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Abstract— Spatial-temporal patterning is an essential process
indicating the cell and tissue types formed during synthetic and
natural tissue development. Due to biological complexity within
and among cells, most approaches to engineer cell cultures
are limited in their ability to control the timing of spatial
patterning. This paper presents a computational framework
to control spatial-temporal pattern formation in a network
of locally interacting agents. Given a parameterized model of
patterning in stem cell colonies, we use a supervised machine
learning algorithm combined with temporal logics to quantita-
tively describe and characterize spatial-temporal patterns. We
utilize an optimization procedure to achieve optimal parameters
that maximize the occurrence of desired spatial patterns at
a specified time interval and demonstrate the ability of our
algorithm to control transitioning in a sequence of patterns.

I. INTRODUCTION

Pluripotent Stem Cells (PSCs) have the unique ability
to convert into different cell types and are commonly em-
ployed to study early human development. Recently, PSCs
have been transformed into lab-grown organoids that can
resemble the healthy or diseased organ systems [1]. As a
result, PSCs have become an essential biological tool in the
quest to engineer organoids formation and regenerate human
tissues. The conversion of PSCs into specialized cell types
by losing pluripotency, known as differentiation, typically
begins with a homogeneous stem cell population. Every
PSC then receives a chemical cue that induces spontaneous
differentiation at different locations within a colony [2]. This
process often occurs asynchronously in the population, pro-
ducing cells that differentiate in spatial patterns that evolve
over several days [3], [4]. The sequence of transient spatial
patterns that emerge due to differentiation often dictates
the type and diversity of the resulting tissues. Therefore,
characterizing and controlling the timing and sequence of
differentiation patterns in stem cells is a crucial step toward
more precise engineered living systems.

Due to the complex interactions and stochasticity in the
differentiation dynamics, it is difficult to predict and control
this process without the aid of computational approaches.
There have been several efforts to build mathematical mod-
els describing differentiation dynamics in stem cells [5],
[6]. It was shown in [6] that local interactions between
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stem cells might explain spatial pattern formation during
differentiation. In [3], [4], authors developed an agent-based
model where the diffusion of chemical signals regulates the
emergence of spatial patterns in a three-dimensional spheroid
of stem cells. Authors in [7] improved the previous agent-
based approach by modeling changes in the permeability of
cells and discovered a novel mechanism to perturb spatially
resolved differentiation. These prior studies have discovered
novel mechanisms that accurately model and predict the
evolution of spatial differentiation patterns in stem cells.
However, attempts to induce steady-state patterns in stem
cell populations relied on brute-force approaches to test
every parameter combination [4]. Searching through the
entire parameter space is computationally expensive for a
large number of parameters, especially since these models
are computationally costly. Therefore, simulation-based op-
timization methods can be used to enhance the search for
optimal tunable parameters [8]. In this paper, we propose
a formal methods framework capable of quantifying how
strongly spatial patterns and trajectories of spatial patterning
match user-specifications. We use an optimization algorithm
to efficiently explore the parameter space and determine
optimal tunable parameters that maximize the closeness of
spatial-temporal patterning to the given specification.

Formal methods have been widely studied to solve control
problems under complex high-level specifications [9]. Formal
logics with time constraints such as Signal Temporal Logic
(STL) [10] allow us to define tasks with temporal deadlines
in a formal specification language. STL is a purely temporal
logic capable of specifying signal properties (e.g., “The
signal value must always be positive and eventually become
over 5 within 10 seconds”) and can be used to monitor sys-
tem behavior. Therefore, there have been significant efforts
to infer temporal logic formulas from data to discriminate
between desirable and undesirable system behaviors, either
by estimating parameters in a given structure or solving the
structure inference and parameter estimation simultaneously
[11], [12]. Recently, there have been efforts to use formal
logics to specify spatial properties in spatially distributed
networks. Linear Spatial Superposition Logic (LSSL) [13]
and Tree Spatial Superposition Logic (TSSL) [14] are a
few examples of such efforts that could only capture spatial
properties. A temporal extension of TSSL, called SpaTeL,
was introduced in [15]. This logic was a unification of
TSSL and STL and capable of describing how spatial prop-
erties evolve. Signal Spatio-Temporal Logic (SSTL) [16] and
Spatio-Temporal Reach and Escape Logic (STREL) [17] are
other spatial extensions to signal temporal logic. These logics
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are much more complicated than pure temporal logics such
as STL since they are designed to capture properties in both
space and time, making it more difficult to verify whether
specifications expressed in these logics are satisfied or not.

