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Temporal Logic Control of Discrete-Time
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Abstract—We present a computational framework for automatic
synthesis of a feedback control strategy for a discrete-time piece-
wise affine (PWA) system from a specification given as a linear tem-
poral logic (LTL) formula over an arbitrary set of linear predicates
in the system’s state variables. Our approach consists of two main
steps. First, by defining appropriate partitions for its state and
input spaces, we construct a finite abstraction of the PWA system
in the form of a control transition system. Second, by leveraging
ideas and techniques from LTL model checking and Rabin games,
we develop an algorithm to generate a control strategy for the finite
abstraction. While provably correct and robust to state measure-
ments and small perturbations in the applied inputs, the overall
procedure is conservative and expensive. The proposed algorithms
have been implemented as a software package and made available
for download. Illustrative examples are included.

Index Terms—Control design, discrete time systems, formal
specifications, piecewise linear approximation.

I. INTRODUCTION

T EMPORAL logics and model checking [1] are custom-
arily used for specifying and verifying the correctness

of digital circuits and computer programs. Due to their resem-
blance to natural language, expressivity, and existence of off-
the-shelf algorithms for model checking, temporal logics have
the potential to impact several other areas. Examples include
analysis of systems with continuous dynamics [2], control of
linear systems from temporal logic specifications [3], [4], task
specification and controller synthesis in mobile robotics [5]–[7]
and specification and analysis of qualitative behavior of genetic
networks [8]–[10].
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In this paper, we focus on piecewise affine systems (PWA)
that evolve along different discrete-time affine dynamics in dif-
ferent polytopic regions of the (continuous) state space. PWA
systems are widely used as models in many areas. They can ap-
proximate nonlinear dynamics with arbitrary accuracy and are
equivalent with several other classes of hybrid systems [11]. In
addition, there exist efficient techniques for the identification of
such models from experimental data, which include Bayesian
methods, bounded-error procedures, clustering-based methods,
mixed-integer programming, and algebraic geometric methods
(see [12] for a review).

We consider the following problem: given a PWA system
with polytopic control constraints, and a specification in the
form of a linear temporal logic (LTL) formula over linear
predicates in the system’s state variables, find a set of initial
states and a feedback control strategy, such that all trajectories
of the closed-loop system originating in the initial set satisfy
the formula. Our approach consists of two main steps. First,
by partitioning the state and input spaces, we construct a
finite abstraction of the PWA system in the form of a control
transition system. Second, by leveraging ideas and techniques
from LTL model-checking [1] and Rabin games [13], we de-
velop an algorithm to generate a control strategy for the finite
abstraction.

The main contributions of this work are the following. First,
we develop a procedure based on polyhedral operations for the
construction of finite abstractions of PWA systems, suitable for
the synthesis of control strategies (control transition systems).
Second, we show that the stuttering behavior inherent in such
abstractions (i.e., self transitions at a state that can be taken in-
finitely but do not correspond to real trajectories of the con-
crete system), which is also related to the well known Zeno
behavior, can be characterized and this additional information
decreases the conservatism of the method. Third, we imple-
ment a procedure for LTL control of finite, nondeterministic
systems by extending a Rabin game algorithm to explicitly con-
sider information about stuttering, which leads to additional
winning strategies. Finally, we seamlessly integrate our abstrac-
tion and control procedures into a unified computational frame-
work, allowing fully automatic generation of control strategies
for PWA systems from high-level, rich LTL specifications. The
resulting feedback control strategies are robust in the sense that
the state of the system does not need to be measured precisely
but only with respect to certain thresholds and correctness is
guaranteed even under small perturbations in the applied in-
puts. The framework was implemented in MATLAB as the soft-
ware package CONPAS2 and is freely downloadable at http://hy-
ness.bu.edu/software.
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This paper can be seen in the context of literature focused
on the construction of finite quotients of infinite systems (see
[14] for an earlier review) and the abstraction-based control of
such systems. We embed piecewise affine systems into transi-
tion systems inspired by [15] and [3] where the existence of
equivalent (bisimulation) quotients and control strategies under
the assumption of controllability for discrete-time linear sys-
tems is characterized. Algorithmic procedures for the control of
continuous-time linear systems are given in [4] (and extended
in [16]), where the constructed deterministic (nondeterministic)
abstractions are not equivalent to the original system but instead
capture only a restricted but controllable subset of its behavior.
In this paper, we follow a similar approach but focus on the more
general class of discrete-time PWA systems, which leads to dif-
ferent abstraction procedures based on polyhedral operations.
An alternative abstraction technique based on quantifier elimi-
nation for real closed fields and theorem proving has been pro-
posed in [17].

