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Abstract— We propose a policy search approach to learn
controllers from specifications given as Signal Temporal Logic
(STL) formulae. The system model, which is unknown but
assumed to be an affine control system, is learned together
with the control policy. The model is implemented as two
feedforward neural networks (FNNs) - one for the drift, and one
for the control directions. To capture the history dependency
of STL specifications, we use a recurrent neural network
(RNN) to implement the control policy. In contrast to prevalent
model-free methods, the learning approach proposed here takes
advantage of the learned model and is more efficient. We use
control barrier functions (CBFs) with the learned model to
improve the safety of the system. We validate our algorithm
via simulations and experiments. The results show that our
approach can satisfy the given specification within very few
system runs, and can be used for on-line control.

I. INTRODUCTION

Temporal logics, such as Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) [1], have been increas-
ingly used as specification languages in robotics, biology,
and autonomous driving applications. In this paper, we use
Signal Temporal Logic (STL) [2], which was originally
developed to monitor temporal properties of real-valued
signals. STL is equipped with both qualitative semantics,
which measures whether a signal satisfies a formula, and
quantitative semantics, known as robustness, which assigns
a real value to measure how strongly a signal satisfies a
formula [3]. Higher robustness scores indicate stronger satis-
factions. Using robustness, controlling a system from an STL
specification can be formulated as an optimization problem
with robustness as a constraint, as a term in the objective
function, or both. Such a problem can be solved using either
Mixed Integer Programming (MIP) [4], [5], or gradient-
based methods [6]–[9]. However, both MIP and gradient-
based methods are computationally expensive, especially for
high dimensional systems and long-horizon planning, which
prevents real-time implementation.

Neural Network (NN) - based controllers have been
proposed to address the computational complexity of the
methods described above. NNs are trained offline and ex-
ecuted online, which enables real-time implementation. In
[10], the control policy is parameterized as a Feedforward
Neural Network (FNN) to maximize the robustness of an
STL formula defined over system trajectories. FNNs are
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memoryless controllers. However, the controller to satisfy an
STL formula is, in general, history-dependent. For instance,
if a specification requires an agent to eventually visit two
regions, the agent needs to know which region it has already
visited so that it can go towards the other one. A Recurrent
Neural Network (RNN) controller, which has memory, was
proposed in [11] to satisfy STL specifications. The RNN
was trained on a dataset containing satisfying trajectories.
However, such a dataset is not always available. [11] used
the optimization methods mentioned above to generate the
dataset, which is again computationally expensive. The au-
thors of [12] proposed a semi-supervised approach to train an
RNN controller such that the resulting trajectory maximizes
the STL robustness as well as minimizes the distance from
a given dataset of expert demonstrations. Compared with
[11], the size of the dataset is largely reduced. All the above
approaches assume the system dynamics are known, which is
sometimes not the case in practice. RNNs were also used in
sequential prediction tasks with STL constraints [13], where
neither system dynamics nor controls are considered.

Reinforcement Learning (RL) can solve control prob-
lems for systems with unknown dynamics. Recently, RL
approaches have been investigated to synthesize controllers
satisfying STL specifications. The advantage of combining
RL and STL is that the STL robustness can be used to
generate RL rewards, which avoids reward hacking [14]. The
authors of [15] and [16] used Q-learning to learn control
policies that maximize the robustness of STL fragments
for systems with discrete state and control spaces. Similar
ideas were used for continuous states and controls using
deep RL [17], [18]. These methods restrict the specifica-
tion to be a fragment of STL. Path integral was used for
learning control policies from Truncated Linear Temporal
Logic (TLTL) [19] and STL [20]. In [21]–[23], automaton-
based approaches were used with FNN controllers to satisfy
LTL and TLTL specfications, where history information is
contained in the automaton state. All the above methods are
completely model-free, and are therefore data inefficient, i.e.,
they require a large number of trials to learn the policy [24].