In this paper, we demonstrate that STL can be utilized
to describe a wide variety of spatial-temporal properties
without using more complicated spatial logics. Inspired by
[14], we employ a machine learning algorithm to generate
STL descriptors with spatial information inferred from data.
The STL descriptor is only satisfied when system execution
conforms to the specified sequence of the patterns present in
the training data. Additionally, the STL quantitative seman-
tics is used to reduce the dynamic pattern synthesis problem
into a single optimization problem. Our proposed frame-
work can be used to monitor and control spatial-temporal
patterning in any system with time-evolving spatial patterns.
We will demonstrate the applicability of this framework in
the problem of synthesizing spatial-temporal patterns in an
agent-based model of stem cell differentiation and show that
patterns are synthesized in a more computationally efficient
way by employing simple STL descriptors to define dynamic
patterns rather than complex spatial-temporal logics.

II. PRELIMINARIES

A. Signal Temporal Logic (STL)

STL has been used to monitor temporal properties of real-
value signals. Consider a discrete time sequence τ ∶= {t′k ∣k ∈
Z≥0}. A trace or signal σ is a function σ ∶ τ → RN that
maps each time point t ∈ τ to a N -dimensional vector of
real values σ(t), with xi(t) being its ith component, i.e.
σ(t) = [x1(t), ..., xN(t)]′. A specification written in STL
consists of predicates of the form µ ∶= l(σ) ≥ 0, where
l is a real function defined over values of one or more
elements of σ (e.g., x1 − 2 ≥ 0 or x2

1 − x3
3 + 1 ≥ 0); as

well as Boolean operators (¬,∧,∨) and temporal operators
(F,G) [10]. We denote [t1, t2] = {t′∣t′, t1, t2 ∈ τ ; t1 ≤ t′ ≤
t2; t2 > t1 ≥ 0}. The temporal operator Finally (F[t1,t2]ϕ),
also called eventually, means that “at some time point in the
assigned interval the specification ϕ must be satisfied”; while
globally (G[t1,t2]ϕ), also called always, means that “ϕ must
be satisfied at all times within the interval”.

STL is equipped with qualitative semantics showing
whether a specification ϕ with respect to trace σ at time t
is satisfied or not, and quantitative semantics ρ(ϕ,σ, t), also
known as robustness, that measures how much it is satisfied
or violated. Given a predicate µ, a trace σ and specifications
ϕ and ψ, the robustness is recursively computed as [10]:

ρ (µ,σ, t) ∶= l (σ(t)) ,
ρ (¬ϕ,σ, t) ∶= −ρ(ϕ,σ, t),
ρ (ϕ ∧ ψ,σ, t) ∶= min (ρ(ϕ,σ, t), ρ(ψ,σ, t)) ,
ρ (ϕ ∨ ψ,σ, t) ∶= max (ρ(ϕ,σ, t), ρ(ψ,σ, t)) ,
ρ (G[t1,t2]ϕ,σ, t) ∶= min

k∈[t+t1,t+t2]
ρ(ϕ,σ, k),

ρ (F[t1,t2]ϕ,σ, t) ∶= max
k∈[t+t1,t+t2]

ρ(ϕ,σ, k),

(1)

which is a real number quantifying the degree of satisfaction
of the specification. Robustness degree is sound, meaning

Fig. 1. Microscopy images of stem cells at different time steps. The initial
population of all pluripotent stem cells uniformly expressing Oct4 (cyan) in
left. Transitioning patterns observed during differentiation expressing Sox2
(red) in the middle. All differentiated stem cells after 3 days, nuclei stained
with Hoechst (blue) and showing loss of cyan Oct4 expression in the right.