The problem of controlling finite systems from temporal
logic specifications is equivalent to (digital circuit) synthesis
and can be approached using automata-theoretic methods
[18]. For synthesis problems, both specifications and envi-
ronmental constraints are captured as a single temporal logic
formula and the goal is to find a satisfying system, while in
control applications the system is given and we seek a control
strategy guaranteeing the satisfaction of the specification by
the closed-loop system. Generating a control strategy for a
finite, deterministic discrete event system (DES) from CTL*
specifications is considered in [19], where LTL specifications
are treated explicitly as a particular case (LTL is a subset of
CTL*) and a solution based on Rabin games is proposed. We
follow the same approach, which we review in Section III,
but consider nondeterministic systems instead. The control of
nondeterministic DESs has been previously considered in other
settings such as for -calculus specifications [20] (LTL can be
translated to -calculus) and an explicit implementation solving
an LTL control problem for nondeterministic systems appears
in [16], where specifications are restricted to LTL formulas
generated by deterministic Büchi automata. By relaxing this
restriction, in this paper we increase the expressivity of the
specification language significantly.

To solve Rabin games, we implement an algorithm from [21]
(see details in Section III) but extend it to deal with stuttering
behavior, which leads to additional winning strategies. The
concept of stuttering has been established previously [22] and
related work has focused on determining if a specification is
closed under stuttering [23], in which case it can be expressed
in the LTL-X fragment (LTL without the next operator) [24]
and less conservative stutter bisimulation quotients can be
constructed [22]. Our approach is different, since it does not
require any special structure from either the specification or
the quotient. Instead, we characterize individual transitions
as stuttering while constructing the abstraction and use this
additional information during the solution of the Rabin game,
which reduces the conservatism of the overall method but does
not restrict the expressivity of the specification.

Besides the tool CONPAS2, which we develop in this paper,
the MPT TOOLBOX [25] and the HYBRID TOOLBOX [26] for

MATLAB can also be used to design piecewise affine control
laws but neither can handle the richness of LTL specifications
directly. The problem of controlling mixed logical dynamical
(MLD) systems from LTL specifications has been considered
in [27] and is related to this work, due to the equivalence
between MLD and PWA systems [11]. Rather than relying on
the construction of finite quotients as in this paper, the approach
taken in [27] involves representing LTL specifications as
mixed-integer linear constraints but a finite horizon assumption
is imposed. Other temporal logic control tools include PESSOA
[28], LTLCON [4], and its extension BÜCON [16]. PESSOA is
capable of generating control strategies for linear, nonlinear,
and switched systems from temporal logic specifications but
abstractions based on the notions of approximate simulation
and bisimulation are constructed. LTLCON addresses the
control problem for linear systems but only deterministic ab-
stractions are allowed, which leads to very conservative results.
Its extension, BÜCON, relaxes this but restricts the specification
language to the fragment of LTL generated by deterministic
Büchi automata. In contrast, CONPAS2 constructs nondeter-
ministic abstractions of piecewise affine systems and generates
control strategies from full LTL specifications, while conser-
vatism is further reduced by identifying stuttering behavior.

This paper extends recent results on formal analysis of
PWA systems [29]–[31] to a control framework and is based
on preliminary results presented in [32] and [33]. In [32]
we computed (restrictive) deterministic or nondeterministic
abstractions of PWA systems and used the procedures from
LTLCON [4] or BÜCON [16], respectively, to solve the finite
control problem. In [33], we developed a control procedure that
allowed full LTL specifications and could handle information
about stuttering. In this paper, by developing a complete control
strategy for nondeterministic transition systems from full LTL
specifications and by characterizing and dealing with stuttering
phenomena we significantly 1) reduce the conservativeness of
our previous approach and 2) increase the expressivity of the
specification language.

