value function, which acts as a BLF, as a safety certificate. Since
the ultimate objective of these approaches is to learn the value
function/safety certificate, safety and learning become tightly
coupled—safety guarantees are conditioned upon convergence of
the RL algorithm, which is predicated on excitation conditions
that cannot be verified in practice. It is the aim of this paper
to address this limitation by decoupling learning from safety,
with the latter being guaranteed at all times independent of
any conditions associated with learning. Since the value function
of the class of optimal control problems considered herein is
a control Lyapunov function (CLF) (Sontag, 2013, Ch. 8.5), our
method can be seen as an approach to safely learn an optimal
CLF for an uncertain system using data from a single trajectory.
Compared to traditional CBF-based approaches that unite CLFs
and CBFs to achieve dual objectives of stability and safety, this
implies one need only to construct a valid CBF to achieve stability
and safety, with the additional benefit of accounting for partially
uncertain dynamics.
2

Contributions. The contributions of this paper are threefold. First,
we introduce a new class of CBFs, termed Lyapunov-like CBFs
(LCBFs), inspired by the Lyapunov-like barrier functions intro-
duced in Panagou et al. (2016), that retain the important prop-
erties of CBFs for making safety guarantees while possessing
desirable Lyapunov-like qualities that facilitate the development
of safe and stabilizing controllers. We illustrate how the gradient
of this LCBF can be used to construct a safeguarding controller
that shields a performance-driven RL policy in a minimally in-
vasive fashion to guarantee safety. Second, we extend the MBRL
architecture from Kamalapurkar, Rosenfeld, and Dixon (2016) to
develop a safe exploration framework in which the value function
and optimal policy of an unconstrained optimal control prob-
lem are safely learned online for an uncertain nonlinear system.
The fundamental distinction between our approach and those of
related works (Cohen & Belta, 2020; Deptula, Chen, Licitra, Rosen-
feld, & Dixon, 2020; Greene et al., 2020; Mahmud et al., 2021;
Marvi & Kiumarsi, 2021; Yang et al., 2020) is that the aforemen-
tioned methods aim to learn a safe policy, whereas our safe explo-
ration framework allows for safely learning a performance-driven
policy - an approach more aligned with works such as Cheng
et al. (2019) and Fisac et al. (2019). Although, at a high-level, our
technical approach is similar to those of Kamalapurkar, Rosen-
feld, and Dixon (2016) and Kamalapurkar, Walters, and Dixon
(2016), the approach in this paper presents a departure from
those in Kamalapurkar, Rosenfeld, and Dixon (2016) and Ka-
malapurkar, Walters, and Dixon (2016) in that different policies
are used for exploration (learned policy) and deployment on
the original system (safe policy), which complicates the result-
ing convergence analysis. Third, we present numerical examples
demonstrating the improved safety guarantees of the proposed
MBRL method compared to those that enforce safety through
the minimization of a suitably constructed cost functional. In
an additional numerical example, we illustrate empirically that
our approach allows for simultaneous stabilization and obstacle
avoidance via dynamic time-varying feedback.

Notation. A continuous function α : R≥0 → R≥0 is said to be
a class K function, denoted by α ∈ K, if it is strictly increasing
and α(0) = 0. The derivative of a continuously differentiable
function f (x, y) with respect to its first argument is denoted by
∇f (x, y) =

∂ f (x,y)
∂x and is interpreted as a row vector. The operator

∥ · ∥ denotes the standard Euclidean norm, In ∈ Rn×n denotes an
n×n identity matrix, and λmax(M), λmin(M) return the maximum
and minimum eigenvalues of a matrix M , respectively. Given a
signal d : R≥0 → Rm, we define ∥d∥∞ := supt ∥d(t)∥. Given a set
C, the notation ∂C denotes the boundary of C and Int(C) denotes
the interior of C. We define Br (x0) := {x ∈ Rn

| ∥x − x0∥ ≤ r} as a
closed ball of radius r > 0 centered at x0 ∈ Rn.

2. Preliminaries and problem formulation

Consider a nonlinear control affine system of the form

˙ = f (x) + g(x)u, (1)

where x ∈ Rn, f : Rn
→ Rn and g : Rn

→ Rn×m are
locally Lipschitz, and u ∈ Rm is the control input. We assume
that f (0) = 0 so that the origin is in equilibrium point of the
uncontrolled system. Let k(x, t) be a feedback control policy such
that the closed-loop vector field fcl(x, t) := f (x) + g(x)k(x, t)
is locally Lipschitz in x and piecewise continuous in t . Under
these assumptions, given an initial condition x0 := x(t0) ∈ Rn

at time t = t0, there exists some maximal interval of existence
I(x0) = [t0, τmax) such that x(t) satisfies

ẋ(t) = f (x(t)) + g(x(t))k(x(t), t), x(t ) = x , (2)
0 0
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or all t ∈ I(x0). We say that a set C ⊂ Rn is forward invariant for
2) if, for each x0 ∈ C, the solution to (2) satisfies x(t) ∈ C for all
∈ I(x0). If C is forward invariant for (2), we say the closed-loop
ystem is safe with respect to C and that C is a safe set. In this
aper, we consider candidate safe sets of the form

C ={x ∈ Rn
| h(x) ≥ 0}, (3a)

∂C ={x ∈ Rn
| h(x) = 0}, (3b)

nt(C) ={x ∈ Rn
| h(x) > 0}, (3c)

here h : Rn
→ R is continuously differentiable. A powerful

ool for designing control policies that render sets of the form
3) forward invariant is the concept of a control barrier function
CBF) (Ames et al., 2019, 2017), defined as follows:

efinition 1 (Ames et al., 2017). A continuously differentiable
unction b : Int(C) → R≥0 is said to be a control barrier function
CBF) for (1) over a set C ⊂ Rn as in (3) if there exist α1, α2, α3 ∈

K such that for all x ∈ Int(C)
1

α1 (h(x))
≤ b(x) ≤

1
α2 (h(x))

, (4a)

inf
∈Rm

{∇b(x)f (x) + ∇b(x)g(x)u} ≤ α3 (h(x)) . (4b)

We refer to a continuously differentiable function b satisfying
(4a) as a candidate CBF. The main result regarding CBFs is that
the existence of such a function implies the existence of a policy
u = k(x) that renders Int(C) forward invariant for (1) (Ames et al.,
2017, Cor. 1).

