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ABSTRACT

Networked dynamical systems are increasingly used as mod-
els for a variety of processes ranging from robotic teams to
collections of genetically engineered living cells. As the com-
plexity of these systems increases, so does the range of emer-
gent properties that they exhibit. In this work, we define a
new logic called Spatial-Temporal Logic (SpaTeL) that is a
unification of signal temporal logic (STL) and tree spatial
superposition logic (TSSL). SpaTeL is capable of describ-
ing high-level spatial patterns that change over time, e.g.,
“Power consumption in the northwest quadrant of the city
drops below 100 megawatts if the power consumption in the
southwest quadrant remains above 200 megawatts for two
hours.” We present a statistical model checking procedure
that evaluates the probability with which a networked sys-
tem satisfies a SpaTeL formula. We also develop a synthesis
procedure that determines system parameters maximizing
the average degree of satisfaction, a continuous measure that
quantifies how strongly a system execution satisfies a given
formula. We demonstrate our algorithms on two systems:
a biochemical reaction-diffusion system and a demand-side
management system for a smart neighborhood.
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1. INTRODUCTION

A networked system can be roughly defined as a system
whose components are distributed across space and con-
nected via a communication network. Examples include
electrical power grids, teams of robots, gene networks, and
groups of animals. The complicated dynamics of individual
system components, e.g. the stochastic power consumption
demand of individual buildings in a neighborhood, and the
interactions between these components via the network, e.g.
load balancing between neighborhoods, allow networked sys-
tems to produce rich, complicated behaviors, e.g. fulfilling
the overall demand for power consumption while ensuring
that no load on the network is high enough to trip a blackout.
Such dynamic patterns have been studied by diverse commu-
nities including physics, biology and computer science [23,
15]. However, these approaches have been domain-specific
and thus how to formally characterize and use dynamic pat-
terns is still an open question.

In this paper, we propose a novel logic called Spatial Tem-
poral Logic (SpaTeL) to describe such high-level behaviors of
networked systems. Our formulation combines spatial logic,
which can be used to describe properties of the system across
space such as “The power consumption in neighborhood A
and in the adjacent neighborhood B remains below 150 MW
and the combined power consumption of the two neighbor-
hoods does not exceed 200 MW?”, with temporal logic, which
can be used to describe properties of the system across time,
such as “The power consumption never exceeds 150 MW for
longer than 20 minutes and always exceeds 20 MW for 24
hours.” With SpaTel., we can express how a system evolves
across space and time with properties such as “The power
consumption in A and B each never exceeds 150 MW for
longer than 20 minutes and the combined consumption is
always between 20 MW and 200MW for 24 hours”.

The spatial component of SpaTeL is based on Tree Spatial
Superposition Logic (TSSL), which was introduced in [2] for
supervised classification of patterns. TSSL is defined with
respect to the quad tree data structure that is widely used
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in pattern recognition. Quad trees are constructed by recur-
sively partitioning images into quadrants. TSSL is based on
Linear Spatial-Superposition-Logic (LSSL), which was de-
veloped in [16]. LSSL was successfully employed to spec-
ify and to detect the onset of electrical spirals in networks
of cardiac myocytes, and the authors devised a method for
learning an LSSL formula from examples of spatial patterns.
TSSL was introduced in order to deal with the entire quad
tree representation of the space instead of just a path. An
example of a TSSL property is “The average intensity of the
image is less than 0.5 and the average intensity of the north-
west quadrant is less than 0.25”. Given a quad tree and a
TSSL formula, the quantitative semantics of T'SSL can be
used to describe how well the given tree satisfies the for-
mula. If this value is high and positive, then the tree is a
very good example of the pattern; if this value is negative,
then the tree does not satisfy the pattern; and if the value
is close to 0 a small change to the tree could affect whether
or not it satisfies the given pattern. The authors of [2] per-
formed parameter synthesis for a reaction diffusion network
by optimizing the quantitative semantics of the steady-state
system behavior with respect to a given TSSL formula that
described desirable system behavior.

The temporal component of SpaTeL is based on Signal
Temporal Logic (STL), a predicate temporal logic defined
with respect to continuous-valued signals [21, 11]. STL for-
mulae describe how inequalities defined over a signal evolve
over time, e.g. “The squared distance from the origin (z? +
y?) is greater than or equal to 2 within 5 s of system initial-
ization.” Quantitative semantics can also be defined for an
STL formula that quantify how well a given signal satisfies a
given STL formula. STL has proven a useful tool for super-
vised learning from continuous signals. Parametric signal
temporal logic (PSTL) is a version of STL in which physical
constants and time bounds are replaced with free parame-
ters, e.g. “(® + ¢?) < 7 within 7 seconds.” In [17], the
quantitative semantics of STL was used to find a parameter-
ization of a given PSTL formula that described system out-
put data. In [19] and [18], these methods were extended to
supervised and unsupervised learning applications, respec-
tively. A similar supervised learning problem with respect
to Metric Interval Temporal Logic (MITL) was solved in [4].

In this paper, we combine TSSL and STL to form SpaTeL.
SpaTeL describes how a networked system (whose state can
be encapsulated by an image) evolves over time. We de-
fine quantitative semantics for this logic that describes how
well a given execution of a system satisfies the given for-
mula. We show how SpaTeL can be used in the analysis
of networked systems via statistical model checking and in
the control of systems via parameter synthesis. Our pro-
posed algorithms are evaluated in simulations of a networked
reaction-diffusion system used to describe skin pigmentation
in animals and a smart electrical power grid.