that a trace σ satisfies ϕ at time t if ρ (ϕ,σ, t) > 0 and
violates it if ρ (ϕ,σ, t) < 0. A higher robustness degree
corresponds to a stronger satisfaction of the specification.
Consequently, larger disturbance in the signal would violate
a specification with a higher robustness score. Therefore, it is
desirable to maximize robustness for a given specification.
With a slight abuse of notation, we denote the robustness
degree of ϕ at time 0 with respect to the trace σ by ρ(ϕ,σ).

B. Binary Classification

Among different machine learning algorithms for classifi-
cation, Support Vector Machine (SVM) is widely used with
biological systems due to its high speed and accuracy in
multi-dimensional space [18]. Given a set of labeled training
data points in RN , SVM finds the best hyperplane to separate
different classes (data points with different labels). In the
case where the distribution of data is linearly separable, linear
SVM is preferable due to its high accuracy and fast training.

Consider a 2 class classification problem with a set of
n training samples. Each sample is indicated by a tuple
[(Xi, Yi)], where Xi ∈ RN is the ith sample and Yi ∈ {−1,1}
is its associated label with Yi = 1 representing positive
samples and Yi = −1 representing negative ones. Linear SVM
finds the decision boundary ωTX + b = 0 by maximizing the
geometric margin between support vectors and the resulting
classifier is:

f(X) = sign (ωTX + b) . (2)

Using (2), one can predict to which class a new data point
belongs, i.e. f(X) classifies a test sample X ∈ RN as a
member of the positive class if ωTX+b > 0 and the negative
class if ωTX +b < 0. Moreover, the Euclidean distance γi of
a sample Xi from the decision boundary is defined as:

γi =
Yi (ωTXi + b)

∥ω∥ . (3)

Samples with larger distance from the decision hyperplane
are classified more accurately, while there is uncertainty in
classifying samples closer to the boundary.

III. STOCHASTIC AGENT-BASED MODEL

Building a computational model of differentiation allows
us to perform quantitative studies and easily manipulate
patterns by modifying model parameters. In [7], a model of
a novel differentiation mechanism was developed in which
the production and intercellular diffusion of metabolites,
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represented by the molecule cyclic Adenosine Monophos-
phate (cAMP), drives the distribution of spatial patterns in
an experimental system of initial symmetry breaking. This
molecule has been associated as a driver of differentia-
tion and serves as an illustrative example of intercellular
molecular control over differentiation patterning. A set of
microscopy images of stem cells differentiation observed
in actual experiments is shown in Fig. 1. Stem cells can
be in one of the two differentiation states: Undifferenti-
ated (Pluripotent) or Differentiated. All cells are initially
undifferentiated and divide asynchronously by an irreversible
change in cell state (differentiate) due to the local dynamic
interactions and the accumulation of metabolites.

Modeling and controlling the stochastic spatial-temporal
dynamics of stem cell differentiation poses a significant
challenge for many experimentalists. In our 2 dimensional
agent-based model, a network of N(t) locally interacting
stem cells at time t is considered. Cells are labeled by
an integer i ∈ {1,⋯,N(t)} and network is represented
by a graph with vertex set containing all cells at time t
and edge set indicating which cells are adjacent neighbors.
The concentration of the metabolite ci in the stem cell
i is determined by the production and degradation of the
diffusible molecule in that cell, the differentiation state of
the cell and the progression of the cell in its cell division
cycle. Changes in the concentration of the metabolite in the
cell i is described as:

dci/dt = P (ci) −D(ci) +E(ci),
where P (ci) is the production, D(ci) is the degradation and
E(ci) is the exchange of metabolites due to the gradient-
driven diffusion between adjacent cells. The production of
the metabolite in the cell i is defined by the Hill Function:

P (ci) =
α

1 + (ci/β)n
, (4)

where α is the maximum production rate, β represents the
concentration of metabolite in which the production rate
saturates to half of its maximal rate, and n controls the
steepness of the production rate saturation. The degradation
of the metabolite in the cell i is described by the proportional
relationship:

D(ci) = d ci, (5)

where d is the degradation rate. The change in the metabolite
concentration due to the diffusion between cell i and its
adjacent neighbors is described as:

E(ci) = ∑j∈Neighborsi F (i, j, t)(cj − ci),
where F (i, j, t) is an asynchronous sigmoid function inter-
preted as permeability efficiency between neighboring cells i
and j at time t and cj−ci represents how molecules passively
diffuse from high to low concentration between cells.

The described model is implemented in Python with stem
cells modeled as incompressible circles initially in a dense,
irregularly shaped colony with a population of 100 − 1000
cells, which is the geometry and colony size seen in many
biological studies of stem cell differentiation [3], [4]. All

Fig. 2. A sample trace of differentiation in simulation. Green and black
circles represent undifferentiated and differentiated cells, respectively.

Fig. 3. Different patterns formed due to differentiation in stem cells.

stem cells are initially undifferentiated (colored green) and
transition into a differentiated state (colored black) as illus-
trated in Fig. 2. Each time step in simulation takes about 2
minutes and mimics the differentiation occurring in experi-
ments in 1 hour. α, β and d in (4), (5) for both differentiated
(D) and undifferentiated (U) cells are the control parameters
and other parameters are forced by the system.

IV. FEATURE EXTRACTION AND PATTERN
CLASSIFICATION

Different patterns emerge based on when and where
differentiation occurs in the cell population. In [7], these
different patterns are classified into 8 classes, shown in
Fig. 3. Differentiation patterns may resemble random spots,
globular shaped clusters, snake-like clusters, differentiation
in outside or inside of the colony, or an inverse-snake shape.
To describe and characterize these different patterns, we
extract quantitative features based on their spatial properties.
A supervised machine learning algorithm is then used to
classify patterns in their multi-dimensional feature space.
These trained classifiers can be later used to measure the
level of satisfaction of a desired spatial specification.

A. Patterns and Features

To describe the variations in the spatial patterns illustrated
in Fig. 3, we extract 9 network and subnetwork spatial fea-
tures including total percentage of differentiation, peripheral
and central percentage of differentiation, average and stan-
dard deviation of the circularity of the differentiated clusters,
average radial distance of undifferentiated and differentiated
clusters, path length of the largest undifferentiated cluster
with respect to the path length of the whole colony and
number of differentiated subclusters with less than 4 cells.
We generate a dataset of 8000 samples (1000 samples for
each pattern) and extract these 9 features to map patterns
into a feature space. To visualize the 9-dimensional dataset,
we use Linear Discriminant Analysis (LDA) to map data to
a lower dimension. In Fig. 4, LDA with 3 components is
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Fig. 4. Visualization of patterns reduced from 9 to 3 dimension using LDA

applied to our dataset, which covers 89% of the variance of
data with first, second and third component (LDA1, LDA2,
LDA3) covering 57%, 20% and 12% of data variation,
respectively. This reduced 3D visualization helps us to realize
that some of the classes are partially linearly separable.

B. Multi-class Classification

To classify all the different patterns in Fig.3, we use the
One-VS-All classification approach [19]. One-Vs-All Linear
SVM is a supervised multi-class classification algorithm
which uses the same idea as the binary classification de-
scribed in Sec. II and fits one classifier for each class against
all the other classes. We first use a grid search technique
to tune parameter C, known as SVM penalty parameter of
the error, which trades off between misclassification and
how large the margin between classes is. After tuning C,
a linear SVM classifier is learned for each pattern in the
multi-dimensional feature space. Classification accuracy for
our dataset of 8000 samples with 9 attributes (divided to
6400 train samples and 1600 test samples) was 97.5% on
the test set, with both precision and recall equal to 98%.