Model-based policy search methods (e.g., [24], [25]) learn
a dynamic model of the system and use it to guide pol-
icy search. They are more data-efficient than model-free
methods. In this paper, we propose a model-based policy
search method that learns both the system model and the
control policy from an STL specification. The model is
unknown but assumed to be an affine control system. It is
implemented as two FNNs with dropout (one for the drift
and one for the control directions), which are approximations
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of Bayesian neural networks [26] and can reduce model
bias [24]. The control policy is an RNN, which outputs
the control depending on current state and past states, and
therefore captures the memory necessary satisfy arbitrary
STL formulas. Only a few system executions are needed for
training the model, and no extra executions are needed to
train the RNN controller. After training, the RNN controller
can be executed very fast, which enables real time control.

Another critical concern for RL is safety: unsafe states
should never be reached during training and testing. Control
Barrier Functions (CBF) [27] have been proposed to obtain
safe control. In [21], CBFs are incorporated with formal
methods to guarantee the safety of RL. Typically, using CBF
requires the system dynamics to be known. The authors of
[28] use Gaussian process to model an uncertain system and
use CBFs to guide a safe exploration. Similarly, we consider
an unknown system. We propose a method that applies CBF
to the learned probabilistic model, which takes into account
the model uncertainty. Applying CBF when training the
model can also benefit the exploration, because without CBF,
we have to often stop the system due to proximity to unsafe
states. Another related work considering unknown dynamics
is [29], in which FNN controllers are trained, but an open-
loop trajectory satisfying the STL specification needs to be
computed before each run.

The contributions of this paper are summarized as follows.
(1) We propose a novel model-based policy search method
to learn a policy that maximizes the expected robustness of a
given STL specification with unknown system dynamics. Our
approach considers full STL formulae, requires no dataset,
and involves only few system executions. (2) We incorporate
CBFs into the learning process with the consideration of
model uncertainty, which improves the safety and explo-
ration performance. (3) Simulations and experiments are
implemented, illustrating the efficacy and scalability of our
approach, and the ability of real-time control.

II. NOTATIONS AND PRELIMINARIES

We consider a discrete-time affine control system:

xt+1 = f(xt) + g(xt)ut, t = 0, 1, . . . (1)

where xt ∈ X ⊆ Rn is the system state at time t, ut ∈ U ⊆
Rm is the control input at time t, and f : X → X , g : X →
Rn×m are locally Lipschitz continuous functions modeling
the drift and the control directions. Let xt1:t2 denote the
partial state trajectory xt1 , xt1+1, . . . , xt2 with t2 > t1.

A. Signal Temporal Logic (STL)

An n-dimensional real-valued signal is denoted as X =
x0x1 . . . , where xt ∈ Rn, t ∈ Z≥0. The STL syntax [2] is
defined as:

φ := ⊤| µ | ¬φ | φ1 ∧ φ2 | φ1UIφ2, (2)

where φ, φ1, φ2 are STL formulae, ⊤ is the Boolean constant
True, ¬ and ∧ are the Boolean negation and conjunction
operators, respectively. µ is a predicate over signals of the
form µ := l(xt) ≥ 0, where l : Rn → R is a Lipschitz
continuous function. I = [a, b] = {t ∈ Z≥0 | a ≤ t ≤

b; a, b ∈ Z≥0} denotes a bounded time interval and U is
the temporal until operator. The semantics of STL formulas is
defined over signals. φ1UIφ2 states that “φ2 becomes true at
some time point within I and φ1 must be always true prior to
that.” The Boolean constant ⊥ (False) and disjunction ∨ can
be defined from ⊤, ¬, and ∧ in the usual way. Additional
temporal operators, eventually and always, are defined as
FIφ := ⊤UIφ and GIφ := ¬FI¬φ, respectively. FIφ is
satisfied if “φ becomes True at some time in I” while GIφ
is satisfied if “φ is True at all times in I”.

