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Abstract— In this paper, we propose a sampling-based motion
planning algorithm that finds an infinite path satisfying a Linear
Temporal Logic (LTL) formula over a set of properties satisfied
by some regions in a given environment. The algorithm has
three main features. First, it is incremental, in the sense that
the procedure for finding a satisfying path at each iteration
scales only with the number of new samples generated at
that iteration. Second, the underlying graph is sparse, which
guarantees the low complexity of the overall method. Third, it is
probabilistically complete. Examples illustrating the usefulness
and the performance of the method are included.

I. INTRODUCTION

Motion planning is a fundamental problem that has re-
ceived a lot of attention from the robotics community [1].
The goal is to generate a feasible path for a robot to
move from an initial to a final configuration while avoiding
obstacles. Exact solutions to this problem are intractable,
and relaxations using potential fields, navigation functions,
and cell decompositions are commonly used [2]. These
approaches, however, become prohibitively expensive in high
dimensional configuration spaces. Sampling-based methods
were proposed to overcome this limitation. Examples in-
clude the probabilistic roadmap (PRM) algorithm proposed
by Kavraki et.al. in [3], which is very useful for multi-
query problems, but is not well suited for the integration of
differential constraints. In [4], Kuffner and LaValle proposed
rapidly-exploring random trees (RRT). RRTs grow randomly,
are biased to explore “new” space [4] (Voronoi bias), and
find solutions quite fast. Moreover, PRM and RRT were
shown to be probabilistically complete [3], [4], but not
probabilistically optimal [5]. Karaman and Frazzoli proposed
RRT∗ and PRM∗, the probabilistically optimal counterparts
of RRT and PRM in [5].

Recently, there has been increasing interest in improving
the expressivity of motion planning specifications from the
classical scenario (“Move from A to B and avoid obstacles.”)
to richer languages that allow for Boolean and temporal
requirements, e.g., “Visit A, then B, and then C, in this
order infinitely often. Always avoid D unless E was visited.”
It has been shown that temporal logics, such as Linear
Temporal Logic (LTL), Computation Tree Logic (CTL), µ-
calculus, and their probabilistic versions (PLTL, PCTL) [6]
can be used as formal and expressive specification languages
for robot motion [7], [8], [9], [10], [11]. In the above
works, adapted model checking algorithms and automata
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game techniques [7], [12] are used to generate motion plans
and control policies for a finite model of robot motion,
which is usually obtained through an abstraction process
based on partitioning the configuration space [13]. The main
limitation of these approaches is their high complexity, as
both the synthesis and abstraction algorithms scale at least
exponentially with the dimension of the configuration space.

To address this issue, in [10], Karaman and Frazzoli
proposed a sampling-based path planning algorithm from
specifications given in deterministic µ-calculus. However, de-
terministic µ-calculus formulae have unnatural syntax based
on fixed point operators, and are difficult to use by untrained
human operators. In contrast, Linear Temporal Logic (LTL),
has very friendly syntax and semantics, which can be easily
translated to natural language. One idea would be to translate
LTL specifications to deterministic µ-calculus formulae and
then proceed with generation of motion plans as in [10].
However, there is no known procedure to transform an LTL
formula φ into a µ-calculus formula Ψ such that the size of
Ψ is polynomial in the size of φ (for details see [14]).

In this paper, we propose a sampling-base path planning
algorithm that finds an infinite path satisfying an LTL for-
mula over a set of properties that hold at some regions
in the configuration space. The procedure is based on the
incremental construction of a transition system followed by
the search for one of its satisfying paths. One important
feature of the algorithm is that, at a given iteration, it only
scales with the number of samples and transitions added
to the transitions system at that iteration. This, together
with a notion of “sparsity” that we define and enforce on
the transition system, play an important role in keeping
the overall complexity at a manageable level. In fact, we
show that, under some mild assumptions, our definition
of sparsity leads to the best possible complexity bound
for finding a satisfying path. Finally, while the number of
samples increases, the probability that a satisfying path is
found approaches 1, i.e., our algorithm is probabilistically
complete.