2. RELATED WORK

Several logics have been proposed for specifying the be-
havior and the spatial structure of concurrent systems [9]
and for reasoning about the topological [5] or directional [7]
aspects of the interacting entities. In topological reason-
ing [5], the spatial objects are sets of points and the relation
between them is preserved under translation, scaling and ro-
tation. In directional reasoning, the relation between objects
depends on their relative position. These logics are usually
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highly computationally complex [7] or even undecidable [22].
Even though there has been a lot work done in spatial logics
and temporal logics with applications to several domains [8,
13], spatiotemporal reasoning is scarcely explored. To the
best of our knowledge, the available results are mainly theo-
retical [5, 6, 20] and lack real practical applications such as
those provided in this paper.

3. NETWORKED DYNAMICAL SYSTEMS
AND QUAD TRANSITION SYSTEMS

In this section, we formalize the notion of a networked dy-
namical system and describe the process of abstracting such
a system to a quad transition system (QTS) [2], the model
with respect to which SpaTeL is defined. A networked sys-
tem S can be modeled as a K x K square grid of K2 sub-
systems S; ;. We use z(t) € RE***Y to denote the state
of the system at time ¢, = 0,...,T where z; ;(t) € RY de-
notes the state of sub-system S; ;. Each sub-system evolves
according to a (possibly non-deterministic) difference rela-
tion. Without loss of generality, we will assume that K is
a power of two, i.e. K = 2. A square sub-system of S is
a collection of adjacent subsystems of S denoted S;,:iy,j;:js
where1 <i; <i3 < K,1<j1 <jo< Kandjo—j1 =1i2—01
is a power of 2. The state of S;,.i,,j,:5, at time ¢ is denoted
as iy iy gy () = [Tij (D)]izin, . iz.g=1.... g2

A quad tree is a representation of z(t) given as a quar-
ternary tree structure T'(¢t) = (V(¢), R(t)) where each ver-
tex v € V(t) represents the state of a square sub-system
of S. The set V(t) is constructed by recursively partition-
ing z(t) into quarters, e.g. if V'(¢) is initially v1 = x(¢), then
vz ... vs, which represent four K /2 x K/2 square subsystems
of S would be added to V. The recursive partitioning hap-
pens k = log,(K) times. The relation R C V(t) x V(¢) is
defined such that (v,v’) € R(t) < v' was constructed from
partitioning v.

The concept of a Quad Transition System (QTS) was in-
troduced in [2] as a compact representation of quad-trees. A
quad transition system is a tuple QT'S := (A, a0, 7,%,[.], L)
where A is a set of states, ag € A is an initial state, 7 C Ax A
is a transition relation such that for every state a € A,
1 < |{a|(a,a’) € 7} < 4. I is a set of variables, and
[]: A — (2 — [0,b]) is a function that assigns to each
state a € A and variable m € 3 a value [a](m) € [0,b], and
L:7 — 27 where D = {NW,NE,SW,SE} is a labeling
function for the relation 7 with the extra constraint that
only one successor exists for every direction.

From the state of the system S at time ¢, we can con-
struct the QTS Q(¢) := (A(t),ao(t), 7(t), 2, [](¢), L(¢)) via
the algorithm given in [2]. In this paper, we suppress the
dependence of the relation [.](¢) on time. We note that in
contrast to transition systems typically used in formal meth-
ods applications, the QTS constructed via this algorithm
represents the spatial relationships (patterns) of the system
at a particular time. A {race corresponding to a trajectory
z:{0,...,T} - RE***N is a function Q : {0,...,T} — Q
where Q is the space of quad transition systems. The set of
all traces that a networked system S can produce is called
the language of S and is denoted as £(S). The technical
details of the QTS construction are omitted, but the rela-
tionship of the constructed QTS to the original networked
system S is illustrated in the following example.



e

pattern at t

pattern at t+1

Joal() = 0.8
laal(W) = 05

o) =03
(W) =0

NE, NW, SE, SW

[aa](W) =1

[as](W) =0
)

[as](W) = 0.5
4

fasl(#) = 1
)

[a2](W) = 0.5
q

NE, NW, SE, SW

Q(®

NE, NW, SE, SW
Q(t+1)

(c)

Figure 1: (a) Flipping checkerboard pattern. (b) A
portion a the quad tree corresponding to the pattern
at time t. (c) The derived QTSs at time ¢ (before
the flip) and ¢ + 1 (after the flip).

FEzxzample 1. A 4 by 4 checkerboard can be characterized
by the QTSs shown in Figure 1 [2]. Each subsystem S; ;
is the (4,7)th cell of the checkerboard with state x; ;(t) =
[Ki;(t), Wi ;(t)] € {0,1}2, where 2; ;(t) = [1,0] if the square
is black and z;;(t) = [0,1] if the square is white. The
set of variables is defined as ¥ = {K, W} which represent
the proportion of cells of a particular subsystem that are
black and white, respectively. The QTS is constructed from
the quad tree by first aggregating all of the states on the
bottom level of the tree with equivalent values x; ;(t) into
QTS states. The valuations of these states are defined as
[[a](K), [a](W)] = x:,;(t). a2(t) and a3(t) correspond to the
black and white cells of the checkerboard, respectively. Each
of these states is assigned a self-transition. Next, the states
in the next highest level of the quad tree are aggregated
into QTS states. States at this level of the tree with identi-
cal children are aggregated into the same QTS state. a1(t)
is the only QTS state constructed from this level because
every state has identical children. Transitions from a new
QTS state to an existing QTS state are constructed if the ex-
isting state represented a child of the new state in the quad
tree. The transitions are annotated with the direction of
the child’s corresponding cell, e.g. the transition from a1 ()

191

HSCC'15, April 14-16, 2015, Seattle, Washington

to az(t) is annotated with the directions NW, SE. The val-
ues of [a](C) for the new states a and variables C' € ¥ are
calculated according to

(C) + [ane](C) + [asE](C) + [asw](C)
4

where aq,d € D is such that (a,aq) € 7 and d € L((a, aq)).
This process continues until a state ao(t) that denotes the
root of the quad tree is constructed.