Problem 1. Consider system (1) and a set C ⊂ Rn as in (3). Given
a candidate CBF b : Int(C) → R≥0, find a control policy u = k(x)
such that Int(C) is forward invariant for (1) and the origin is stable
for (1).

Our first step to addressing Problem 1 is to introduce a new
class of CBFs that retain the crucial properties of CBFs but are
also positive semi-definite on Int(C), which becomes important
when ensuring that the origin is an equilibrium point for the
closed-loop system. To find a stabilizing control policy, we take
a RL-based approach in which the value function of an optimal
control problem is safely learned online.

3. Lyapunov-like control barrier functions

In this section, we propose a new class of CBFs and present
various technical results that illustrate their properties. Based
upon the development from Panagou et al. (2016), we consider
the following recentered barrier function (Willis & Heath, 2004)

B(x) := (b(x) − b(0))2 , (5)

where b : Int(C) → R≥0 is a candidate CBF with 0 ∈ Int(C).
Throughout this paper we refer to (5) as a Lyapunov-like CBF
(LCBF) candidate as B can be shown to satisfy the important
properties

inf
x∈Int(C)

B(x) ≥ 0, B(0) = 0, lim
x→∂C

B(x) = ∞.

The primary distinction between standard CBFs and LCBFs is that
B vanishes at the origin, which will become important when com-
bining the subsequently designed safeguarding controller with
a nominal stabilizing policy. The following lemma establishes
conditions on B that ensure the forward invariance of C.

Lemma 1. Consider system (2) and assume the origin is contained
in Int(C). Provided B(x(t)) < ∞ for all t ∈ I(x0), then Int(C) is
forward invariant for (2).
3

Proof. Since b(x) shares the same properties as 1/α(h(x)) for α ∈

K (Ames et al., 2017, Remark 1) and since 0 ∈ Int(C) implies
b(0) < ∞, we have B(x) < ∞ H⇒ 1/α(h(x)) < ∞ H⇒ h(x) >

0. Thus, if B(x(t)) < ∞, ∀t ∈ I(x0), then h(x(t)) > 0, ∀t ∈ I(x0),
which implies x(t) ∈ Int(C), ∀t ∈ I(x0). □

Similar to how CBFs are often used as a safety filter for a
nominal control policy (Ames et al., 2019), in this paper we
exploit the properties of LCBFs to endow existing control policies
for (1) with strong safety guarantees. In particular, we propose
the following safeguarding controller

kb(x) := −cbg(x)T∇B(x)T , (6)

where cb ∈ R>0 is a gain and B is a LCBF candidate. The following
assumption places conditions on the dynamics (1), the safe set C,
and candidate CBF b that facilitate the development of subsequent
results.

Assumption 1. Given system (1) and a candidate safe set C, the
following conditions hold:

(1) There exists a positive, non-decreasing function ℓf : R≥0
→ R≥0 such that ∥f (x)∥ ≤ ℓf (∥x∥)∥x∥ for all x ∈ C and
limx→∂C ℓf (∥x∥)∥x∥ < ∞.

(2) There exists a positive constant g ∈ R>0 such that g ≤

∥g(x)∥ for all x ∈ C.
(3) There exists a neighborhood of ∂C, denoted by N (∂C), such

that 0 /∈ N (∂C) and ∥∇b(x)g(x)∥ ̸= 0 for all x ∈ N (∂C).

Remark 1. The first condition in Assumption 1, made largely for
technical reasons, places growth restrictions on the system drift
and ensures the drift dynamics do not ‘‘blow up" on the boundary
of C. The second assumption ensures the control directions do
not vanish where control authority may be required to keep the
system safe. The third condition is, in essence, a feasibility as-
sumption that ensures the existence of control values that render
the safe set forward invariant and is not restrictive provided the
candidate CBF b has relative degree one with respect to (1). As
discussed later in Remark 2, this last condition is stronger than
necessary and can be slightly relaxed provided b is a valid CBF.
Additionally, note that ∥∇b(x)g(x)∥ ̸= 0 for all x ∈ N (∂C) in
conjunction with 0 /∈ N (∂C) implies ∥∇B(x)g(x)∥ ̸= 0 for all
x ∈ N (∂C).

The following theorem shows that, under Assumption 1, the
policy in (6) renders Int(C) forward invariant for (1).

Theorem 1. Consider system (1), a set C ⊂ Rn as in (3) with
0 ∈ Int(C), and let b : Int(C) → R≥0 be a candidate CBF for (1)
on C. Provided Assumption 1 holds, the controller u = kb(x) with kb
as in (6) renders Int(C) forward invariant for the closed-loop system
(1).

Proof. Taking the derivative of B along the closed-loop vector
field yields

Ḃ(x) =∇B(x)f (x) + ∇B(x)g(x)kb(x)

=∇B(x)f (x) − cb∥∇B(x)g(x)∥2.

Provided Assumption 1 holds, Ḃ can be upper bounded for all
x ∈ N (∂C) as

˙(x) ≤∥∇B(x)∥ℓf (∥x∥)∥x∥ − cb∥∇B(x)g(x)∥2

≤∥∇B(x)∥ℓf (∥x∥)∥x∥ − cb∥∇B(x)∥2g2

=∥∇B(x)∥2
·

(
ℓf (∥x∥)∥x∥

− cbg2
)

.