Among the above mentioned papers, the closest to this
work is [10]. As in this paper, the authors of [10] can guar-
antee probabilistic completeness and scalability with added
samples only at each iteration of their algorithm. However,
in [10], the authors employ the fixed point (Knaster-Tarski)
theorem to find a satisfying path. Their method is based on
maintaining a “product” graph between the transition sys-
tem and every sub-formula of their deterministic µ-calculus
specification and checking for reachability and the existence
of a “type” of cycle on the graph. On the other hand,
our algorithm maintains the product automaton between the
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transition system and a Büchi automaton corresponding to
the given LTL specification. Note that, as opposed to LTL
model checking [6], we use a modified version of product
automaton that ensures reachability of the final states. More-
over, we impose that the states of the transition system be
bounded away from each other (by a given function decaying
in terms of the size of the transition system). Sparseness is
also explored by Dobson and Berkis in [15] for PRM using
different techniques.

Due to space limitations, the results in this paper are stated
without proofs. The proofs and additional details can be
found in [16].

II. PRELIMINARIES

For a finite set Σ, we use |Σ| and 2Σ to denote its
cardinality and power set, respectively.

Definition 2.1 (Deterministic Transition System):
A deterministic transition system (DTS) is a tuple
T = (X,x0,∆,Π, h), where: X is a finite set of states,
x0 ∈ X is the initial state, ∆ ⊆ X×X is a set of transitions,
Π is a set of properties (atomic propositions), h : X → 2Π

is a labeling function.
We denote a transition (x, x′) ∈ ∆ by x →T x′. A

trajectory (or run) of the system is an infinite sequence of
states x = x0x1 . . . such that xk →T xk+1 for all k ≥ 0. A
state trajectory x generates an output trajectory o = o0o1 . . .,
where ok = h(xk) for all k ≥ 0.

A Linear Temporal Logic (LTL) formula over a set of
properties (atomic propositions) is defined using standard
Boolean operators, ¬ (negation), ∧ (conjunction) and ∨
(disjunction), and temporal operators, X (next), U (until),
F (eventually), G (always). The semantics of LTL formulae
over Π are given with respect to infinite words over 2Π,
such as the output trajectories of the DTS defined above.
Any infinite word satisfying a LTL formula can be written
in the form of a finite prefix followed by infinitely many
repetitions of a suffix. LTL formulae can be used to describe
rich mission specifications. For example, formula G(F(R1∧
FR2) ∧ ¬O1) specifies a persistent surveillance task: “visit
regions R1 and R2 infinitely many times and always avoid
obstacle O1” (see Figure 1). Formal definitions for the LTL
syntax, semantics, and model checking can be found in [6].

Definition 2.2 (Büchi Automaton): A (nondeterministic)
Büchi automaton is a tuple B = (SB, SB0

,Σ, δ, FB), where:
SB is a finite set of states, SB0

⊆ SB is the set of initial
states, Σ is the input alphabet, δ : SB × Σ → 2SB is the
transition function, FB ⊆ SB is the set of accepting states.

A transition (s, s′) ∈ δ(s, σ) is denoted by s
σ→B s′. A

trajectory of the Büchi automaton s0s1 . . . is generated by an
infinite sequence of symbols σ0σ1 . . . if s0 ∈ SB0

and sk
σk→

sk+1 for all k ≥ 0. A input infinite sequence over Σ is said to
be accepted by a Büchi automaton B if it generates at least
one trajectory of B that intersects the set FB of accepting
states infinitely many times.

It is shown in [6] that for every LTL formula φ over Π
there exists a Büchi automaton B over alphabet Σ = 2Π such
that B accepts all and only those infinite sequences over Π

that satisfy φ. There exist efficient algorithms that translate
LTL formulae into Büchi automata [17].

Model checking a DTS against an LTL formula is based
on the construction of the product automaton between the
DTS and the Büchi automaton corresponding to the formula.
In this paper, we used a modified definition of the product
automaton that is optimized for incremental search of a
satisfying run. Specifically, the product automaton is defined
such that all its states are reachable from the set of initial
states.