V. FORMAL SPECIFICATION OF
SPATIAL-TEMPORAL BEHAVIORS

To synthesize spatial time-varying patterns, we need to
control the spatial properties, as well as the timing and
sequencing of emergence of patterns. We can use the trained
classifiers in Sec. IV to check if a simulation execution
resembles the desired pattern or not using (2), and measure
how far it is from the boundary hyperplane that separates
patterns using (3). This geometric distance can be used as the
spatial quantitative valuation to score the level of satisfaction
of desired spatial patterns. Moreover, STL can be used as a
tool to specify the system temporal requirements. Thus, in
order to describe spatial properties of the system over time,
we nest spatial characteristics in STL formulas by defining
predicates µ as:

µi ∶=
ωi
TX + bi
∥ωi∥

, (6)

where i ∈ {Undifferentiated, Random, Globular, Snake, Outside,
Inside, Inverse-snake, Differentiated} and X is the 9 dimen-

sional vector of extracted features. The desired spatial pattern
i is obtained if ωiTX+bi > 0 and is not if ωiTX+bi < 0. This
definition of µ conforms with the soundness of STL, meaning
that for a trace σ of patterns generated by the system,
ρ(µi, σ) > 0 if the desired spatial-temporal specification
is satisfied and ρ(µi, σ) < 0 if it is violated. Therefore,
by embedding spatial predicates in STL, we can specify
spatial behaviors of the system over time. For instance, we
can specify the spatial-temporal specification “at some time
within 30 hours reach the Snake pattern” as a STL formula:
ϕ = F[0,30]µSnake. The spatial-temporal quantitative valuation
of a dynamic trajectory σ (which is the 9-dimensional
extracted feature vector) generated by system is computed
combining (1), (6):

ρ (ϕ,σ) = max
k∈[0,30]

(ω
T
SnakeX(k)+bSnake

∥ωSnake∥ ).

Using this spatial-temporal robustness score, we can mon-
itor whether a trace generated in simulation satisfies the
desired spatial-temporal specification, and quantify its level
of satisfaction. As discussed earlier, higher robustness degree
corresponds to a stronger satisfaction of the specification.

VI. OPTIMIZATION

Using the computational model, we can easily apply
changes in simulations and see how the resulting patterns
change. Tunable parameters in our system are:

Π = (αU , βU , dU , αD, βD, dD) ,
which vary in the range space Ω:

Ω = ΩαU
×ΩβU

×ΩdU ×ΩαD
×ΩβD

×ΩdD ,

where Ωi is the range space for parameter i. Each simulation
takes approximately 2 hours on average on a machine with
a 2.5GHz Core i7 CPU and 16 GB RAMs to run. This is
much faster than doing experiments in lab, which normally
takes 72 hours for one experiment. However, it is still
time-consuming and not efficient to randomly explore the
parameter space to find pattern producing parameters. Thus,
in order to efficiently explore the parameter space Ω to find
the best environmental conditions leading to the emergence
of desired patterns, we propose to maximize the spatial-
temporal quantitative robustness degree described in Sec. V.
This robustness degree can be used as a reward function in
an optimization problem:

Π∗ = arg max
Π∈Ω

ρ(ϕpattern, σ). (7)

The optimal tunable parameters Π∗ provide promising envi-
ronmental conditions that ensure emergence of the desired
patterns at the desired time. To solve (7) which has a non-
differentiable fitness function, we use a heuristic optimization
algorithm called Particle Swarm Optimization (PSO), which
iteratively evaluates the fitness function for different param-
eters until it finds the optimal solution [20]. PSO begins by
initializing each particle of the swarm with a random position
pi ∈ Ω and velocity vi which defines the direction from the
current position toward the optimal solution. At each iteration
of PSO, we run a simulation for each particle in the swarm
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to generate the resulting trace. PSO then evaluates the fitness
function to determine the current best particle position pbesti

and current best swarm position ps, and updates velocities
to move particles to their new positions toward the optima:

vi ← ηvi + φprp (pbesti − pi) + φsrs (ps − pi) ,
pi ← pi + vi,

where rp, rs are random numbers rp, rs ∼ (0,1) and η, φp
and φs are user-defined parameters. The termination criterion
is met either if ps does not change after some consecutive
iterations or the maximum number of iterations is reached.