(7)
∥∇B(x)∥



M.H. Cohen and C. Belta Automatica 147 (2023) 110684

I
∥

(
H

c
s

w
m
p
f

V

w
i
p
e

0

f
t
t
s

k

s

f ℓf (∥x∥)∥x∥ is finite in the limit as x → ∂C then ℓf (∥x∥)∥x∥/
∇B(x)∥ = 0 in the limit as x → ∂C, which implies that
ℓf (∥x∥)∥x∥/∥∇B(x)∥ − cbg2) = −cbg2 in the limit as x → ∂C.
ence, taking limits in (7) as x tends to ∂C yields

lim
x→∂C

Ḃ(x) = −∞ < 0. (8)

The fact that limx→∂C Ḃ(x) < 0 precludes the existence of trajecto-
ries that enter ∂C. To see this, suppose there exists a trajectory of
the closed-loop system t ↦→ x(t) with x0 ∈ Int(C) defined on some
maximal interval of existence I(x0) such that limt→T B(x(t)) = ∞

for some finite T ∈ I(x0). Since B(x) → ∞ ⇐⇒ b(x) → ∞, this
implies that limt→T x(t) ∈ ∂C. However, since limt→T B(x(t)) = ∞

for some finite T ∈ I(x0), this also implies that limt→T Ḃ(x(t)) =

∞, which contradicts (8). Hence, there cannot exist a trajectory
of the closed-loop system for which limt→T B(x(t)) = ∞ for some
finite T ∈ I(x0), implying B(x(t)) < ∞ for all t ∈ I(x0). The
forward invariance of Int(C) follows from Lemma 1. □

Having established the safety of (1) under the influence of
(6), we show in the following corollary to Theorem 1 how the
safeguarding controller can be used to modify an existing control
policy for (1) to guarantee safety.

Corollary 1. Let k(x, t) be a nominal control policy, locally Lipschitz
in x and piecewise continuous in t, satisfying k(0, t) = 0 for all
t ∈ I(x0). In addition to the assumptions of Theorem 1, suppose
there exists a positive, non-decreasing function ℓgk : R≥0 → R≥0
such that ∥g(x)k(x, t)∥ ≤ ℓgk(∥x∥)∥x∥ for all x ∈ C and t ∈ I(x0),
and limx→∂C ℓgk(∥x∥)∥x∥ < ∞. Then, the controller

u = k(x, t) + kb(x), (9)

where kb is defined as in (6), renders Int(C) forward invariant for
(1) and ensures the origin is an equilibrium point for the closed-loop
system (1).

Proof. The proof of the first part follows from redefining the
drift as f (x, t) := f (x) + g(x)k(x, t) and invoking Theorem 1. The
second part follows from noting that B is positive semi-definite
on Int(C), hence ∇B(0) = 0 and kb(0) = 0. It follows from the
assumption that f (0) = 0 and k(0, t) = 0, ∀t ∈ I(x0) that
ẋ = f (0) + g(0)u(0, t) = 0, ∀t ∈ I(x0). Hence, the origin is an
equilibrium point for the closed-loop system. □

Remark 2. If Assumption 1 fails to hold in the sense that there
exists a set G ⊂ N (∂C) for which ∥∇b(x)g(x)∥ = 0 for all
x ∈ G, safety can still be guaranteed if b is a valid CBF. For
Theorem 1, this follows from the observation that (4b) implies
∥∇b(x)g(x)∥ = 0 H⇒ ∇b(x)f (x) ≤ α3(h(x)), which implies
the unforced dynamics exhibit a certain degree of safety when
∥∇b(x)g(x)∥ = 0.

Theorem 1 and Corollary 1 illustrate how one can modify
an existing policy in a minimally invasive fashion to guarantee
safety.1 Based on the bounds on Ḃ from the proof of Theorem 1,
choosing lower values of cb implies that ∥∇B(x(t))∥ must reach
higher values (i.e., h(x(t)) must achieve lower values) before the
trajectory x(t) is ‘‘pushed" away from ∂C. We emphasize that
knowledge of the bounds on the dynamics from Assumption 1
is not required for implementation of the safeguarding controller
and is made to ensure the existence of control values that render
the safe set forward invariant. Knowledge of such bounds, how-
ever, can be helpful in the selection of cb. In theory, one could

1 Although these results have been established for one safe set, multiple sets
an be considered by defining B(x) :=

∑
i Bi(x), where each Bi is a LCBF over a

et C as in (3).
i f

4

select an arbitrarily small positive value of cb so that the influence
of the safeguarding controller only becomes dominant on ∂C. In
practice, however, this could lead to control inputs with large
magnitude that may exceed physical actuator limits and could
also lead rapid changes in the magnitude of the control input.
Hence, cb is a design parameter that must be carefully selected
by the user based upon the specific problem under consideration
to ensure a desirable response of the closed-loop system.

4. Approximate dynamic programming

4.1. Infinite-horizon nonlinear optimal control

In this section, we shift our attention to the problem of finding
a stabilizing control policy for (1) that can be combined with
(6) to address Problem 1. Popular approaches to solving such a
problem involve uniting CBFs and CLFs to achieve dual objectives
of stability and safety, yet finding a CLF for a general nonlinear
control affine system (1) is a non-trivial problem—especially if the
dynamics (1) are unknown. A general way to search for a CLF is
to find a control policy that minimizes the infinite-horizon cost
functional

J(x, u(·)) :=

∫
∞

t0

(
x(τ )TQx(τ ) + u(τ )TRu(τ )

)  
r(x(τ ),u(τ ))

dτ , (10)

here Q ∈ Rn×n is positive definite and R ∈ Rm×m is sym-
etric and positive definite. Solutions to such an optimal control
roblem are typically characterized in terms of the optimal value
unction

∗(x(t)) := inf
u(·)∈U

∫
∞

t
r(x(τ ), u(τ ))dτ , (11)

here U is the set of admissible control signals.2 Provided V ∗

s continuously differentiable, it can be shown to be the unique
ositive definite solution to the Hamilton–Jacobi–Bellman (HJB)
quation

= inf
u∈Rm

{∇V ∗(x)f (x) + ∇V ∗(x)g(x)u + r(x, u)}, (12)

or all x ∈ Rn with a boundary condition of V ∗(0) = 0. Provided
here exists a continuously differentiable positive definite func-
ion V ∗ satisfying the HJB, taking the minimum on the right-hand
ide of (12) yields the optimal feedback control policy as

∗(x) = −
1
2
R−1g(x)T∇V ∗(x)T . (13)

Assumption 2. There exists a continuously differentiable positive
definite function V ∗(x) satisfying (12). Moreover, ∇V ∗(x) is locally
Lipschitz.