At some point ¢ € {0,...,T}, the color of all of the cells
inverts. This flipped colors are represented by the QTS Q(t+
1). Note that in this case, the states ao(t + 1),a1(t + 1)
have the same values of K and W and the same transition
between them as ao(t), a1(¢). This is because both z(¢) and
2(t + 1) have the property that the neighbors of any given
cell S;,; are the opposite color from S; ;. However, the values
of K and W associated with az(t + 1) and as(t + 1) are the
opposite of az(t) and as(t), which demonstrates the color
inversion at time ¢.

al(C) = (2]

Definition 1. (Labeled paths) Given a set B of labels rep-
resenting the spatial directions, a labeled path (Ipath) of a
QTS is an infinite sequence 7B = agaras ... of states such
that (ai,ai+1) € 7 and L(as,ai+1) N B # 0, Vi € N. We
denote the set of all labeled paths starting in state a(t) as
LPath®(a(t)) and the i-th element of a path 72 as 7.
For example, in Fig. 1(c), LPath®(ao) = {aoaiazas ...} if
B ={NW,SE}.

4. SPATEL: SPATIAL TEMPORAL LOGIC

In this section, we define the syntax and qualitative and
quantitative semantics of Spatial Temporal Logic (SpaTeL).

4.1 Syntax

SpaTeL has a nested syntax where inner spatial formulae
are modified by temporal and logical operators. Spatial for-
mulae are assertions about the spatial properties (patterns)
of a networked system at a particular time instance, i.e. are
defined with respect to a QTS at a single time instance.
When the spatial formulae are modified by temporal and
logical operators, the resulting SpaTeL formula express be-
haviors of sequences of patterns, i.e. are defined with respect
to traces of a networked system.

Definition 2. (SpaTeL syntax) The syntax of a spatial for-
mula is defined as
pu=Tlm ~dl=plp1 A @23 O ¢|Vs O ¢ (1)
IB1Ukp2|VB1Uk2,
where ~€ {>,<}, d € [0,b], b € Ry, k € Nsg, BC D :=
{NW,NE,SE,SW} with B # 0, and m € ¥ where X is as

defined for a QTS. Uy and (O are read as “until” and “next”.
The syntax of a SpaTeL formula is defined as

D = @[ ~P|Py A P2|D1Ur Do,

2
where I is a time interval such that I := [I1,I2), I1, I are
non-negative and finite, and ¢ is a spatial formula.

Other spatial and temporal operators can be derived from
the until operator as follows:

deFre =3 TUkp

HBchp = —\VBFk—\cp F[‘I) = TU[‘I) (3)
VBchp = VBTUMp G1<1> = —\F[—|(I).
VeGre :=-3pFr—p
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At this point, it becomes clear that SpaTeL is an integration
of TSSL [2] and Signal Temporal Logic (STL) [21, 19]. Its
spatial formulae share the same syntax with T'SSL, while the
temporal operators are defined similarly to their STL coun-
terparts with predicates replaced by spatial formulae. At
first glance, it may seem that requiring a spatial formula to
be nested inside a temporal formula unnecessarily diminishes
the expressivity of the logic, i.e. eliminates the interaction
between temporal and spatial aspects. However, as pointed
out in [20], allowing spatial and temporal operators to be
nested arbitrarily can lead to undecidable cases. To further
combat undecidability, we bounded time and space.

4.2 Semantics
We define the qualitative semantics of SpaTelL: as follows.

Definition 3. (Qualitative Semantics of SpaTeL) Let Q be
a trace of a networked system. The qualitative semantics of
SpaTeL are defined recursively as *

(@) E~Pe (Qt)FP
(Q:t)':(l)l/\q)2<:> (Q7t)):q)1/\(Q7t)':q)2
Q1) = (I)lU[ILIQ)q)Q A
AVt" € [t7 t,)v (Qat”) ): @,

@t EFEee (Quant)Ey
(Q,a,t) ET
(@ at) Em~ds [at))(m)~d
(Q?avt)|:¢1/\902<:> (Qaavt)'chl/\(Qvavt)':SD2
(Q,a,t) F-p & (Q,a,t) F ¢

3a'(t) : ((at),d (t)) € T(t) A
L(t)(a(t),a’(t)) N B # 0),
(Q,d',t) F o

Va'(t) : ((a(t),a’(t)) € 7(t) A
L(t)(a(t),a’(t)) N B # 0),
Qd t)Ee

InP € LPaths®(a(t)) :

Ji € (0,k] : (Q, 7P, t) =2 A
V] € [07 l): (Q: g t) ': ®1

vrP € LPaths®(a(t)) :

3i € (0,k]: (Q, 77, 1) = w2 A
V] € [07 Z): (Q77Tj7 t) ': P1-

The trace @ satisfies @ if (Q,0) = ®. The qualitative seman-
tics can be used to check whether a model satisfies or violates
a dynamic pattern expressed in SpaTelL. However, it does
not provide any information about how strongly the prop-
erty is satisfied or violated. Quantitative semantics were
proposed in [14] and [12] to provide a measure of satisfia-
bility of a trace with respect to a STL formula. Similarly,
[2] proposes a quantitative semantics that measures satisfi-
ability of a pattern with respect to a TSSL formula. In the
following, we integrate these two sets of semantics.

(Qvavt) ):HBOQD@

(Qvavt) )ZVBOSO@

(Q,a,t) F 3pp1Urpa <

(Q,a,t) EVep1Urpe <

Wet+h,t+1h):(Q,t) E

Definition 4. (Quantitative Semantics of SpaTeL) The quan-

titative valuation p; of a SpaTeL spatial formula can be cal-
culated according to the recursive quantitative semantics

pt(_'(vazt) _pi(¢7Q7t)
Pt(q)l A q)Qvat) min(pi(q)lvQat)api(q)27Qat))

pt(q)lU[Il,h)q)?? Q,t)
inft”e[t+11,t’) Pt((bl, Q, t”)))
pt(@7 Qvt) = pS(SavaO(t))
1(@Q,t) is used to define the semantics of trace Q at time ¢
(not to be confused with the value of @ at time ¢, Q(t)).