The STL qualitative semantics [2] determines whether a
signal X satisfies a formula φ (written as X |= φ) or not
(written as X ̸|= φ). Its quantitative semantics, or robustness,
assigns a real value to measure how much a signal satisfies φ.
For instance, let φ = F[0,2]x ≥ 2. A signal X1 = 0, 2, 4, . . .
should have a higher robustness than X2 = 0, 1, 2.01, . . .
because X1 satisfies φ stronger. Multiple functionals have
been proposed to capture the STL robustness [3], [7]–[9].
In this paper, we use the robustness function proposed in
[8], which is a sound score, i.e., positive robustness indicates
satisfaction of the formula, and negative robustness indicates
a violation. As opposed to the traditional robustness [3], the
robustness in [8] is differentiable so it is suitable for gradient-
based optimization methods. We denote the robustness of φ
at time t with respect to signal X by ρ(φ,X, t). For brevity,
we denote ρ(φ,X, 0) by ρ(φ,X). The time horizon of an
STL formula φ denoted by hrz(φ) is the closest time point
in the future for which signal values are needed to compute
the robustness at the current time [30].

B. Recurrent Neural Network (RNN) Controller

Due to the history-dependence property of STL, a feed-
back controller for system (1) required to satisfy an STL
formula over its state at time t, should be a function of the
current state and all the history states, i.e., ut = π(x0:t). In
this paper, we will learn a controller in the form of an RNN
[31], which can be formulated as follows:

ht = R(xt,ht−1,W1),

ut = N (ht,W2),
(3)

where ht is the RNN hidden state, t = 0, 1, . . . , T − 1 (T is
the final time of interest)At time t, the input of the RNN is
the current state xt and the output is the control ut for system
(1). R represents fully connected layers with parameters W1,
which update the hidden state based on the input and the
previous hidden state. N denotes layers with parameters
W2, which predict the output based on the hidden state.
The output layer is applied a hyperbolic tangent function
to satisfy the constraint u ∈ U as in [10]. The hidden state
ht encodes all the previous inputs. h−1 is a zero vector.

C. Discrete Time Control Barrier Function

Consider system (1) and let b : Rn → R. The set C =
{x ∈ Rn | b(x) ≥ 0} is (forward) invariant for system (1) if
all its trajectories remain in C for all times, if they originate
in C. Function b is a (discrete-time, exponential) Control
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Barrier Function (CBF) [32] for system (1) if there exists
α ∈ [0, 1], and for each xt there exists ut ∈ U such that:

b(x0) ≥ 0
b(xt+1) + (α− 1)b(xt) ≥ 0, ∀t ∈ Z≥0,

(4)

where xt+1, xt, and ut are related by (1). The set C is
invariant for system (1) if there exists a CBF b as in (4) [32].
This invariance property is usually referred to as safety. In
other words, the system is safe if it stays inside the set C.

III. PROBLEM STATEMENT AND APPROACH

Consider system (1) with unknown dynamics f , g and
fully observable state. We assume that the initial state x0

is randomly located in a set X0 ⊆ X with the probability
density function p : X0 → R. Consider an STL formula
φ = φtask ∧ φsafe with predicates interpreted over x,
where φtask is a general full STL formula that specifies the
task, while φsafe = GI1ϕ1 ∧ . . . ∧ GINϕN represents N
safety requirements. We assume that ϕ1, . . . , ϕN are affine or
quadratic predicates, so they can be converted into N affine
or quadratic CBFs b1, . . . , bN . For example, the satisfaction
of ϕ = (a⊤xt ≤ c) is equivalent to b = −a⊤xt + c ≥ 0,
where a ∈ Rn and c ∈ R. We also assume that all CBFs have
a relative degree of 1. High-order CBFs will be investigated
in future work. Given a finite time horizon T ≥ hrz(φ)
(for simplicity we assume that T = hrz(φ)), our goal is to
find a control policy ut = π(x0:t), t = 0, . . . , T − 1 that
makes trajectories x0:T starting from X0 satisfy φ. Since the
robustness is sound, we can use it as a reward, and find a
controller that maximize its expectation.