Under Assumption 2, the closed-loop system (1) with u =

k∗(x) can be shown to be asymptotically stable with respect to the
origin using V ∗ as a CLF (Sontag, 2013, Ch. 8.5), and Corollary 1
can be used to endow (13) with safety guarantees. Although this
approach provides a general way of constructing a CLF for (1),
the practicality of it is hindered by the need to solve the HJB
Eq. (12) for V ∗, which generally does not admit a closed-form
solution, and would require an accurate system model, which
may be unavailable in practice. The remainder of this paper is
hence dedicated to developing a MBRL framework that can be
combined with the results of Section 3 to safely learn V ∗ and the
dynamics (1) online.

2 Given an initial condition x(t0) ∈ Rn , a control signal u : R≥t0 → Rm is
aid to be admissible if it is bounded, piecewise continuous, and J(x(t0), u) is
inite.
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.2. Value function approximation

Since the optimal value function V ∗ is unknown and difficult
o compute in general, we seek a parametric approximation of
∗ over some compact set χ ⊂ Rn containing the origin. To

this end, we leverage state following (StaF) kernels introduced
in Kamalapurkar, Rosenfeld, and Dixon (2016) and Rosenfeld, Ka-
malapurkar, and Dixon (2019) to generate a local approximation
of the value function within a smaller compact set Bl(x) ⊂ χ that
follows the system trajectory. Using StaF kernels, the value func-
tion (11) can be represented at points y ∈ Bl(x) as Kamalapurkar,
Rosenfeld, and Dixon (2016)

V ∗(y) = W (x)Tφ(y, c(x)) + ε(x, y), (14)

where W : χ → RL is a continuously differentiable ideal weight
function, φ : χ × χ → RL is a vector of L ∈ N bounded,
positive definite, and smooth kernel functions, where c(x) =

c1(x) . . . cL(x)]T and ci(x) ∈ Bl(x), i ∈ {1, . . . , L} denotes the
center of the ith kernel, and ε : χ ×χ → R denotes the function
reconstruction error. Further details regarding the selection of
kernel functions can be found in Kamalapurkar, Rosenfeld, and
Dixon (2016, Footnote 7) and Rosenfeld et al. (2019). The ideal
weight function W in (14) is generally unknown, and is therefore
replaced with approximations3 Ŵc(t), Ŵa(t) ∈ RL yielding the
approximate value function and approximate optimal control
policy as

V̂ (y, x, Ŵc) := Ŵ T
c φ(y, c(x)), (15a)

k̂(y, x, Ŵa) := −
1
2
R−1g(y)T∇φ(y, c(x))T Ŵa. (15b)

4.3. System identification

In addition to not knowing the value function, we now assume
that the system drift from (1) is unknown, but can be expressed
as a linear combination of weights θ ∈ Rp and user-defined basis
functions Y : Rn

→ Rn×p such that over a given compact set
χ ⊂ Rn

f (x) = Y (x)θ + εθ (x), (16)

here εθ : Rn
→ Rn is the bounded unknown function recon-

truction error. The basis Y may capture physical knowledge of
he dynamics or may represent user-defined basis functions, such
s polynomials, radial basis functions, and pre-trained neural
etworks with tunable outer layer weights, that can approxi-
ate functions arbitrarily closely over compact sets. As the ideal
eights4 for the given basis are assumed to be unknown, let

ˆ ∈ Rp denote an estimate of θ and let f̂ (x, θ̂ ) := Y (x)θ̂ denote
the corresponding approximated drift. Provided θ̂ is updated by
a specific class of parameter identifiers,5 then one can establish
the existence of a Lyapunov-like function Vθ : Rp

× R≥0 → R≥0
satisfying

V̇θ (θ̃ , t) ≤ −Kθ∥θ̃∥
2
+ Dθ∥θ̃∥, (17)

for all θ̃ ∈ Rp and t ∈ R≥0, where θ̃ := θ − θ̂ denotes the weight
estimation error and Kθ ,Dθ ∈ R>0 are positive constants, the

3 The use of separate weight estimates is motivated by the fact that (18) is
ffine in Ŵc (Vamvoudakis & Lewis, 2010).
4 For a given basis Y , the ideal weight vector is defined as θ :=

rgminθ̂∈Rp supx∈χ ∥f (x) − Y (x)θ̂∥ (see Ioannou & Fidan, 2006, Ch. 8.7).
5 See Kamalapurkar, Walters, and Dixon (2016, Assumption 2) for conditions

that such an identifier must satisfy and Chowdhary (2010), Deptula, Bell,
Doucette, Curtis, and Dixon (2020), Deptula, Bell, Zegers, Licitra, and Dixon
(2021) and Parikh, Kamalapurkar, and Dixon (2019) for examples of identifiers.
 t

5

latter of which depends upon εθ (cf. Kamalapurkar, Rosenfeld, &
Dixon, 2016; Kamalapurkar, Walters, & Dixon, 2016). The bound
in (17) implies that, under such an identification scheme, the
weight estimation error exponentially decays to a ball about the
origin, the size of which also depends upon εθ .