Similarly, (@, a,t) is used to define the semantics of trace @
at time ¢ and state a.

= SuPz/e[t+Il,t+12)(min(Pt(q’% Q, t/),
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and
ps(Tya) =0
pulm~d,a) = (~ is 2)?([m](a) - d) : (d— [m](a))
ps(mp,a) = —ps(p,a)

ps(p1 AN p2,a) = min(ps(p1,a), ps(i2,a))

ps(38 O ¢,a) =0.25max, 5crpains () Ps(T1)

ps(VB O p,a) =0.25 MiN, B cLPathB (a) Ps (m1)
ps(Ipp1Ukp2) :SuprELPathB(a),ie(O,k](min(0'25

ps(p2, ), inf e 0, 0.257 ps (1, 7F)))

ps(VBp1Ukp2) = inf neppainB(a),ico,r (min(0.25

ps(p2, ), inf e (0,4 0.257 ps (01, 7).

With a slight abuse of notation, the quantitative seman-
tics of a formula ® with respect to a trace @ is denoted

Pt (‘1), Q) = pt((I)v Q7 O)

Remark 1. We restrict the spatial configuration to QTSs
constructed from a system S modeled as a K x K grid.
The syntax and semantics of SpaTeL can easily be modified
to describe a networked system with a spatial configuration
that can be represented as a transition system constructed
from a generic tree structure. Extension to systems with
general configurations will be studied in the future.

Remark 2. The absolute value of this quantitative valua-
tion can be viewed as a measure of "distance to satisfaction”.
In other words, larger values correspond to traces that sat-
isfy the formula better than traces with smaller quantitative
valuation. Therefore, traces with a larger quantitative valu-
ation are expected to conform quite strongly to the spatial
and temporal patterns described by the given formula. For
this reason, we refer to the value of the quantitative seman-
tics of a formula with respect to a trace as its degree of
satisfaction.

Remark 3. Discounting reduces the effect of deeper nodes
in a quad tree, which correspond to more local portions of
the network. This leads to a better description of global
patterns.

‘We now show that given a trace Q and a SpaTel. formula
® the sign of the quantitative evaluation p; is consistent
with the violation or satisfaction of the formula. That is, if
(P, Q,0) is positive, then Q satisfies ® and if it is negative,
(@ does not satisfy ®.

THEOREM 1  (Soundness). Let ® be a SpaTeL formula
and @ be a trace of a networked system. Then, the following
properties hold for the two semantics:

pt(q)7Q70) >0:>Q ):CI) (4)
pt(¢7Q70)<0:>Qb&¢'

PROOF. (Sketch) Our previous results in [2] showed that
the following properties hold for the spatial fragment of Spa-
Tel:

ps(p,a0) > 0= (Q,a,t) F o (5)
ps(tp,ao) <0= (Q7a7t) bé ®

SpaTeL is a special case of STL [11] where the predicates
defined over signals are substituted with a TSSL spatial for-
mula. The proof of soundness for STL can be then derived
by structural induction on the operational semantics follow-
ing the ideas from [11]. O



Now, we define the QTS max distance, a measure of sim-
ilarity of two given QT'Ss.

Definition 5. (QTS Max Distance) The max distance of
two QTSs QW) = (A(l),aén,T(l),E, L]V, LMY and Q¥ =
(A®), a(()2>, 7@ 2 1@, L®) is defined as:

doo (Q(l)v Q(2)) = Noo (aél)7 aéZ)v 0)
where ne : A X A X N — [0, b] such that:
2 mag [V (m) — [2]® (m)]
nm(a(l),a(m, k) = if (a(l), a(l)) e rM A (a(2), a(2)) c (2
afiz), k + 1) otherwise

max )
TaepNeo(ay

We now introduce a second theorem, showing that given
a property @, if two bounded traces of QTS are similar
enough, i.e. their max distance is less than the robustness
value for the given formula, then if one trace satisfies the
formula ® implies that the other trace satisfies the same
formula.

THEOREM 2 (Correctness). Given two traces QW (t)
and QP (t) of bounded length T then:

(Q™M,0) E @A || Deo [loo< p:(2,Q™M,0) = (P, 0) = @
with Do defined as:

Do = [dee (@M (0), QP (0)), - -+, doe (QM(T — 1), QP(T — 1))

PROOF. (Sketch) The proof for the temporal fragment of
SpaTeL is analogous to the one for STL in [14]. We provide
here a sketch for the proof for the nested spatial fragment:

QW 1) E 0 A oo (@M (1), QP (1)) < ps(0,ad (1) = (@™, 1) ¢

We can distinguish the following cases:

case ¢ := T: in this case the theorem is true following the
definition of the qualitative semantics.

case ¢ := m ~ d: This proof assumes ~:= “ > ”. A similar
proof can be derived from ~:= “ <”. We have that:

oo QW (1), QP (1)) < pa(m > d, QW (1)) = [af" ()] (m) — d
Moreover, by the definition of dss we have that:

la§” (01D (m) — [af? (D]P (m)] < doe (QM (1), QP (1))
a5 (D)D) (m) — [[af? (1] P (m) — [a§? ()] (m)| —d > 0
a5 (D)D) (m) = [[a$? ()]P (m) — [0l ()] P (m)] < [a§? ()] (m)
From Theorem 1 we have that:
[0l ()] (m) —d > 0= pe(m > d, QP (1)) > 0= (@D, 1) E ¢
all other cases:
if (QW,¢) |= ¢ then we have:
(1): ﬁb: jEN

po(p,a” (1)) = { or (2):