In this paper we use a parameterized policy, which is
implemented by an RNN. The control ut is computed by
using (3) recursively. We denote ut = π(x0:t;W ), where
W = (W1,W2) captures the RNN parameters. We now
formally state the STL control synthesis problem as follows:

Problem 1. Given system (1) with unknown dynamics f and
g, fully observable state, initial state x0 with distribution
p : X0 → R, and given an STL formula φ over x with
T = hrz(φ), find the optimal policy parameters W ∗ that
maximize the expected STL robustness, i.e.,
W ∗ = argmax

W
Ep(x0)[ρ(φ, x0:T )]

s.t. xt+1 = f(xt) + g(xt)π(x0:t;W ), t = 0, . . . , T − 1
(5)

Since the system model is unknown, Pb. 1 cannot be
solved directly. We first execute the system with random
controls and collect the resulting system state transitions
to form a dataset. We train two FNNs on this dataset to
approximate the model (one for f and one for g). Then we
solve Pb. 1 using the learned model to improve the control
policy. We alternately improve the model using the data
collected by applying the new policy, and improve the policy
using the new model until convergence. CBFs are applied at
each time the system is executed to improve safety except
for generating the initial dataset. We stop the system and
terminate this trial if it gets too close to unsafe states. The
overall model-based safe policy search framework is shown
in Fig. 1. The technical details are presented in Sec. IV.

Fig. 1: Our overall approach to Pb. 1: We first generate an initial
dataset D, and then we train the system model and the control
policy alternately. Safety is improved by CBFs and ensured by
emergency stops. The iteration terminates after convergence.

Model-based learning is much more data-efficient than
model-free RL methods, i.e., it requires fewer trials to learn
the policy [24]. Alternately training the system model and
the control policy benefits both. With a better policy, more
states that the system may reach in order to finish the task
can be explored, which results in a better model. With a more
precise model, the policy can be better tuned. On the other
hand, using CBF can not only improve safety but also make
data collection more efficient, because the system can evolve
for more steps in each trial without emergency stops.

IV. MODEL-BASED SAFE POLICY SEARCH

In this section, we introduce the model-based safe policy
search approach. The system model learning, the control
policy improvement, and the overall algorithm are presented
in Secs. IV-A, IV-B and IV-C, respectively.

A. System Model Learning
Although the true system dynamics (1) are assumed to

be deterministic, learning a deterministic model to train the
policy suffers from model bias, because an inaccurate model
is given full confidence [24]. Hence, we use a probabilistic
model implemented by two feedforward neural networks
(FNNs) F and G with dropout to approximate the dynamics
(1) given the current state xt and the control input ut:

x̂t+1 = F(xt;Wf , Zf ) + G(xt;Wg, Zg)ut (6)

where Wf and Wg are FNN parameters, Zf and Zg

are random dropout masks that randomly deactivate the
nodes in the dropout layers with probability pd. As an
approximation of a Bayesian Neural Network, an FNN with
dropout can not only reduce model bias (detailed in Sec.
IV-B), but also represents the uncertainty of the learned
model via moment-matching [26]. To do this, we evaluate
the FNNs with the input (xt, ut) and randomly sampled
dropout masks (Z1

f , Z
1
g ) . . . , (Z

Nz

f , ZNz
g ), and obtain the

outputs x̂1
t+1, . . . , x̂

Nz
t+1. The model uncertainty at (xt, ut)

is represented by the covariance Σt of x̂1
t+1, . . . , x̂

Nz
t+1. The

FNNs can be easily transformed into a deterministic form
by applying masks Zdet

f and Zdet
g that activate all nodes and

scaling the outputs of dropout layers by a factor of 1− pd.
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To learn the model, we need to execute the system and
record the system transitions. The model learning algorithm
is summarized in Alg. 1 (values in brackets are for initial
dataset generation). At the beginning, we sample N0 random
initial states {x1

0, . . . , x
N0
0 } from the probability distribution

p (step 2). From each initial state, we apply random controls
ut ∼ Uniform(U) and collect all the system transitions(
(xi

t, u
i
t), x

i
t+1

)
with i = 1, . . . , N0 and t = 0, . . . , T0 to

create the initial dataset D, where T0 ≥ T is the time horizon
to apply random controls (step 5). Then two FNNs are trained
on D simultaneously (step 11) to minimize the loss C:

C =
∑
D

T−1∑
t=0

∥xt+1 − x̂t+1∥2. (7)

After training, the FNN parameters are denoted by W ∗
f , W ∗

g .
Similarly to generating the initial dataset, each time after

the control policy is improved, we sample Ns initial states
(step 2), starting from which the safe controls modified from
the control policy π using CBFs (discussed later) are applied
until arriving at the time horizon T (steps 7-8). We add all
the system transition data to the dataset D. Then the FNNs
are retrained on the new dataset to minimize the loss C (step
11). In practice, during all the system executions, if one of
the values of b1, . . . , bN is less than 0, which means that
the CBFs fail due to model error, we stop the system and
terminate the trial to protect the system (steps 9-10).