The remainder of the paper is organized as follows. In
Section II we provide preliminaries used throughout the paper.
In Section III, we discuss the problem of controlling finite,
nondeterministic transition systems from LTL specifications
(LTL control) and review a solution based on Rabin games.
The problem we consider is formulated in Section IV, where
we also present an overview of our approach. In Section V, we
define the control transition system and outline an algorithm
for its computation. In Section VI, we use the results from
Section III and Section V to formulate a solution to the main
problem. In Section VII, we discuss a strategy for reducing
the conservatism of the overall method by characterizing the
stuttering behavior inherent in the construction of the control
transition system. We outline the complexity associated with
the proposed approach in Section VIII and describe its imple-
mentation and results from its application in Section IX. We
conclude with final remarks in Section X.

II. PRELIMINARIES

In this section, we outline the notation and mathematical pre-
liminaries used through the paper. Given a set , we use ,
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, , and to denote its cardinality, powerset (the set of
all subsets), and sets of nonempty finite and infinite sequences
of elements from , respectively.

A full dimensional polytope is defined as the convex hull
of at least affinely independent points in . Given a
polytope , we denote the set of vertices of by and
their convex hull as , which provides
the V-representation of .

Alternatively, can be described in H-representation as the
intersection of at least closed half spaces

, where and, for
all , , . For notational con-
venience, through the rest of this paper we write the H-repre-
sentation of a polytope as , where

and the vector inequality is considered
component-wise. Algorithms for the translation between the V-
and H- representations of a polytope exist [25], [34]. A facet of

is the intersection of the polytope with one of the supporting
hyperplanes for some from its H-rep-
resentation. A polytope without its facets is called an open
polytope and we use to denote the closure of (i.e., the
union of and its facets).

Definition 1: A nondeterministic transition system is a tuple
, where and are (possibly infinite) sets

of states and inputs, is a (nondeterministic)
transition map, is a set of observations, and is an
observation map.

A transition indicates that, while the system is
in state it can make a transition to any state
under input . We denote the set of inputs available at state

by . A transition
is deterministic if and the transition system is
deterministic if for all states and all inputs ,

is deterministic. The transition system is finite if both
its set of states and set of inputs are finite. is deadlock
free if, for every state , . In this work, we consider
only deadlock free transition systems.

An input word of the system is defined as an infinite se-
quence . A trajectory of produced by input
word and originating at state is an infi-
nite sequence with the property that , and

, for all . We denote the set of all
trajectories of originating at by (similarly, we use

to denote the set of all trajectories of
originating in ). A trajectory defines an

(output) word . The set of all (output) words
generated by the set of all trajectories originating at state
is called the language of originating at and is denoted by

(similarly, we use to denote
the language of originating in ).

For an arbitrary set of states and set of inputs ,
we define the set of states that can be reached
from in one step by applying an input in as

(1)
Definition 2: A (history dependent) control function

for transition system maps a

finite, nonempty sequence of states to an input of . A control
function and a set of initial states provide a control
strategy for .

We denote a control strategy by , the set of all trajec-
tories of the closed loop system under the control strategy by

, and the set of all words produced by the closed-loop
as . For any trajectory we

have and , where ,
for all .

To specify temporal logic properties of trajectories of transi-
tion systems (and PWA systems, as it will become clear later)
we use linear temporal logic [1], [22]. Informally, LTL formulas
are inductively defined over a set of observations , by using
the standard Boolean operators [e.g., (negation), (disjunc-
tion), (conjunction)] and temporal operators, which include

(“next”), (“until”), (“always”), and (“eventually”).
LTL formulas are interpreted over infinite words, as those gen-
erated by the transition system from Def. 1.1 We denote the
language of infinite words that satisfy the formula by . We
say that a trajectory of satisfies an LTL formula
if and only if the corresponding word satis-
fies . Transition system satisfies from state if and
only if all trajectories originating at satisfy the formula (i.e.,

), which can be verified using off-the-shelf LTL
model-checking algorithms [1].