L@@ P(m)—d):jeN,aP e AV mex

Situation (1) may occur when one of the subformulae of
¢ is T and the proof is equivalent to the case of ¢ := T.
Situation (2) can be proved in a similar way as the case
p=m~d. [
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FExample 1. cont’d.
The original checkerboard pattern can be described by a
TSSL formula

Ve F1((Yiswney O (W 2 1) A (Yivw,sey O (W £0)))

where B* = {SW,NE,NW,SE}. With SpaTeL, we can
formulate the spatial-temporal pattern “All the tiles in the
checkerboard flip their colors simultaneously at some time
te (0, 7] as

®:=For (VB Fi((Viswnmy O (W > 1))
AV ivw,sey O (W <0)))A
G (V1 ((Vivw,sey O (W > 1)A

}
(Viswaney O (W £0)))))).

5.  VERIFICATION AND SYNTHESIS

In this section we show that standard model checking and
parameter synthesis algorithms presented in [29] and [2] can
easily be applied to SpaTeL.

5.1 Statistical Model Checking

We are interested in determining whether the traces pro-
duced by a networked system S satisfy a given SpaTel. for-
mula ®. In general, a networked system produces traces
non-deterministically due to variations in initial conditions,
system parameters, or un-modeled dynamics. Let the non-
determinism of the system be described by a random vari-
able U with range space Ry such that a given realization u
generates a unique trace Q. and L£(S) = UuERU Q.. Enu-
merating each trace Q. and checking Q. = ® is infeasible,
as this set is (possibly) countably infinite. A traditional
model checking algorithm [3], in which a formal proof of
whether or not all traces produced by S satisfy ® is gener-
ated, is also likely infeasible to implement due to the poten-
tial size and complexity of networked systems. Further, the
question of whether or not all traces of S satisfy ® may be
too narrow of an inquiry, as we may only be interested in
how frequently & is satisfied. Therefore, we propose to char-
acterize the behavior of S by using the model to randomly
generate a finite number of traces and solving the broader
(and more feasible) statistical model checking problem.

(6)

Problem 1. A model of a networked dynamical system S
and a SpaTeL formula ® are given. Let p = Pr[Q | @],
c € (3,1) be a confidence level, and § > 0 be a half-interval
size. Find an interval (po,p1) where 0 < po < p1 < 1 and
p1 — po = 26 such that Prp € (po,p1)] > c.

Problem 1 asks for a confidence interval (po,p1) because
this interval can be calculated from a finite number of traces
of S while explicitly calculating p in general would require
an infinite number of traces.

FEzxzample 1. cont’d.

Each of the tiles S; ; flips its color at a random time T} ;
distributed non-uniformly over the range l; ;,...,hi ;. Let
U be the random matrix [T ;]. We want to estimate (via a
confidence interval) the probability that all the tiles in the
checkerboard flip their color simultaneously at some time ¢,
i.e. the probability of satisfying (6).

Our statistical model checking procedure is summarized
in Algorithm 1. Algorithm 1 uses Bayesian Interval Estima-
tion, an algorithm presented in [29] to recursively construct
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a confidence interval for the mean of a Bernoulli random
variable. We define an i.i.d. sequence of Bernoulli random
variables {x;}X; such that

Xi = I(Qui ': (I))v (7)

where u; is a sample drawn from U and I is the indicator
function. The sample mean of the variables {x;}i=, thus
approaches p as defined in Problem 1 as N — oo. For a
finite value of N, we can estimate an interval [p — d,p + J]
such that

Prlpe (p—-6,p+0)] > ¢, (8)

where § and c are as defined in Problem 1. This interval
is called the “100c percent Bayesian interval estimate of p”.
The Bayesian interval estimation algorithm proceeds by col-
lecting samples of x; and recursively applying Bayes’ rule

__ fOas- - xalp)a(p)
s Xn) f01 f(Xl,...,Xn|U)g(v)dv7 (9)

where f and g are probability density functions (pdfs), until
the estimated interval achieves the desired confidence level
c. Recursively applying Bayes’ rule requires us to have some
prior pdf of p over the interval [0, 1] before collecting the first
sample x1. We use § priors as suggested in [29], where a 3
random variable has a pdf

flxi, - -

pe0,1]  glp,a,B) = gampt (1 -p)°
(10)
B(e, B) = [ t*7H (1 —t)’tat.
and a cumulative density function (cdf)
P
Fos®) = [ lt., )it ()
0

In the absence of a principled guess of the prior density of p,
we make the assumption of uniform density, e.g. F, g(p) =
p, by setting o = 8 = 1. If we use the § prior, the posterior
mean p can be calculated as

X+«

ntath 12)

ﬁ =
where X = 3" | xi. The posterior probability is:

Prlp € (po;p1)] = Fixtan—x+8)(P1) — F(X+a,an+ﬂ)(l(’0)~)
13

5.2 Parameter Synthesis

Consider the case in which in addition to stochastic pa-
rameters U, the traces of S are influenced by some de-
sign parameters II € P. Let Q. be the unique trace
associated with realization v and parameters II such that
L(S) = Uuenry Unep Quai. We wish to find a parameteri-
zation IT* such that the traces {Qu,m* }uecr, strongly satisfy
some desirable property ® on average. Formally, we have:

Problem 2. A model of a system S, a SpaTeL formula ®,
and ranges of system parameters P = P1 X ... P, P;i C
R,i=1,...,|II] are given. Determine the parameterization
IT* € P such that the average degree of satisfaction of the
resulting traces with respect to ® is maximized.