As mentioned earlier, after the initial training of the model,
we use CBFs with the learned model to modify the control
policy. Here we transform the FNN model (6) into the form:

x̂t+1 = F(xt;Wf , Z
det
f ) + G(xt;Wg, Z

det
g )ut + δt, (8)

where δt is a zero-mean random vector representing the un-
certainty of the learned model. Its covariance Σt is estimated
via moment-matching. For each CBF bj , j = 1, . . . , N , the
uncertainty of xt+1 is passed to bj(xt+1) as an error ϵt,j :

bj(xt+1) = bj(x̂t+1) + ϵt,j . (9)

We use the first order derivative to approximate the error:

ϵt,j =
∂bj
∂x

∣∣∣
x=F(xt;Wf ,Zdet

f )+G(xt;Wg,Zdet
g )ut

· δt. (10)

For brevity, in what follows, we omit the point that the
derivative is evaluated at. The error ϵt,j is a zero-mean
random variable with variance σ2

t,j , which is given by:

σ2
t,j = (

∂bj
∂x

)Σt(
∂bj
∂x

)⊤. (11)

By choosing a lower limit −λσt,j of the error ϵt,j in (9)
to compute bj(xt+1), λ > 0, we can guarantee the safety
for all ϵt,j ≥ −λσt,j . At time t and state xt, we obtain the
modified control us

t that is safe for errors above −λσt,j :

us
t =argmin

ut

∥ut − π(x0:t,W )∥2

s.t. bj
(
F(xt;Wf , Z

det
f ) + G(xt;Wg, Z

det
g )ut

)
+ (α− 1)bj(xt) ≥ λσt,j , j = 1, . . . , N

(12)

where α ∈ [0, 1]. In (12), σt,j is supposed to be a function
of ut (the derivative ∂bj/∂x depends on ut), but we assume

a constant σt,j that is evaluated at ut = π(x0:t,W ) to
make (12) simpler. Since bj is affine or quadratic, (12) is
a (quadratically constrained) quadratic program, which can
be solved efficiently using solvers such as Gurobi [33].

Remark 1. The safe control us
t can only improve safety,

rather than fully guarantee it, because: (1) estimate bias
exists; (2) the error ϵt,j in bj(xt+1) is approximated by the
first order derivative and with a fixed control π(x0:t,W ); (3)
the error may exceed the lower limit. However, according to
our simulation results (Section V), this method can largely
reduce the chance of the system reaching unsafe regions.

Algorithm 1: System model learning
Input: A control policy π, a dataset D
Output: Optimal FNN parameters W ∗

f , W ∗
g

1 for i ∈ 1, . . . , Ns(N0) do
2 Sample initial state xi

0;
3 for t = 1, 2, . . . , T (T0) do
4 if No policy and model was trained then
5 Apply ui

t ∼ Uniform(U) to the system
and add the data

(
(xi

t, u
i
t), x

i
t+1

)
to D;

6 else
7 Adjust π(xi

0:t,W ) to obtain us,i
t by (12);

8 Apply us,i
t to the system and add the data(

(xi
t, u

s,i
t ), xi

t+1

)
to D;

9 if min(b1, . . . , bN ) ≤ 0 then
10 Break

11 Train the FNN on D, return W ∗
0 ;

B. Control Policy Improvement

Now we can solve (5) in Pb. 1. We substitute the unknown
system dynamics with the learned one from Sec. IV-A. Also,
we estimate the expected robustness over initial conditions by
sampling M initial states x1