Definition 2.3 (Product Automaton): Given a DTS
T = (X,x0,∆,Π, h) and a Büchi automaton
B = (SB, SB0

, 2Π, δB, FB), their product automaton,
denoted by P = T × B, is a tuple P = (SP , SP0

,∆P , FP)
where: SP0 = {x0} × SB0 is the set of initial states;
SP ⊆ X × SB is a finite set of states which are reachable
from some initial state: for every (x∗, s∗) ∈ SP there
exists a sequence of x = x0x1 . . . xnx

∗, with xk →T xk+1

for all 0 ≤ k < n and xn →T x∗, and a sequence
s = s0s1 . . . sns

∗ such that s0 ∈ SB0
, sk

h(xk)→ B sk+1 for all

0 ≤ k < n and sn
h(xn)→ T s

∗; ∆P ⊆ SP × SP is the set of
transitions, defined by: ((x, s), (x′, s′)) ∈ ∆P iff x →T x′

and s
h(x)→ B s

′; FP = (X ×FB)∩SP is the set of accepting
states.

A transition in P is denoted by (x, s) →P (x′, s′) if
((x, s), (x′, s′)) ∈ ∆P . A trajectory p = (x0, s0)(x1, s1) . . .
of P is an infinite sequence, where (x0, s0) ∈ SP0 and
(xk, sk)→P (xk+1, sk+1) for all k ≥ 0. Such a trajectory is
said to be accepting if and only if it intersects the set of final
states FP infinitely many times. It follows by construction
that a trajectory p = (x0, s0)(x1, s1) . . . of P is accepting
if and only if the trajectory s0s1 . . . is accepting in B. As a
result, a trajectory of T obtained from an accepting trajectory
of P satisfies the given specification encoded by B. For
x ∈ X , we define βP(x) = {s ∈ SB : (x, s) ∈ SP} as
the set of Büchi states that correspond to x in P . Also, we
denote the projection of a trajectory p = (x0, s0)(x1, s1) . . .
onto T by γT (p) = x0x1 . . .. A similar notation is used for
projections of finite trajectories.

For both DTS and automata, we use |·| to denote size,
which is the cardinality of the corresponding set of states. A
state of a DTS or an automaton is called non-blocking if it
has at least one outgoing transition.

III. PROBLEM FORMULATION AND APPROACH

Let D ⊂ Rn be a compact set denoting the configuration
space of a robot. Let R be a set of disjoint regions in D and
Π be a set of properties of interest corresponding to these
regions. A map ∼: R → 2Π specifies how properties are
associated to the regions. Throughout this paper, we will
assume that R is composed of connected sets with non-
empty interior, which implies they have non-zero Lebesgue
measure (i.e. all regions of interest have full dimension).
Also, all connected sets in D\

⋃
R∈RR have full dimension.

Examples of properties include “obstacle”, “target”, “drop-
off”, etc. (see Fig. 1).
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Problem 3.1: Given an environment described by
(D,R,Π,∼), the initial configuration of the robot x0 ∈ D
and an LTL formula φ over the set of properties Π, find a
satisfying (infinite) path for the robot originating at x0.

A possible approach to Problem 3.1 is to construct a par-
tition of the configuration space that contains the regions of
interest as elements of the partition. By using input - output
linearizations and vector field assignments in the regions of
the partition, it was shown that “equivalent” abstractions in
the form of finite (not necessarily deterministic) transition
systems can be constructed for a large variety of robot
dynamics that include car-like vehicles and quadrotors [13],
[18], [19]. Model checking and automata game techniques
can then be used to control the abstractions from the temporal
logic specification [20]. The main limitation of this approach
is its high complexity, as both the synthesis and abstraction
algorithms scale at least exponentially with the dimension of
the configuration space.

In this paper, we propose a sampling-based approach that
can be summarized as follows: (1) the LTL formula φ is
translated to the Büchi automaton B; (2) a transition system
T is incrementally constructed from the initial position x0

using an RRG-based algorithm; (3) concurrently with (2),
the product automaton P = T × B is updated and used
to check if there is a trajectory of T that satisfies φ.
As it will become clear later, our proposed algorithm is
probabilistically complete [1], [5] (i.e., it finds a solution
with probability 1 if one exists and the number of samples
approaches infinity) and the resulting transition system is
sparse (i.e., its states are “far” away from each other).