FEzample 1. cont’d.
Assume that the maximum possible flipping time h; ; for
each subsystem S;; is randomly selected according to an

Algorithm 1: Statistical Model Checking
Input: ®, S, 0 € (0,1/2), c€ (1/2,1), o, 8
Output: (po,p1)

1 n < 0 (number of traces drawn so far) ;
2 X < 0 (number of traces satisfying ®) ;
3 v + 0 (coverage probability of the interval (po,p1)) ;
4 while vy < c do
5 Qu < draw a sample trace of the system ;
6 n+<n+1;
7 if (Qu | ®) then
8 ‘ X+~ X+1
9 end
10 P+ (X +a)/(n+a+ ) (compute posterior mean) ;
11 (po,p1) < (p— 6,p+ 0) (interval estimate) ;
12 if p1 > 1 then
13 | (po,p1) + (1-25,1)
14 else
15 if po < 0 then
16 | (po,p1) « (0,26)
17 end
18 end
19 v + Posterior probability of p € (po,p1) computed
by (13)
20 end

exponential distribution with rate II. A parameter synthesis
problem is to determine the value of IT such that on average
each tile flips its color as close to simultaneously as possible.

The temporal version of problem 2 has been solved in [1,
26].We study the spatio-temporal case in this paper. Prob-
lem 2 can be formulated as an optimization problem:

II" = arg max By [0t(®, Qu,mm)]. (14)

We do not evaluate the expectation directly but rather ap-
proximate it by generating N traces {Q.,n}i, and cal-
culating the sample mean of the degree of satisfaction. In
practice, we have found that relatively small sample sizes N
sufficed for parameter synthesis.

In [2], the minimum value of the degree of satisfaction over
all possible executions was maximized. The authors argue
that if we make sure that the lowest possible quantitative
valuation (which corresponds to the worst execution of the
system with respect to the given specification) is still posi-
tive, then every possible execution will satisfy the specifica-
tion. We have replaced the minimum degree of satisfaction
with the sample mean because we deal with stochastic sys-
tems such that even for the optimal parameters, there may
still be some traces among the samples where the specifica-
tion is not satisfied. Further, the sample mean is a better
indicator of the behavior of a typical execution of the system
than the robustness of the “worst case” trace.

The process of parameter synthesis using particle swarm
optimization is summarized in Algorithm 2. Many continu-
ous optimization methods can be used to solve (14). In this
paper, we use particle swarm optimization (PSO) [24], a
randomized search algorithm in which a collection of points
in the search space are updated at each iteration to move
closer (on average) to a global optimal solution. The choice
of PSO was motivated by [2] where it was chosen due to its
inherent distributed nature and its ability to operate on ir-
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regular search spaces. In particular, PSO does not require a
differentiable objective function. The PSO procedure begins
by randomly initializing a set of m particles with positions
z € P and velocities v; € V C RM!. The position of a par-
ticle represents a candidate solution to (14) and the velocity
represents a search direction from the current solution. After
the particles are generated, m sets of N traces {Qu%zi };-V:l
are produced and used to evaluate (14) for each point repre-
sented by the particles. The position of the ith particle that
has performed the best so far is stored in the variable z¢¢*!
and the optimal value of z2¢*t is stored in the variable z%¢¢.
After all particles have been evaluated, their positions and

velocities are updated according to the relations

vi 4= Wi +1(0,7) (27" = zi) +0(0,79) (2" — 2:)
Z2i & 2 + v;.

(15)
1(0,7;) represents a random number uniformly distributed
over the interval [0,7;]. The parameters W € R, r,,, and rg
are specified by the user. The iterative process of updating
particles and evaluating their performance proceeds until a
termination criterion is met, e.g., 2°¢** does not change after
k consecutive iterations.

Algorithm 2: Parameter Synthesis
Input: ®, S, P, N, (W,rp,rg,m), k
Output: IT*
for 1 <j<mdo

z; < initialize particle positions;

v; < initialize particle velocities

end

while IT* has changed during the last k iterations do

for 1 <j< N do
Quj,z,,. < draw a sample trace of the system ;
(P, Quj,zi) < calculate quantitative valuation
of Quj,zi with respect to @ ;

9 end

10 [2i,v;] < update particles according to (15) ;
11 II* «+ the best position so far (2°¢**)
12 end

5.3 Complexity

The time complexity of executing either Algorithm 1 or 2
is difficult to compute explicitly. Each algorithm proceeds
in an iterative fashion until a convergence criterion is met.
Thus, the complexity depends on system-dependent conver-
gence rates that can vary widely among application areas.
Some insight into how different stopping criteria affect con-
vergence of particle swarm optimization for a given objective
function is given in [28]. Here, we establish the complexity of
computing the degree of satisfaction for an execution trace
of a networked dynamical system where the size of the net-
work is K x K and the traces have a length of T'. This is the
core computational procedure that is executed during every
iteration of each algorithm. The temporal and spatial por-
tions of SpaTeL are inspired by STL and TSSL, respectively.
The worst-case complexity of computing the degree of satis-
faction of an STL formula was established as O(T?"*) in [12]
where [; is the maximum number of nested temporal until
operators in the formula. The quantitative semantics of Spa-
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TeL is defined in such a way that the quantitative valuation
for spatial and temporal until operators are computed using
the same expressions. Therefore, computing the spatial por-
tion of the SpaTel. quantitative valuation for a given quad
tree has a complexity of O(4™.n2s) where n, = log K is the
depth of the tree and [ is the maximum number of nested
spatial until operators. Finally, constructing of a quad tree
from a K x K grid needs O(K?log K) operations. Conse-
quently, the total complexity is O(T%" K*(log K)?'=+1).

6. CASE STUDIES

The matlab package SPATEL, which includes our imple-
mentations of Algorithms 1 and Algorithms 2 and the sim-
ulation software we used in our case studies, is available at
http://sites.bu.edu/hyness/software/.