4.4. Bellman error

A performance metric for learning the ideal parameters of the
value function and policy can be obtained by replacing the opti-
mal value function, optimal policy, and true drift in the HJB (12)
with their corresponding approximations yielding the Bellman
error (BE)

δ(y, x, Ŵc, Ŵa, θ̂ ) :=∇V̂ (y, x, Ŵc)f̂ (y, θ̂ )

+ ∇V̂ (y, x, Ŵc)g(y)k̂(y, x, Ŵa)

+ r(y, k̂(y, x, Ŵa)).

(18)

Given weight estimates (Ŵc, Ŵa), the BE, evaluated at any point
in the state-space, encodes the ‘‘distance" of the approximations
(V̂ , k̂) from their true values (V ∗, k∗). Thus, the objective is to
select (Ŵc, Ŵa) such that δ(y, x, Ŵc, Ŵa, θ̂ ) = 0 for all x ∈ χ and
all y ∈ Bl(x), which is accomplished by updating (Ŵc, Ŵa) online
using techniques from adaptive control (Chowdhary, 2010; Krstić
et al., 1995; Vamvoudakis & Lewis, 2010).

5. Safe exploration via simulation of experience

This section builds upon the approach from Kamalapurkar,
Rosenfeld, and Dixon (2016), Kamalapurkar, Walters, and Dixon
(2016) and Kamalapurkar et al. (2018) to develop a safe explo-
ration framework for learning V ∗ and k∗ online while guaran-
teeing safety. To this end, define the control policy for (1) as

u = k̂(x, x, Ŵa) −
cb
2
R−1g(x)T∇B(x)T , (19)

where k̂ is defined as in (15b), cb ∈ R>0 is a gain, and B is a
LCBF as in (5), which is a special case of the controller proposed
in Corollary 1. Define the regressor ω(t) := ∇φ(x(t), c(x(t))) ·

(f̂ (x(t), θ̂ (t)) + g(x(t))u(t)) and the resulting BE along the system
trajectory as

δt (t) := r(x(t), u(t)) + Ŵc(t)Tω(t). (20)

In contrast to (18), the version of the BE in (20) is a function
of ∇B and therefore selecting the weight estimates to minimize
(20) may not correspond to the minimization of the original BE
in (18). That is, even if (Ŵc, Ŵa) → W , the BE in (20) may be
large at certain points in the state-space because of the influence
of the safeguarding component of (19), making (20) a non-ideal
performance metric for learning. However, given an approximate
model of the system, the BE can be evaluated at any point in
the state-space (Kamalapurkar, Walters, & Dixon, 2016) using
a different policy to generate data more representative of (18).
To facilitate this approach, define the family of mappings {xi :

χ × R≥t0 → χ}
N
i=1 such that each xi(x(t), t) ∈ Bl(x(t)) maps the

current state x(t) to some unexplored point in Bl(x(t)). For each
extrapolated trajectory,6 t ↦→ xi(x(t), t), i ∈ {1, . . . ,N}, we define
an exploratory policy as ui(t) := k̂(xi(x(t), t), x(t), Ŵa(t)) with k̂
as in (15b), which yields the BE along the extrapolated system
trajectories as7

δi(t) := r(xi(x(t), t), ui(t)) + Ŵc(t)Tωi(t). (21)

6 See Deptula et al. (2021, Rem. 5) for details on generating trajectories.
7 Mappings with the subscript i denote evaluations along the extrapolated

rajectories.
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ote that the exploratory policy ui is not augmented with the
afeguarding controller, thereby allowing for maximum explo-
ation of the state-space by the extrapolated system trajectories
ithout risking safety violation of the original system. Conse-
uently, the BE in (21) is representative of the original BE from
18) and is used to update the weight estimates using a recursive
east squares update law as

˙̂
c(t) = −Γ (t)

(
kc1

ω(t)
ρ2(t)

δt (t) +
kc2
N

N∑
i=1

ωi(t)
ρ2
i (t)

δi(t)

)
(22)

˙ (t) = βcΓ (t) − Γ (t)

(
kc1Λ(t) +

kc2
N

N∑
i=1

Λi(t)

)
Γ (t), (23)

where Λ(t) :=
ω(t)ω(t)T

ρ2(t)
, ρ(t) := 1 + γcω(t)Tω(t) is a normalizing

signal with a gain of γc ∈ R>0, kc1, kc2 ∈ R>0 are learning
gains, and βc ∈ R>0 is a forgetting factor. In (22)–(23) the terms
ωi, ρi, Λi are defined in a similar manner to ω, ρ, Λ. The weight
update law for Ŵa is then selected as

˙̂Wa(t) =proj
{

−ka1(Ŵa(t) − Ŵc(t)) − ka2Ŵa(t)

+
kc1

4ρ2(t)
Gφ(t)T Ŵa(t)ω(t)T Ŵc(t)

+

N∑
i=1

kc2
4Nρ2

i (t)
Gφ,i(t)T Ŵa(t)ωi(t)T Ŵc(t)

}
,

(24)

where Gφ := ∇φ(x, c(x))GR(x)∇φ(x, c(x))T , GR := g(x)R−1g(x)T ,
ka1, ka2 ∈ R>0 are learning gains, and proj{·} is a smooth projec-
tion operator, standard in the adaptive control literature (Krstić
et al., 1995, Appendix E), that ensures the weight estimates re-
main bounded. The following proposition shows that the policy in
(19) renders Int(C) forward invariant for the closed-loop system
(1).

Proposition 1. Consider system (1), a set C ⊂ Rn as in (3) with
0 ∈ Int(C), and let b : Int(C) → R≥0 be a candidate CBF. Provided
Assumptions 1–2 hold and there exists a positive, non-decreasing
function ℓgφ : R≥0 → R≥0 such that ∥g(x)T∇φ(x, c(x))T∥ ≤

ℓgφ(∥x∥)∥x∥ for all x ∈ C and limx→∂C ℓgφ(∥x∥)∥x∥ < ∞, then the
control policy in (19) and weight update law in (24) ensure Int(C)
is forward invariant for (1) and ensure the origin is an equilibrium
point for the closed-loop system (1).