IV. PROBLEM SOLUTION

The starting point for our solution to Problem 3.1 is the
RRG algorithm, which is an extension of RRT [5] that main-
tains a digraph instead of a tree, and can therefore be used as
a model for general ω-regular languages [10]. However, we
modify the RRG to obtain a “sparse” transition system that
satisfies a given LTL formula. More precisely, a transition
system T is “sparse” if the minimum distance between
any two states of T is greater than a prescribed function
dependent only on the size of T (minx,x′∈T ‖x− x′‖2 ≥
η(|T |)). The distance used to define sparsity is inherited from
the underlying configuration space and is not related to the
graph theoretical distance between states in T . Throughout
this paper, we will assume that this distance is Euclidean.

A. Sparse RRG

We first briefly introduce the functions used by the algo-
rithm.

a) Sampling function: The algorithm has access to a
sampling function Sample : N → D, which generates
independent and identically distributed samples from a given
distribution P . We assume that the support of P is the entire
configuration space D.

b) Steer function: The steer function Steer : D×D →
D is defined based on the robot’s dynamics. 1 Given a
configurations x and goal configuration xg , it returns a new
configuration xn that can be reached from x by following
the dynamics of the robot and that satisfies ‖xn − xg‖2 <
‖x− xg‖2.

c) Near function: Near : D × R → 2X is a function
of a configuration x and a parameter η, which returns the
set of states from the transition system T that are at most
at η distance away from x. In other words, Near returns all
states in T that are inside the n-dimensional sphere of center
x and radius η.

d) Far function: Far : D×R×R→ 2X is a function
of a configuration x and two parameters η1 and η2. It returns
the set of states from the transition system T that are at most
at η2 distance away from x. However, the difference from the
Near function is that Far returns an empty set if any state
of T is closer to x than η1. Thus, x has to be “far” away from
all states in its immediate neighborhood (see Figure 1). This
function is used to achieve the “sparseness” of the resulting
transition system.

e) isSimpleSegment function: isSimpleSegment :
D ×D → {0, 1} is a function that takes two configurations
x1, x2 in D and returns 1 if the line segment [x1, x2]
({x ∈ Rn : x = λx1 + (1 − λ)x2, λ ∈ [0, 1]}) is simple,
otherwise it returns 0. A line segment [x1, x2] is simple if
[x1, x2] ⊂ D and the number of times [x1, x2] crosses the
boundary of any region R ∈ R is at most one. Therefore,
isSimpleSegment returns 1 if either: (1) x1 and x2 belong
to the same region R and [x1, x2] does not cross the boundary
of R or (2) x1 and x2 belong to two regions R1 and R2,
respectively, and [x1, x2] crosses the common boundary of
R1 and R2 once. R or at most one of R1 and R2 may
be a free space region (a connected set in D \

⋃
R∈RR).

See Figure 1 for examples. In Algorithm 1, a transition is
rejected if it corresponds to a non-simple line segment (i.e.
isSimpleSegment function returns 0). Under this condition,
the satisfaction of the mission specification can be checked
by only looking at the properties corresponding to the states
of the transition system.

f) Bound functions: η1 : Z+ → R (lower bound) and
η2 : Z+ → R (upper bound) are functions that define the
bounds on the distance between a configuration in D and the
states of the transition system T in terms of the size of T .
These are used as parameters for functions Far and Near.
We impose η1(k) < η2(k) for all k ≥ 1. We also assume
that c η1(k) > η2(k), for some finite c > 1 and all k ≥ 0.
Also, η1 tends to 0 as k tends to infinity. The rate of decay
of η1(·) has to be fast enough such that a new sample may
be generated. Specifically, the set of all configurations where
the center of an n-sphere of radius η1/2 may be placed such
that it does not intersect any of the n-spheres corresponding
to the states in T has to have non-zero measure with respect
to the probability measure P used by the sampling function.

1In this paper, we will assume that we have access to such a function.
For more details about planning under differential constraints see [1].
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To simplify the notation, we drop the parameter for these
functions and assume that k is always given by the current
size of the transition system, k = |T |.