0, . . . , x
M
0 and averaging the re-

sulting robustness values. For different initial states, different
dropout masks (Z1

f , Z
1
g ) . . . , (Z

M
f , ZM

g ) in the learned model
are sampled to estimate the trajectories (no CBFs applied).
The average over initial states is also an average over system
models, hence it can reduce model-bias [24]. For brevity, let
f̂ i(xt) = F(xt;Wf , Z

i
f ) and ĝi(xt) = G(xt;Wg, Z

i
g) be the

sampled system model. Now the problem becomes:

W ∗ =argmax
W

1

M

M∑
i=1

ρ(φ, xi
0:T )

s.t. xi
t+1 = f̂ i(xi

t) + ĝi(xi
t)π(x

i
0:t,W ),

t = 0, 1, . . . , T − 1, i = 1, . . . ,M.

(13)

We solve (13) by substituting the constraints into the ob-
jective function and solving the unconstrained optimization
problem. We use gradient ascent to iteratively update the
RNN parameters W . At each iteration step, we randomly re-
sample a new set of M initial states and M dropout masks
to evaluate the objective function and its gradient. Doing so
gives us an unbiased estimator of the objective [25]. We then
implement the optimization using the stochastic optimizer
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Adam [34]. The optimization terminates after convergence.
The policy improvement process is shown in Alg. 2.

Algorithm 2: Control policy improvement

Input: Learned model f̂ , ĝ, an STL formula φ
Output: Optimal policy parameters W ∗

1 repeat
2 Sample initial states {x1

0, . . . , x
M
0 };

3 Sample system models {(f̂1, ĝ1), . . . , (f̂M , ĝM )};
4 Compute the objective in (13);
5 Back-propagate the gradient ∆W of (13);
6 Update W with ∆W using the Adam optimizer;
7 until Convergence; return W ∗;

Remark 2. All the derivatives involving the FNN system
model and the RNN controller can be computed using the
auto-differentiation tools designed for neural networks (e.g.,
PyTorch [35]). When computing the STL robustness ρ, we
applied the method STLCG [36] which uses a computation
graph similar to a neural network. So the auto-differentiation
tools can also be applied. Hence, the gradient of the objective
function ∂ρ

∂W in (13) can be accessed easily and analytically.

C. Model-based policy search

We alternately use Alg. 1 and Alg. 2 to train the model
and the policy as in Fig. 1. We call the completion of one
model learning and one policy improvement a cycle. The
algorithm will terminate and return the final control policy
with parameter W ∗ when the policy converges.

Remark 3. Although the objective of our algorithm is
to maximize the expected STL robustness over trajectories
starting from random initial states, there is no guarantee that
the learned policy can satisfy the STL from all initial states.
Moreover, using CBFs might change the original control
given by the RNN, which might decrease the robustness or
even violate the STL specification. This also causes that in
model learning phase the robot explores different regions
from those induced by the learned policy. Hence, the model
may not be properly learned in some regions explored by
the learned policy. However, by also including the safety
constraints into the STL formula, the RNN controller is
aware of these constraints, which avoids dramatic changes
when using CBFs. This mitigates the above problems. It is
also possible to include CBFs in the policy learning phase
by differentiating through (12) using technique in [37]. We
will investigate this in future work. The simulation and
experiment results show that our approach can reach a very
high success rate of satisfying the STL specification.

Remark 4. The advantages of using neural networks (RNN
and FNN) includes: (1) fast execution; (2) good scalability;
(3) easy propagation of gradients. These benefits will be
shown in Sec. V. An additional advantage of the RNN is the
ability to satisfy general full STL formulae. Another choice
is using a memoryless controller but augmenting the system
state [15], [16], which makes the state space too large for
long horizon control and is restricted to STL fractions.

(a) Pick (b) Place
Fig. 2: The Gazebo simulation environment. The green cylinder is
the object to be picked, and the red ball is the obstacle. The red,
green, blue lines are the x, y, z axes respectively. Transparent boxes
are Rpick and Rplace. Video is at https://youtu.be/UmuJdVcxY14.

V. SIMULATIONS

We consider a pick-and-place task for a Baxter robot
in Gazebo [38] simulation environment (shown in Fig. 2).
The algorithms were implemented in Python. The NNs were
implemented using Pytorch [35]. We used a computer with a
3.50GHz Core i7 CPU and 16GB RAM for the simulation.