Proof. Under the assumptions of the proposition, the nominal
policy k̂(x, x, Ŵa) can be bounded as ∥k̂(x, x, Ŵa)∥ ≤

1
2λmax(R−1)

¯ aℓgφ(∥x∥)∥x∥ for all x ∈ C, where ∥Ŵa∥ ≤ W̄a for some
¯ a ∈ R>0 follows from the use of the projection operator in (24).
he proof then follows from letting k(x, t) = k̂(x, x, Ŵa(t)) and

invoking Corollary 1. □

In contrast to related approaches (Cohen & Belta, 2020; Greene
et al., 2020; Mahmud et al., 2021; Marvi & Kiumarsi, 2021;
Yang et al., 2020), the above proposition does not make use
of any Lyapunov-based arguments that require the value func-
tion to decrease along the system trajectory, only that Ŵa re-
mains bounded, which is guaranteed by the use of the projection
operator in (24). The following assumption outlines the explo-
ration conditions required for the approximations to converge to
a neighborhood of their ideal values.

Assumption 3 (Deptula, Bell, Doucette, Curtis, & Dixon, 2020; Ka-
malapurkar, Rosenfeld, & Dixon, 2016). There exist constants T ∈

R>0 and c1, c2, c3 ∈ R≥0 such that for all t ≥ t0 we have
I ≤

∫ t+T
Λ(τ )dτ , c I ≤

∫ t+T 1 ∑N
Λ (τ )dτ , and c I ≤
1 L t 2 L t N i=1 i 3 L

6

nft≥t0 (
1
N

∑N
i=1 Λi(t)), where at least one of c1, c2, c3 is strictly

reater than zero.8

.1. Stability analysis

To facilitate the analysis of the closed-loop system under the
nfluence of the controller in (19), define the weight estimation
rrors W̃c(t) := W (x(t)) − Ŵc(t), W̃a(t) := W (x(t)) − Ŵa(t), and
composite state vector Z := [xT , W̃ T

c , W̃ T
a , θ̃ T

]
T . Now consider

he following Lyapunov function candidate

L(Z, t) := V ∗(x) +
1
2
W̃ T

c Γ −1(t)W̃c +
1
2
W̃ T

a W̃a + Vθ (θ̃ , t),

where Vθ is from (17). If λmin(Γ −1(t0)) > 0 and Assumption 3 is
atisfied, then Γ (t) can be shown to satisfy Γ IL ≤ Γ (t) ≤ Γ IL
for all t ≥ t0, where Γ , Γ ∈ R>0 (Kamalapurkar, Rosenfeld, &
Dixon, 2016, Lemma 1), which implies VL is positive definite and
hence satisfies η1(∥Z∥) ≤ VL(Z, t) ≤ η2(∥Z∥) for all t ≥ t0 with
η1, η2 ∈ K (Khalil, 2002, Lemma 4.3). The following theorem
illustrates that the safe exploration scheme ensures the system
state and weight estimation errors remain uniformly ultimately
bounded.

Theorem 2. Consider system (1), the cost functional in (10), a set
C ⊂ Rn as in (3) with 0 ∈ Int(C), and let b : Int(C) → R≥0
be a candidate CBF for (1) on C. Let the optimal value function
and corresponding optimal control policy be approximated over a
compact set χ ⊂ Rn as detailed in Section 4.2, and let Bζ (0) ∈

χ × R2L+p be a closed ball of radius ζ ∈ R>0 centered at Z = 0.
Provided Assumptions 1–3, the conditions of Proposition 1, and the
inequality in (17) hold, x(t0) ∈ Int(C), and

λmin(M) > 0,
√

2ι
κ

< η−1
1 (η2(ζ )) , (25)

where

M :=

⎡⎢⎣
ckc2
4 −

ϕac
2 −

ϕcθ
2

−
ϕac
2

(
ka1+ka2

4 − ϕa

)
0

−
ϕcθ
2 0 Kθ

4

⎤⎥⎦ , (26)

with c := ( c32 +
βc

2kc2Γ
) and κ, ι, ϕa, ϕac, ϕcθ ∈ R>0 defined in the

Appendix, then the control policy in (19) and weight update laws
in (22), (23), (24) guarantee that Int(C) is forward invariant for the
closed-loop system (1) and that Z(t) is uniformly ultimately bounded
such that

lim sup
t→∞

∥Z(t)∥ ≤ η−1
1 ◦ η2(

√
2ι/κ). (27)

Remark 3. It is difficult to verify when the sufficient conditions
in (25) are satisfied because M and ι depend on terms that are
either unknown, such as ε, or completely determined by the
system trajectory, such as c , and therefore one cannot formally
guarantee the satisfaction of (25) a priori. Although the stability
guarantees depend upon these conditions, the safety guarantees
of the proposed framework have already been established in
Proposition 1, which is in contrast to related approaches that use

8 The first condition in Assumption 3 is the persistence of excitation (PE)
ondition, whose satisfaction cannot be verified in general, but can be achieved
euristically by including an exploration/probing signal in the control input. The
econd condition is the same PE condition, but is placed on the extrapolated
trajectories. Since the extrapolated trajectories are user-defined through the
mappings {xi(x(t), t)}Ni=1 , one can construct these mappings in an attempt to
satisfy such a condition (Deptula et al., 2021, Rem. 5) without having to
excite the original system. The third condition can be heuristically satisfied by
selecting many extrapolation points N; however, this scales poorly with the state
dimension (cf. Kamalapurkar, Rosenfeld, & Dixon, 2016).
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Fig. 1. Trajectories of the nonlinear system evolving in the convex (left) and
nonconvex (right) safe sets. In each plot the blue curve denotes the trajectory
under the RL policy augmented with the safeguarding controller, the orange
curve denotes the trajectory under only the RL policy, the green curve denotes
the trajectory under the RL policy with a cost function of r(x, u) = ∥x∥2