Fig. 1. A simple map with three features: an obstacle O1 and two
regions R1, R2. The robot is assumed to be a fully actuated point.
At the current iteration the states of T are {0, 1, 2, 3}. The transitions
of T are represented by the black arrows. The initial configuration is
0 and is marked by the blue disk. The radii of the dark gray (inner)
disks and the light gray (outer) disks are η1 and η2, respectively. A
new sample new1 ∈ D is generated, but it will not be considered
as a potential new state of T , because it is within η1 distance from
state 3 (Far(new1, η1, η2) = ∅). Another sample new2 ∈ D is
generated, which is at least η1 distance away from all states in T . In
this case, Far(new2, η1, η2) = {0, 1, 2, 3} and the algorithm attempts
to create transition to and from the new sample new2. The transitions
{(new2, 0), (0, new2), (new2, 1), (1, new2), (new2, 2), (2, new2)}
(marked by black dashed lines) are added to T , because all these transitions
correspond to simple line segments (isSimpleSegment returns 1 for
all of them). On the other hand, the transitions {(new2, 3), (3, new2)}
(marked by red dashed lines) are not added to T , since they pass over the
obstacle O1.

The goal of the modified RRG algorithm (see Algorithm 1)
is to find a satisfying run, but such that the resulting transition
system is “sparse”, i.e. states are “sufficiently” apart from
each other. The algorithm iterates until a satisfying run
originating in x0 is found.

At each iteration, a new sample xr is generated (line 6 in
Algorithm 1). For each state x in T which is “far” from the
sample xr (x ∈ Far(xr, η1, η2)), a new configuration x′r is
computed such that the robot can be steered from x to x′r and
the distance to xr is decreased (line 10). The two loops of the
algorithm (lines 7–13 and 16–21) are executed if and only
if the Far function returns a non-empty set. However, x′r is
regarded as a potential new state of T , and not xr. Thus, the
Steer function plays an important role in the “sparsity” of
the final transition system. Next, it is checked if the potential
new transition (x, x′r) is a simple segment (line 9). It is also
verified if x′r may lead to a solution, which is equivalent
to testing if x′r induces at least one non-blocking state in P
(see Algorithm 2). If configuration x′r and the corresponding
transition (x, x′r) pass all tests, then they are added to the list
of new states and list of new transitions of T , respectively
(lines 12–13).

After all “far” neighbors of xr are processed, the transition
system is updated. Note that at this point T was only
extended with states that explore “new space”. However, in

order to model ω-regular languages the algorithm must also
close cycles. Therefore, the same procedure as before (lines
7–14) is also applied to the newly added states X ′ (lines
15–21 of Algorithm 1). The difference is that it is checked
if states from X ′ can steer the robot back to states in T in
order to close cycles. Also, because we know that the states
in X ′ are “far” from their neighbors, the Near function will
be used instead of the Far function. The algorithm returns
a (prefix, suffix) pair in T obtained by projection from the
corresponding path (p0

∗→ pF ) and cycle (pF
+→ pF ) in P ,

respectively. The ∗ above the transition symbol means that
the length of the path can be 0, while + denotes that the
length of the cycle must be at least 1.

Algorithm 1: Sparse RRG
Input: B – Büchi automaton corresponding to φ
Input: x0 initial configuration of the robot
Output: (prefix, suffix) in T

1 Construct T with x0 as initial state
2 Construct P = T × B
3 Initialize scc(·)
4 while ¬(x0 |= φ) (≡ ¬(∃p ∈ FP s.t. |scc(p)| > 1)) do
5 X′ ← ∅, ∆′ ← ∅, ∆′P ← ∅
6 xr ← Sample()
7 foreach x ∈ Far(xr, η1, η2) do
8 x′r ← Steer(x, xr)
9 if isSimpleSegment(xr, x′r) then

10 added← updatePA(P,B, (x, x′r))
11 if added is True then
12 X′ ← X′ ∪ {x′r}
13 ∆′ ← ∆′ ∪ {(x, x′r)}

14 T ← T ∪ (X′,∆′)

15 ∆′ ← ∅, ∆′P ← ∅
16 foreach x′r ∈ X′ do
17 foreach x ∈ Near(x′r, η2) do
18 if (x = Steer(x′r, x)) ∧ isSimpleSegment(x′r, x)

then
19 added← updatePA(P,B, (x, x′r))
20 if added is True then
21 ∆′ ← ∆′ ∪ {(x′r, x)}