VII. CASE STUDY
We test the proposed framework for three spatial-temporal

specifications defined in STL formulas as follows:
Case 1: ϕ1 = F[t1,t2]G[0,T ]µOutside

which is interpreted as “eventually in [t1, t2] hours reach
pattern Outside and always remain in it for the next T
hours”. Robustness degree of this formula given a simulation
execution σ is recursively computed using (1), (6):

ρ (ϕ1, σ) = max
k′∈[t1,t2]

( min
k∈[k′,k′+T ]

(ω
T
OutsideX(k)+bOutside

∥ωOutside∥ )).

Case 2: ϕ2 = F[t1,t2]G[0,T ]µInside ∧G[0,t2]¬µRandom

which is interpreted as “eventually in [t1, t2] hours reach
pattern Inside and always stay in that pattern for the next T
hours and always avoid Random pattern in [0, t2] hours”.

Case 3: ϕ3 = F[t1,t2]G[0,T ]µGlobular∧F[t3,t4]G[0,T ′]µSnake

∧F[t5,t6]G[0,T ′′]µInverse-snake

which is a sequence of patterns interpreted as “eventually
in [t1, t2] hours reach pattern Globular and always remain in
it for the next T hours and eventually in [t3, t4] hours reach
pattern Snake and always stay in it for the next T ′ hours
and eventually in [t5, t6] hours reach pattern Inverse-snake
and always remain in it for the next T ′′ hours”. Robustness
degree for ϕ2 and ϕ3 can be derived in a similar way as ϕ1.

PSO needs a large population of particles when there
are many parameters to optimize. Therefore, we decided to
tune 2 biologically interpretable parameters αD and βD for
differentiated cells with ΩαD

= [e−6, e−2] and ΩβD
= [0,1]

and fixed the others. Due to non-determinism and stochas-
ticity in our system, traces produced for same parameters
may be different. We therefore determine parameters Π∗

such that the resulting traces, on average, satisfy desired
specifications. We maximize the expected value of robustness
in (7) by calculating the sample mean of robustness of traces
generated for each parameter set. The PSO optimization was
distributed on a cluster with 16 processors at 2.1GHz. Having
16 particles randomly distributed in the search space, run
time was about 19 hours for ϕ1 and optimized parameters
found α∗D = 8.37e−6, β∗D = 0.046; 13 hours for ϕ2 with
α∗D = 4.99e−3, β∗D = 0.037; and 15 hours for the sequence
of patterns in ϕ3 with α∗D = 4.20e−6,β∗D = 0.835. Traces
generated with these optimal parameters in an initial colony
with 365 cells are shown in Fig. 5. In Fig. 5(a), Outside
pattern is reached at t = 27 hours and kept for next 2 hours.
Fig. 5(b) shows that Inside pattern emerges at t = 3 hours
and is held for next 3 hours while always avoiding Random

(a)

(b)

(c)

Fig. 5. Traces generated for optimal parameters satisfying specifica-
tions:(a) ϕ1 = F[20,40]G[0,2]µOutside,(b) ϕ2 = F[0,10]G[0,3]µInside ∧

G[0,10]¬µRandom,(c) ϕ3 = F[5,10]G[0,1]µGlobular∧F[10,15]G[0,1]µSnake∧

F[15,20]G[0,1]µInverse-snake.

pattern. In Fig. 5(c), a sequence of Globular, Snake and Inverse-
snake patterns is observed, satisfying the spatial-temporal
constraints in ϕ3. Our results show that, strikingly, spatial-
temporal patterning for three desired pattern sequences is
achieved by modulation of only two parameters αD and
βD in the metabolite production hill function. Therefore, the
proposed approach advances the goal of engineering mul-
ticellular systems by identifying experimental perturbations
that may yield desired emergent behaviors.