+ u2
+

0B(x), the purple curve denotes the open-loop trajectory, and the black curve
enotes the boundary of the safe set. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

he value function as a safety certificate. The definitions provided
n the Appendix imply that (25) can be satisfied by selecting
sufficient number of basis functions L, which decreases the

pproximation error ε, by choosing R such that λmin(R) is large,
nd by ensuring that c is large, which can be achieved using the
ethods mentioned in Footnote 8. The ultimate bound is also a

unction of ∥∇B(x(t))∥∞ and therefore selecting cb to be small can
id in satisfying the sufficient conditions.

roof. The forward invariance of Int(C) follows from Proposi-
ion 1. Expressing (20) and (21) in terms of the weight estima-
ion errors and then subtracting the right-hand side of the HJB
q. (12) using the StaF representation of V ∗ from (14) yields
n alternative form of the BEs as δt = −W̃ T

c ω +
1
4W̃

T
a GφW̃a −

W T
∇φY θ̃ −

1
2 cb∇BGR∇φT W̃a +

1
4 c

2
b∇BGR∇BT

+ ∆ and δi =

W̃ T
c ωi +

1
4W̃

T
a Gφ,iW̃a − W T

i ∇φiYiθ̃ + ∆i, where functional de-
pendencies have been suppressed for ease of presentation and
∆(x), ∆i(xi) consist of terms that are uniformly bounded over χ .
Taking the derivative of VL along Z(t) yields

V̇L =∇V ∗f + ∇V ∗gu +
1
2
W̃ T

c Γ −1(Ẇ −
˙̂Wc)

−
1
2
W̃ T

c Γ −1Γ̇ Γ −1W̃c +
1
2
W̃ T

a (Ẇ −
˙̂Wa)+V̇θ .

Using ∇V ∗f = −∇V ∗gk∗
−k∗TRk∗

−xTQx from the HJB (12), Ẇ =

W (f + gu), substituting in the weight update laws (22), (23),
(24) using the alternate form of the BEs, expressing everything
in terms of the weight estimation errors, upper bounding and
then completing squares yields V̇L ≤ −κ∥Z∥

2
− ZTMZ + ι, where

:= [∥W̃c∥ ∥W̃a∥ ∥θ̃∥]
T . Provided (25) holds, further bounding

ields V̇L ≤ −
κ
2∥Z∥

2
∀ζ ≥ ∥Z∥ ≥

√
2ι
κ
. Finally, invoking (Khalil,

002, Thm. 4.18) implies Z(t) is uniformly ultimately bounded
uch that (27) holds. □

. Numerical examples

onlinear system. To demonstrate the efficacy of the developed
pproach, we apply our method to the scenario from Jankovic
2018). Consider a system as in (1) with x ∈ R2, u ∈ R, f (x) =

−0.6x1 − x2, x31]
T and g(x) = [0, x2]T . The drift is assumed to be

unknown but linear in the unknown parameters (i.e., εθ ≡ 0) and
is represented as f (x) = Y (x)θ , where Y (x) = [x , x , 0; 0, 0, x3]
1 2 1

7

Fig. 2. Evolution of the CBF h along the system trajectory (top) and trajectory
of the estimated drift dynamics weights along the trajectory of the nonlinear
system under the RL policy augmented with the safeguarding controller (bot-
tom). In the top plots, the curves of various color have the same interpretation
as those in Fig. 1. In the bottom plots, the dotted lines of corresponding color
denote the true values of the uncertain parameters.

and θ = [−0.6, −1, 1]T . The objective is to drive x(t) to the origin
while ensuring x(t) remains in a set C as in (3) defined by h(x) =

x22−x1+1, where p ∈ {−1, 1} determines if C is convex (p = −1)
r not (p = 1). To the best of our knowledge, such a set cannot
e rendered safe using the approaches from Greene et al. (2020),
ahmud et al. (2021) and Yang et al. (2020) as the constraints
re not of the form ai < xi < ai ∀i ∈ {1, . . . , n} with ai, ai ∈ R.
or each simulation, a safeguarding controller is obtained by con-
tructing the CBF b(x) = 1/h(x) and then constructing an LCBF as
in (5). To obtain a stabilizing control policy, we define an optimal
control problem as in (10) with Q = I2 and R = 1. The resulting
alue function is approximated using a basis of L = 3 StaF

kernels φ(x, c(x)) = [φ1(x, c1(x))φ2(x, c2(x))φ3(x, c3(x))]T , where
each kernel is selected as the polynomial kernel φi(x, ci(x)) =

xT ci(x). The centers of each kernel are placed on the vertices of
an equilateral triangle centered at the current state as ci(x) = x+

ν(x)di, where di ∈ R2 corresponds to vertices of the triangle and
ν(x) :=

xT x
xT x+1

. The learning gains are selected as kc1 = 0.1, kc2 =

1, ka1 = 1, ka2 = 0.1, γc = 1, βc = 0.001 and the weights are
initialized as Ŵc(t0) = Ŵa(t0) = [0.5, 0.5, 0.5]T and Γ (t0) =

100I3. The learning procedure outlined in Section 5 is carried out
by extrapolating the BE to one point from a uniform distribution
over a ν(x)×ν(x) square centered at x every time-step, where the
drift parameters are identified online using integral concurrent
learning (Deptula et al., 2021; Parikh et al., 2019).