22 T ← T ∪ (X′,∆′)

23 return (γT (p0
∗→ pF ), γT (pF

+→ pF )), where pF ∈ FP

B. Incremental search for a satisfying run

The proposed approach of incrementally constructing a
transition system raises the problem of how to efficiently
check for a satisfying run at each iteration. As mentioned
in the previous section, the search for satisfying runs is
performed on the product automaton. Note that testing
whether there exists a trajectory of T from the initial position
x0 that satisfies the given LTL formula φ is equivalent to
searching for a path from an initial state p0 to a final state
pF in the product automaton P = T × B and for a cycle
containing pF of length greater than 1, where B is the Büchi
automaton corresponding to φ. If such a path and a cycle
are found then their projection onto T represents a satisfying
infinite trajectory (line 23 of Algorithm 1). Testing whether
pF belongs to a non-degenerate cycle (length greater than
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1) is equivalent to testing if pF belong to a non-trivial
strongly connected component – SCC (the size of the SCC is
greater than 1). Checking for a satisfying trajectory in P is
performed incrementally as the transition system is modified.

The reachability of the final states from initial ones in P is
guaranteed by construction (see Definition 2.3). However, we
need to define a procedure (see Algorithm 2) to incrementally
update P when a new transition is added to T . Consider
the (non-incremental) case of constructing P = T × B.
This is done by a traversal of P̄ = (X × SB, ∆̄P) from
all initial states, where ((x, s), (x′, s′)) ∈ ∆̄P if p → p′

and s
h(x)→ s′. P̄ is a product automaton but without

the reachability requirement. This suggests that the way to
update P when a transition (x, x′) is added to T , is to do
a traversal from all states p of P such that γT (p) = x.
Also, it is checked if x′ induces any non-blocking states
in P (lines 1-3 of Algorithm 2). The test is performed by
computing the set S′P of non-blocking states of P (line 1)
such that p′ ∈ S′P has γT (p′) = x′ and p′ is obtained by a
transition from {(x, s) : s ∈ βP(x)}. If S′P is empty then
the transition (x, x′) of T is discarded and the procedure
stops (line 3). Otherwise, the product automaton P is updated
recursively to add all states that become reachable because
of the states in S′P . The recursive procedure is performed
from each state in S′P as follows: if a state p (line 7)
is not in P , then it is added to P together with all its
outgoing transitions (line 10) and the recursive procedure
continues from the outgoing states of p; if p is in P then the
traversal stops, but its outgoing transitions are still added
to P (line 14). The incremental construction of P has the
same overall complexity as constructing P from the final
T and B, because the recursive procedure just performes
traversals that do not visit states already in P . Thus, we focus
our complexity analysis on the next step of the incremental
search algorithm.

The second part of the incremental search procedure is
concerned with maintaining the strongly connected compo-
nents (SCCs) of P (line 14 of Algorithm 2) as new transitions
are added (these are stored in ∆′P in Algorithm 2). To
incrementally maintain the SCCs of the product automaton,
we employ the soft-threshold-search algorithm presented
in [21]. The algorithm maintains a topological order of the
super-vertices corresponding to each SCC. When a new
transition is added to P , the algorithm proceeds to re-
establish a topological order and merges vertices if new
SCCs are formed. The details of the algorithm are presented
in [21]. The authors also offer insight about the complexity
of the algorithm. They show that, under a mild assumption,
the incremental algorithm has the best possible complexity
bound.

Theorem 4.1: The execution time of the incremental
search algorithm 2 is O(m

3
2 ), where m is the number of

transitions added to T in Algorithm 1.
Remark 4.2: Note that the execution time of the incremen-

tal procedure is better by a polynomial factor than naively
running a linear-time SCC algorithm at each step, since this

Algorithm 2: Incremental Search for a Satisfying Run
Input: P – product automaton
Input: B – Büchi automaton
Input: (x, x′) – new transition in T
Output: Boolean value – indicates if P was modified

1 S′P ← {(x
′, s′) : s

h(x)→ B s
′, s ∈ βP (x), s′ non-blocking}

2 ∆′P ← {((x, s), (x
′, s′)) : s ∈ βP (x), s

h(x)→ B s
′, (x′, s′) ∈ S′P}

3 if S′P 6= ∅ then
4 P ← P ∪ (S′P ,∆

′
P )

5 stack ← S′P
6 while stack 6= ∅ do
7 p1 = (x1, s1)← stack.pop()

8 foreach p2 ∈ {(x2, s2) : x1 →T x2, s1
h(x1)→ B s2} do

9 if p2 /∈ SP then
10 P ← P ∪ ({p2}, {(p1, p2)})
11 ∆′P ← ∆′P ∪ {(p1, p2)}
12 stack ← stack ∪ {p2}
13 else if (p1, p2) /∈ ∆P then
14 ∆P ← ∆P ∪ {(p1, p2)}
15 ∆′P ← ∆′P ∪ {(p1, p2)}

16 updateSCC(P , scc, ∆′P )
17 return True

18 return False

will have complexity O(m2).
The presented RRG-based algorithm retains the proba-

bilistic completeness of RRT, since the constructed transition
system is composed of an RRT-like tree and some transitions
which close cycles.