This paper is closely related to [21], which presents a
formal framework to synthesize steady-state spatial patterns
in stem cell populations, without any constraints on temporal
behaviors. Authors used TSSL to formally describe and
quantify desirable spatial patterns. TSSL is defined over a
complex quadtree data structure of the partitioned image
and learns classifiers using the RIPPER learning algorithm.
However, we propose to use STL to describe both spatial and
temporal properties at the same time by defining predicates
over spatial features and train linear SVM classifiers over
the interpretable multi-dimensional feature space. Our work
outperforms [21] in the sense that we solve dynamic pattern
synthesis with temporal constraints (not just the steady-state)
which allows us to monitor and control the emergence of
sequences of patterns. We also compare these two methods
to show the accuracy and efficiency of our approach.

Learning classifiers in TSSL is very time consuming since
classifiers are trained separately for each pattern while in
an One-VS-All SVM, classifiers for all patterns are trained
simultaneously. Moreover, TSSL needs to find quadtrees
which are recursively constructed by partitioning the image
into quadrants. It is proved in [15] that increasing the depth
of TSSL quadtree increases the learning time exponentially.
We use TSSL over quadtrees with a depth of 5, and compare
the classification accuracy and time of learning TSSL versus
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TABLE I
CLASSIFICATION ACCURACY AND RUN TIME COMPLEXITY OF SVM AND

TSSL FOR Snake PATTERN

Train Set Test Set Classification Rate Learning Time
Positive Negative Positive Negative SVM TSSL SVM TSSL

100 700 20 140 97.5 % 93.2 % 0.025 sec. 1.5 sec.
1000 7000 200 1400 98.1 % 96.7 % 1.25 sec. 195 sec.
5000 35000 1000 7000 98.9% 98.3% 8.5 sec. 7695 sec.

linear SVM classifier for the Snake pattern in three different
datasets with positive (Snake pattern) and negative (other
patterns) samples. As illustrated in Table I, to train the
TSSL classifier, we need a larger train set in order to get
a high accuracy. Moreover, training time in TSSL increases
significantly with the size of train set. However, linear SVM
in a 9-dimensional feature space gives us a high accuracy
even in small train sets, and learning the classifier is faster.

Computing spatial robustness score using TSSL is more
complex than using linear SVM classifier described in this
paper. To calculate TSSL quantitative valuation, one needs to
save individual images, construct the quadtree representation
from each image and calculate the spatial robustness degree
using a usually long list of complex rules learned by RIPPER
algorithm [14]. The complexity of constructing quadtrees
grows exponentially with the image size. On the other hand,
it is more intuitive to implement and score the robustness
valuation using the SVM geometric margin in a biologically
interpretable feature space. Moreover, these features are inde-
pendent of the colony size and shape and can be generalized
to other colonies, while TSSL uses images to train classifiers
and needs large training sets for different colonies. Therefore,
our method allows us to synthesize spatial patterns in a faster
and more intuitive way. We are also able to add temporal
constraints to specify and produce sequences of patterns
rather than merely steady-state patterns.

VIII. CONCLUSIONS

We present a computationally efficient framework to syn-
thesize spatial-temporal patterns using signal temporal logic.
Our approach utilizes supervised machine learning tech-
niques to classify patterns in the extracted multi-dimensional
spatial feature space. We use the trained classifiers to mea-
sure how strongly a spatial property is achieved. Com-
bined with temporal constraints, we specify desired spatial-
temporal behaviors as STL formulas with which we can
monitor dynamic spatial patterning over time. Using the
proposed spatial-temporal quantitative robustness score as
the fitness function, we run an optimization algorithm to
find optimal parameters that maximize occurrence of desired
spatial-temporal patterns. We apply the proposed frame-
work to the spatial-temporal pattern synthesis problem in
embryonic stem cell differentiation. Our approach allows
us to monitor the emergence of desired spatial patterns at
desired times, find environmental conditions to control what
sequences of patterns to emerge, and hypothesize about
biological mechanisms that can control the appearance of
new patterns or sequences of patterns.
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