6.1 Reaction-Diffusion System

t=0 t=5 t=10 t=20 t=30 t=40 t=50 t=60

Figure 2: Patterns generated by system (16) with
R =11,-12,-1,16] and different diffusion parameters
Dps = [5.6,24.5] and Dss = [1.4,5.3]. The steady state
observations produce large spots (LS) and small
spots (SS).

Inspired by [27], we consider a reaction-diffusion system
that describe the generation of skin pigments that produce
spots in animals. Following [2], we consider a 32X 32 reaction-
diffusion system with two species. The concentrations of the
species in S; ; evolve according to the ODE

dmz('l') 1 1 1) (2 1
Ttﬂ =D ('ul('vj) - xgu')) + Rlxi,j)xg,; - wt(',j) + R 16
) 2 2 1)_(2 1o
dtyj = D> (,u;j) N xid')) + R3I5,j>ml(',j) + 1
where zg}j) and 2% represent the concentration of each species

iJ
at cell (4,7), ul(-,lj) and ufj) are the inputs of the (4, j)th sys-
tem S; ; from neighboring systems,

> al,

VeV, j

(my _ 1
Hog = ]

(17)

v;,; is the set of indices of systems adjacent to S;j, D, i =
1,2 are diffusion coeflicients, and R;,i = 1,...,4 are the pa-
rameters that define the local dynamics for the two species.
Fig. 2 shows the observed concentrations of species 1 at
different time points for two different parameter choices.
The more black cell (4,j) is, the larger the value of xilj)
The two corresponding steady-state spatial patterns present
at time ¢t = 60 are called large spots (LS) and small spots
(SS), respectively. In [2], the RIPPER supervised learning
algorithm was used to learn the TSSL formulae ¢rs and
pss from examples of large and small spot patterns that
were labeled manually. These formulae are too long to be
displayed here. SpaTelL, a richer logic, can not only char-
acterize these spatial patterns but also capture how they
develop over time. Consider the following formulae:

@1 : Fo,30)G0,60) 55 (18)
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(D1, D2) B c D n
0.05 | 0.95 | 0.95 | 156

_ 0.05 | 0.99 | 0.95 | 538
(1.44527) | 6'01 | 0.95 | 0.95 | 3766
0.01 | 0.99 | 0.96 | 284

005 095 | 011 | 98

005 | 0.09 | 013 | 71

(5:6:24.5) | 5’01 | 0.95 | 011 | 279
001 | 0.09 | 011 | 318

0.05 [ 005 | 0.05 | 28

005 | 0.09 | 0.02 | 43

(0-2.20) 1 01 | 0.95 | 0.007 | 148
0.01 | 0.99 | 0.004 | 228

Table 1: Satisfaction probabilities for ®;. Each it-
eration took on average approximately 0.74 seconds

on a machine with a 2.40 GHz processor and 8 GB
RAM.

O : F[0730)G[0,60)<PLS A G[O,SO)_“PSS~ (19)

=0

=2 t=6 t=10 =12 =20 t=40 =60

(a)

10

Degree of satisfaction

2 6 10 20 30 40 50 60

Time

(b)

Figure 3: Time evolution of TSSL quantita-
tive semantics for an execution of the reaction-
diffusion system with parameter D = [Di,D;] =
[5.6,24.5] where LS emerges in steady state and SS
emerges in transient state. (a) Generated patterns

(b)ps(prs, Q(t)) and ps(pss, Q(t)) with t=0,...,60.

Formula ®; specifies that the SS pattern appears within
the first 30 seconds and persists for 60 seconds after it emerges.
Formula @, is the conjunction of an expression which states
that LS pattern emerges within the first 30 seconds and
remains for the next 60 seconds and an expression which
specifies that the SS pattern never occurs during the first
60 seconds, i.e. the large spots pattern is established unam-
biguously. The valuations of the quantitative semantics of
a system execution with respect to ¢rs and ¢gsg are plot-
ted over time in Fig. 3(b). The figure shows that although
this particular set of parameter lead to large spots pattern
in steady state, the small spots pattern occur transiently
during the system evolution.

We applied the statistical model checking procedure (Al-
gorithm 1) to estimate the probability that formula ®; holds
for the Turing system. The results from using three different
sets of diffusion rates, two different confidence levels ¢, and
two different half-interval sizes § are summarized in Table 1.

The system with the first set of parameters (1.44,5.27)
(selected by an expert) satisfies @1 with high probability.
The other two parameterizations hold with very low proba-
bility. We also see that as ¢ increases and ¢ decreases, the
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N (D7, D7) b
T | (2.65,10.00) | 0.74
10 | (1.90,7.03) | 0.88

100 | (1.45,5.12) | 0.96

Table 2: Synthesized diffusion rates for the reaction-
diffusion system when the objective is satisfaction of
®; with § =0.01 and ¢ = 0.99.

number of traces, and consequently the computation time,
required to find the desired interval increases significantly.

Next, we applied the parameter synthesis procedure (Al-
gorithm 2) to find a pair of diffusion coefficients that max-
imized the expected degree of satisfaction with respect to
®1. We increased the number of traces at each iteration N
and observed that the results improve as N grows (i.e., the
synthesized parameter values correspond to higher probabil-
ity of satisfaction). The results are illustrated in Table 2.
Notice that computing the average quantitative valuation
for only ten executions at every step results in a satisfaction
probability as high as 88 %.

6.2 Smart Neighborhood Power Management

I
I
© zone |
I
I

T

I

I" EV charging
I station
I
I
T

i
|
|

station r
|
|

|
I
I
| EV charging
|
I
I

Figure 4: Smart neighborhood example: Configura-
tion of the neighborhood.