Theorem 4.3: Algorithm 1 is probabilistically complete.

V. IMPLEMENTATION AND CASE STUDIES

We implemented the algorithms presented in this paper
in Python2.7. In this section, we present some examples
in configuration spaces of dimensions 2, 10 and 20. In all
cases, we assume for simplicity that the Steer function is
trivial, i.e., there are no actuation constraints at any given
configuration. All examples were ran on an iMac system with
a 3.4 GHz Intel Core i7 processor and 16GB of memory.

Case Study 1: Consider the configuration space depicted
in Figure 2. The initial configuration is at (0.3; 0.3). The
specification is to visit regions r1, r2, r3 and r4 infinitely
many times while avoiding regions o1, o2, o3 and o4. The
corresponding LTL formula for the given mission specifica-
tion is φ1 = G(Fr1∧ (Fr2∧ (Fr3∧ (Fr4)))∧¬(o1∨ o2∨
o3 ∨ o4)).

A solution to this problem is shown in Figures 2 and 3.
We ran the overall algorithm 20 times and obtained an
average execution time of 6.954 sec, out of which the average
of the incremental search algorithm was 6.438 sec. The
resulting transition system had a mean size of 51 states and
277 transitions, while the corresponding product automaton
had a mean size of 643 states and 7414 transitions. The
Büchi automaton corresponding to φ1 had 20 states and 155
transitions.

Case Study 2: Consider a 10-dimensional unit hypercube
configuration space. The specification is to visit regions r1,
r2, r3 infinitely many times, while avoiding region o1. The
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Fig. 2. One of the solutions corresponding to Case Study 1: the
specification is to visit all the colored regions labelled r1 (yellow), r2
(green), r3 (blue) and r4 (cyan) infinitely often, while avoiding the dark
gray obstacles labelled o1, o2, o3, o4. The black dots represent the states
of the transition system T (51 states and 264 transitions). The starting
configuration of the robot (the initial state of T ) is denoted by the blue
circle. The red arrows represent the satisfying run (finite prefix, suffix pair)
found by Algorithm 1, which is composed of 21 states from T . In this case,
the prefix and suffix are [0, 1, 4, 3] and [7, 10, 16, 40, 50, 40, 32, 34, 35,
43, 47, 36, 37, 29, 11, 19, 11, 8, 5, 1, 4, 3], respectively.

Fig. 3. Transition systems obtained at earlier iterations corresponding to
the solution shown in Figure 2 (to be read from left to right and top to
bottom). The black dots and arrows represent the state and transitions of
T , respectively.

LTL formula corresponding to this specification is φ2 =
G(Fr1 ∧ (Fr2 ∧ (Fr3)) ∧ ¬o1).

The corresponding Büchi automaton has 9 states and 43
transitions. Regions r1, r2, r3 and o1 are hypercubes and
their volumes are 0.03, 0.03, 0.013 and 0.012, respectively.
r1, r2, r3 are positioned in the corners of the configuration
space, while o1 is positioned in the center. In this case, the
algorithm took 16.75 sec on average (20 experiments), while
just the incremental search procedure for a satisfying run
took 14.471 sec. The transition system had a mean size of
69 states and 1578 transitions, while the product automaton
had a mean size of 439 states and 21300 transitions.

Case Study 3: We also considered a 20-dimensional unit
hypercube configuration space. Two hypercube regions r1
and r2 were defined and the robot was required to visit
both of them infinitely many times (φ3 = G(F(r1∧Fr2))).

The overall algorithm took 7.45 minutes, while the transi-
tion system grew to 414 states and 75584 transitions. The
corresponding product automaton had a size of 1145 states
and 425544 transitions.
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