To illustrate efficacy of the developed approach, the system
is simulated with the safeguarding controller, without the safe-
guarding controller, and without the safeguarding controller
where the LCBF is incorporated into the cost function in a similar
fashion to Cohen and Belta (2020) and Marvi and Kiumarsi (2021).
For the first simulation, we consider the convex safe set defined
by p = −1 and the policy in (19) with cb = 1, the results of which
are provided in Fig. 1 (left) and Fig. 2 (left). As shown in Fig. 1, the
RL policy in (19) augmented with the safeguarding controller sta-
bilizes x(t) to the origin without leaving the safe set. Without the
safeguarding component, the RL policy stabilizes the system, but
violates the safety constraints multiple times. When the CBF term
is included in the problem’s cost function, the system initially
violates the safety constraints, but eventually converges to a safe
policy. For this particular example, the system rapidly approaches
the boundary of the safe set (see the top left plot in Fig. 2) and
crosses into the unsafe region before enough time has passed for
convergence to a suitable policy without additional help from
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he safeguarding controller. This phenomenon underscores the
rucial distinction between the approach taken herein and those
n, e.g., Cohen and Belta (2020) and Marvi and Kiumarsi (2021),
here safety is enforced by including a CBF in the problem’s
ost function. In essence, these aforementioned approaches aim
o learn a safe policy, whereas the approach presented herein aims
o safely learn a performance policy. Ultimately, this allows for
afe exploration while learning an uncertain system model (Fig. 2,
ottom) and an approximately optimal policy. Moreover, note
hat the safeguarding controller is minimally invasive in the sense
hat it intervenes only when absolutely necessary to prevent
afety violation. In fact, the trajectories of the controlled system
ith and without the safeguarding controller are almost identical
p until the point at which x(t) approaches ∂C. To demonstrate
he ability of the RL policy to safely stabilize the system within
non-convex safe set, a second simulation under the RL policy
ith and without the safeguarding controller is run with p = 1,
he results of which are shown in Fig. 1 (right) and Fig. 2 (right).
ll parameters remain the same as before with the exception of
b = 0.001 and Γ (t0) = 10I3. Once again, the policy in (19)
enders the system safe and the trajectory under the nominal and
afe policy only diverge from each other if intervention from the
afeguarding controller is required to ensure safety.

ollision avoidance. We now examine a simple scenario to
emonstrate some interesting properties of the proposed method.
onsider a mobile robot modeled as a two-dimensional single in-
egrator ẋ = u tasked with navigating to the origin while avoiding
circular obstacle centered at xo ∈ R2 with a radius of ro ∈ R>0.
he safety objective can be addressed by considering a set C
efined by h(x) = ∥x−xo∥2

− r2o . Similar to the previous example,
the safe set is not a hyper-rectangle and therefore the techniques
in Greene et al. (2020), Mahmud et al. (2021) and Yang et al.
(2020) cannot be applied. To obtain a stabilizing control policy we
associate with the single integrator an optimal control problem
as in (10) with Q = I2 and R = I2. Since the system is linear
and the cost is quadratic, one could solve the algebraic Ricatti
equation (ARE) to obtain the optimal policy and then augment
it with the safeguarding controller as in Corollary 1. However,
as demonstrated in the subsequent numerical results, such an
approach presents certain limitations. To compare the analyti-
cal solution with the learning-based solution, the corresponding
value function is approximated using the same parameters as
in the previous example with all weights initialized to 1 and
Γ (t0) = 10I3. Since the dynamics for this example are trivial, no
system identification is performed.

Simulations are performed to compare the policy from (19)
with that obtained from solving the ARE, both of which are
augmented with the safeguarding controller with cb = 0.1.
The resulting system trajectories are provided in Fig. 3, where
the trajectory under the RL policy navigates around the obstacle
and converges to the origin, whereas the trajectory under the
linear quadratic regulation (LQR) policy gets stuck behind the
obstacle. Note that LQR policy augmented with the safeguarding
controller is a continuous time-invariant feedback controller and
can therefore not achieve dual objectives of obstacle avoidance
and stability from certain initial conditions.9 On the other hand,
the RL policy is continuous, but is also time-varying because the
policy explicitly depends on the evolution of Ŵa. Indeed, adaptive
control methods in general can be seen as a form of nonlinear
dynamic feedback (Krstić et al., 1995). As illustrated in Fig. 3
(top), both trajectories quickly approach the obstacle and initially
get stuck, failing to make progress towards the origin. However,

9 The unfamiliar reader is referred to Liberzon (2003, Ch. 4.1) for an intuitive
iscussion on this topic.
8

Fig. 3. State (top), control (bottom left), and weight (bottom right) trajectory
for the single integrator simulation. In the top left plot the gray disk denotes
the obstacle.

unlike the static LQR policy, the weights of the learning-based
controller dynamically evolve, as shown in Fig. 3 (bottom), and
eventually converge to a new policy that successfully navigates
the system around the obstacle and to the origin.

7. Conclusions

In this paper, we developed a safe MBRL framework that
allows one to learn online the value function of an optimal control
problem and the drift dynamics of an uncertain control affine
system while satisfying safety constraints given as CBFs. Our
approach was facilitated by the introduction of a new class of
CBFs, termed LCBFs, that were used to augment a learning-based
control policy to guarantee stability and safety. The benefits of
the proposed method were illustrated by introducing numerical
examples that, to the best of our knowledge, cannot be han-
dled by related approaches. Directions for future research include
integrating zeroing CBFs into the developed framework using
approaches such as in Lopez, Slotine, and How (2021) and Taylor
and Ames (2020), which may address the limitations mentioned
after Corollary 1, and may strengthen the proposed framework in
the context of uncertain systems.
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Appendix. Supporting constants

Given the compact set χ ⊂ Rn and a continuous mapping
(·) : χ → RN , with N ∈ N, define ∥(·)∥ := supx∈χ ∥(·)∥. The
constants used from (25) are defined as κ := min{λmin(Q ), ckc2

4 ,
ka1+ka2

4 ,
Kθ

4 }, ι :=
1
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2
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∥∞. The entries in the matrix M from (25) are defined as
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√
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cθ 16 γc
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