Baxter is a 7 DOF dual arm robot. We only use its left arm
in this case study. The system state xt ∈ R14 is defined as
the concatenation of joint angles θt ∈ R7 and joint velocities
θ̇t ∈ R7. We use the torques applied to the joints as the con-
trol input ut ∈ [−8, 8]4 × [−3, 3]3 ⊆ R7. Note that ut is ap-
plied in addition to the known gravity compensation torques.
We control the system with a time interval ∆t = 1/6s. The
initial joint angles are [−0.6,−0.75, 0, 0, 75, 0, 1.46, 0] rad
with a uniformly sampled disturbance d ∈ [−0.1, 0.1]7.

Our specification is defined over the end effector pose
[pt,qt] where pt = [px, py, pz] is the 3D position and qt =
[qw, qx, qy, qz] is the quaternion representing the orientation.
Assume the forward kinematics [pt,qt] = K(θt) are known
and the motion primitives for open and close of the gripper
are already available. Both open and close can be finished
within 0.5s. Then the STL task is: stay in the pick region
(Rpick) for 0.5s between [0s, 3s], and stay in the place
region (Rplace) for 0.5s between [3s, 6s]. We also require
the rotation angle of the end-effector from the vertical pose
be always less than 30◦ (q ∈ V30) so that the gripper is
downward when picking up the object. The safety constraints
are to always avoid collision with a spherical obstacle (p ̸∈
Obs), its body (px ≥ xbody), and the table (pz ≥ htb). The
task can be formulated as φ1 with hrz(φ1) = 36:
φ1 =

(
F[0, 2.5∆t ]

(G[0, 0.5∆t ]
p ∈ Rpick)

)
∧
(
F[ 3

∆t ,
5.5
∆t ]

(G[0, 0.5∆t ]
p ∈ Rplace)

)
∧ (G[0, 6

∆t ]
q ∈ V30)

∧(G[0, 6
∆t ]

px > xbody) ∧ (G[0, 6
∆t ]

pz > htb)

∧(G[0, 6
∆t ]

p ̸∈ Obs)

Although the CBFs representing the safety constraints are
affine or quadratic with respect to the end-effector position,
they are nonquadratic with respect to the system state due
to the complexity of the forward kinematics. Hence, we
linearize the forward kinematics at each time step, which
makes the CBFs meet the affine or quadratic assumption.

Let N0 = 100, Ns = 20,M = 200, Nz = 20, λ = 3, α =
0.8. The RNN applies an LSTM [39] with 3 hidden layers
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TABLE I: Success Rate and Average Robustness for φ1

w/ CBF w/o CBF
γ β ρ̄ γ β ρ̄

Cycle 1 0% 10% -0.4807 0% 24% -0.7224
Cycle 2 2% 0% -0.0973 14% 5% -0.0880
Cycle 3 14% 0% -0.0235 22% 0% -0.0071
Cycle 4 83% 0% 0.0169 87% 0% 0.0192
Cycle 5 100% 0% 0.0401 100% 0% 0.0419

each with 64 nodes. Both FNNs have 2 hidden layers each
with 128 nodes and the dropout probability pd = 0.05. After
5 cycles of training which takes 50min, the robot can finish
the task successfully as shown in Fig. 2. This is much faster
than our previous work [11] in which training the controller
for a much easier task takes 2 hours. We test the policy
(trained with CBFs) after each cycle on 100 random initial
states. The success rate γ (getting positive robustness), unsafe
rate β (violating safety constraints) and average robustness
ρ̄, with or without CBFs, are shown in Table I.