In this section, we apply our procedures to a simulation
of a smart neighborhood electricity grid whose power con-
sumption is controlled by demand-side management (DSM).
Due to the growing share of fluctuating renewable sources
such as wind and solar in power generation, it becomes in-
creasingly difficult to maintain the balance between power
production and consumption by only managing power gen-
eration. Recent advent of the smart grid, a more flexible and
reliable grid, enables DSM systems to play a more active role
in mitigating the effects of such intermittent resources [25].
A DSM system controls power distribution in a network by
varying the prices that consumers pay per unit of consumed
power in response to consumer demand. Thus, when the
demand for electricity is high, only those members of the
market (network) that highly prioritize power consumption
at that time will consume electricity.

Consider a Smart Neighborhood Operator (SNO) that
manages loads in commercial and residential buildings in
a neighborhood as shown in Fig. 4. The neighborhood has
commercial buildings located at the northwestern quarter
and residential buildings in the other quarters. There is an
electrical vehicle (EV) charging station at the southeastern
corner of each residential quarter.



(RPD 3 RPN) 5 (& ﬁ n
0.05 | 0.95 | 0.95 | 117

0.05 | 0.99 | 0.95 | 238
(3:05.0) | 01 | 0.95 | 0.94 | 3207
0.01 | 0.99 | 0.94 | 3201

0.05 | 0.95 [ 0.60 | 103

0.05 | 099 | 072 | 104
(3:34.7) 0.01 | 0.95 | 0.72 | 1201
0.01 | 0,99 | 0.72 | 1200

0.05 | 0.95 [ 0.04 | 45

005 | 099 | 0.02 | 43

(4.4 0.01 | 0.95 | 0.02 | 113
001 | 099 | 0.02 | 110

Table 3: Satisfaction probabilities for ®3. The price
for the commercial district is fixed at 19. Each iter-
ation required on average 0.85 seconds.

Following [10], at time ¢, inside each building n;(t) appli-
ances are consuming actively with a rate r; kW with sub-
scripts ¢, r and e denoting commercial building, residential
building and EV station, respectively. The arrival distribu-
tion of appliances for building class ¢ over the period [t, ¢+ 1]
is Poisson distributed with a rate A; (U; —p; (¢))/Us, where U;
is the utility of an appliance of class i and p;(t) is the broad-
cast price for neighborhood class j, j € {¢,r} with residential
building and EV station charged by the same price. Once
connected, an appliance continues to consume for a period
of time 7; which is exponentially distributed with rate p;.
The goal of the SNO is to set the broadcast prices p; such
that the loads of different areas and the whole neighborhood
satisfy certain specified load constraints.

The statistical model checking procedure was used to en-
sure that the power system conformed to the specification
“Always ensure that for each of the four ‘neighborhoods’, the
power consumption level m is below 300 and the power con-
sumption is below 200 in each of the neighborhoods’ quad-
rants at least once per hour. Ensure that after 6 hours, the
power consumption in all residential areas is above level 3.”
This is written in SpaTeL as

O3 := Gio,18) Flo,1) (V(vw,nvE,sw,s2) O (m < 300A
V(NW,NE,SW,SE) O m < 200))/\
Gre,18)(Y(vE,s8,5w) OVvw,ne,sw) Om > 3).

Table 3 shows the probability of satisfaction for the above
specification for different choices of daytime and nighttime
residential power prices (RPp, RPn). The parameters (3,5)
lead to a network that rarely violates the given specification.
Altering these prices by even a small amount will cause the
specification to be violated often.

Now consider the case where we want to synthesize power
prices so that: the total power consumption of the commer-
cial buildings is always less than 150; the power consump-
tion is below 150 in each EV station and below 25 in each of
the residential neighborhoods in the first 12 hours; after 12
hours, the power consumption of each EV station is between
30 and 200; after 15 hours, the power consumption in all res-
idential areas is above 5. In SpaTeL, these requirements are

Py = Goas)(Yaw O (m < 150)) A Gio2) (Y vE,s8,5w) O

(V(NW,NE,SW) O m < 25) A\ (VSE O m < 150))/\
G218 (Yve,se,sw) OVse O (m <200 Am > 30))

NGps,18) (Y (NvE,s8,5w) O V(nw,nE,sw) O m > 5).

The design parameters are daytime and nighttime prices
of the residential areas RPp, RPxy and nighttime power price

HSCC'15, April 14-16, 2015, Seattle, Washington

N | (RP,,RPL,.CPy) | b

T (4.69,4.41,19.70) | 0.43
10 | (4.42,4.74,19.70) | 0.75
20 | (4.40,4.75,19.70) | 0.73
50 | (4.15,5.05,19.70) | 0.90

Table 4: Synthesized power prices for the smart
neighborhood example with § = 0.01 and ¢ = 0.99.

of commercial areas C'Pn. We fixed the daytime power price
of factories at 19. Algorithm 2 results in prices specified in
Table 4. The demand coefficients shift from daytime values
Ai,a to nighttime values \; . The values of the simulation
parameters were (T, Ac,d, Ae,n, Ue) = (20,0.33,0.33,20),

(rry Arydy Aryn, Ur) = (4,0.28,1.02,6), and (re, Ae,a, Aeyn, Ue) =
(9,0.28,1.02,8). Fig. 5 illustrates a few traces that are ex-
ecuted with the final synthesized prices. The vast majority
of the simulated traces satisfy the required specifications.

200

1501

Power consumption

8 10
Time (hr)

Figure 5:
hood model when (RPp,RPn) =
(CPp,CPy) = (19,19.70).

Traces generated the smart neighbor-
(4.15,5.05) and

7. CONCLUSION

The advent of spatially distributed and networked cyber-
physical systems has increased the demand for novel efficient
spatio-temporal reasoning techniques. SpaTel. provides an
intuitive formal framework to specify the emergent behaviors
to be detected or to be enforced. We have demonstrated that
SpaTeL. can be used to specify, verify, and enforce desired
system behaviors. Future research includes using SpaTeL to
learn dynamic patterns directly from data and synthesizing
control policies to ensure a given dynamic pattern.
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