After 5 cycles of training the success rate reaches 100%.
From Table I, we can see that after updating the model, the
policy can be improved to get a higher robustness and a
higher success rate. The unsafe rate β is largely reduced by
using CBFs. Note that sometimes the robustness and success
rate without CBFs are higher. This is because CBFs can
change the policy. The system runs for a total of 180 times,
which is a relatively small number. In [15] a model-free Q-
learning approach runs 2000 episodes to learn the policy for
a much easier STL task and a much simpler system. After
training, execution of the RNN controller and solving (12) to
obtain the safe control take 0.0004s and 0.03s (in average)
respectively. When the discrete time interval is large enough
compared with the computation time for the safe control,
the controller can be implemented in real time. The results
show that the algorithm proposed in this paper is capable
to control a robot arm directly from joint torques to end-
effector pose without knowing the complex system dynamics.
The planning horizon, system dimension and number of
predicates would affect the training time linearly, while they
have little effect on the execution time after training, hence
our approach has a good scalabilty.

VI. EXPERIMENT

We consider a system containing 3 iRobot Create2 ground
robots in an indoor motion capture environment (as shown
in Fig. 3). The position and orientation of the robots can
be obtained using the Optitrack motion capture system. Let
xk = [pkx pky sin θk cos θk]⊤ and uk = [vk ωk]⊤ be the
state and the control of the kth robot, where pkx, p

k
y , θ

k give
the position and orientation and uk = [vk ωk]⊤ captures
the speed and angular speed, with vk ∈ [0, 0.75] and
ωk ∈ [−π

2 ,
π
2 ], k ∈ {1, 2, 3}. We normalize the terms

corresponding to sin θ and cos θ in the output of the learned
model after each step. The state and control of the whole
system are the concatenations of the states and controls
of the 3 robots. Hence the system state x ∈ R12 and the
control u ∈ R6. Controls are sent to the robots in a rate of
3HZ. The algorithm is implemented on a computer with a

Fig. 3: An execution of the system with the learned policy. The
trajectories of the robots are projected on to the ground.

4.20GHz Core i7 CPU and 32GB RAM. All these platforms
communicate using the Robot Operating System (ROS) [40].

Consider a fire-fighting scenario as shown in Fig. 3, where
two ambulances (k = 1, 2) randomly located in the hospital
RHos are supposed to go to the fire RF in 8s, and then
return to the hospital in [8s, 15s], while a fire engine (k = 3)
randomly located in a fire station RFS should go to the fire
in 10s and stay there in [10s, 15s], and reaches a Hydrant
RHyd before that. The safety constraints are (1) never go
out of bounds RM ; (2) the distances between the robots are
always larger than d. Let pk = [pkx pky ]. The specification can
be formulated as φ2 with hrz(φ2) = 15/∆t = 45:
φ2 = ∧2

k=1

(
F[0, 8

∆t ]
(pk ∈ RF ) ∧ F[ 8

∆t ,
15
∆t ]

(pk ∈ RHos)
)

∧ F[0, 10
∆t ]

(p3 ∈ RHyd) ∧G[ 10
∆t ,

15
∆t ]

(p3 ∈ RF )

∧i,j∈{1,2,3},i̸=j G[0, 15
∆t ]

(∥pi − pj∥2 ≥ d2)

∧3
k=1 G[0, 15

∆t ]
(pk ∈ RM ).

Note that the safety predicates (and the corresponding CBFs)
are all affine and quadratic functions.

Let N0 = 50, α = 0.5. The other settings are same
with the simulation. When computing the norm in (12) we
assign a weight of 0.03 to the angular speed in order to
encourage the robot to turn instead of slowing down when
approaching an obstacle. The computation time for the RNN
policy and the safe control (0.0004s and 0.01s respectively)
is negligible compared with ∆t = 1/3s, which enables real
time control. The robots can learn a good policy that satisfies
the specification after 4 cycles of training. In this process,
we collected 2372 data points to train the system model,
with the system running for about 13 minutes (not counting
the time it takes the robots to return to the initial states).
The total training time is about 20 minutes. Fig. 3 shows an
execution of the system with the learned policy. We tested
the policy 20 times and the success rate was 100%.

VII. CONCLUSION

In this paper, we proposed a model-based policy search
approach to maximize STL robustness. The system model
and the control policy are learned alternately. The policy is
implemented as an RNN, which can deal with the history-
dependence of STL. Simulation and experiment results show
that our approach can learn the policy within relatively few
system executions and achieves high success rate. Safety can
be improved by using CBFs. After training, the RNN policy
can be implemented in real time.
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