III. LTL CONTROL

In this section, we consider the problem of controlling finite
transition systems from LTL specifications (LTL control). We
briefly review previous results from [4], [16], [19] and imple-
ment a solution by adapting the Rabin game-based approach
from [19]. The LTL specification is first translated into a Rabin
automaton [35], [36] followed by the solution of a Rabin game
[21] to generate the control strategy. The material in this sec-
tion serves as background for the extensions we introduce in
Section VII to deal with stuttering behavior.

The LTL control problem can be formulated as a dual to the
model checking problem:

Problem 1: Given a finite transition system
and an LTL formula , find a control strategy

such that all trajectories of the closed loop
system satisfy (i.e., ).

When is deterministic, the problem can be solved through
model-checking-based techniques [4]. If is nondeterministic,
the problem becomes harder but can be treated as a game
played on a finite graph and approached using automata-theo-
retic methods. In [16], we proposed a solution for the particular
case when the LTL formula can be translated into a determin-
istic Büchi automaton which limits the applicability of the
method (e.g., specifications such as for any LTL formula

cannot be handled).
A Rabin game based solution to the problem of controlling

finite, deterministic systems from LTL specifications has been
proposed in [19]. The procedure involves the translation of the
LTL specification into a (possibly nondeterministic) Büchi au-
tomaton, its subsequent determinization as a Rabin automaton

1More generally, the semantics of LTL formulas can be given over infinite
words in the power set of the set of observations [1]
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[35], the construction of the product automaton of the system
and the specification, followed by the solution of a Rabin game
on this product. This is also the approach we follow here to solve
the LTL control problem for finite, nondeterministic systems
(Problem 1). We translate the LTL specification directly into a
Rabin automaton using LTL2DSTAR [36] (although an interme-
diate Büchi automaton is implicitly constructed by the tool) and
implement the Rabin game algorithm from [21] which we will
extend further in Section VII to deal with stuttering behavior.
The resulting control strategy takes the form of a “feedback au-
tomaton,” which reads the current state of and produces the
control input to be applied at that state. Through the rest of this
section, we provide details of this finite control procedure as
background for the extensions we introduce in Section VII.

A (nondeterministic) Rabin automaton is a tuple
, where is a finite set of states, is the

set of initial states, is the input alphabet,2

is a transition map, and is
the acceptance condition. is deterministic if and

for all and . The semantics
of a Rabin automaton is defined over infinite input words.
A run of over a word is a sequence

, where and for
all . Let denote the set of states that appear in
the run infinitely often. An input word is accepted by an
automaton if some run over it is accepting. A run is accepting
if for some .
We denote by the language (i.e., the set of all words)
accepted by .

Given a finite transition system and an
LTL formula over , we translate into a deterministic Rabin
automaton using LTL2DSTAR [36] where

[35]. We construct the product automaton
of and where:

• is the set of states;
• is the set of initial states;
• is the input alphabet;
• is the transition map,

where
;

• is the
Rabin acceptance condition.

The product automaton is a nondeterministic Rabin au-
tomaton with the same input alphabet as . Each accepting
run of can be projected into a
trajectory of , such that the word
is accepted by (i.e., satisfies ) and vice versa [37]. This
allows us to reduce Problem 1 to finding a control strategy3

for , such that each run of the closed-loop
satisfies the Rabin acceptance condition . This problem can
be viewed as a Rabin game played on the product automaton
between two players—a protagonist and an adversary. A play
is initiated in a state of the product automaton and proceeds

2as it will become clear later, we deliberately use the same symbol for obser-
vations of � and inputs of �

3Control strategies for Rabin automata (such as �) are defined by a set of
initial states� and a control function � as for transition systems (Def. 2).
The behavior of the closed loop system is analogous.

according to the following rule: at each state, the protagonist
chooses an input to be applied and the adversary determines
the next state to be visited under this input (i.e., the adversary
resolves nondeterministic transitions). A play produces an
infinite sequence of states (i.e., a run) and it is won by the
protagonist if the produced run satisfies the Rabin condition.
A solution to the Rabin game is a control strategy: a control
function determining moves of the protagonist and a set of
initial states called winning region, such that each play under
the strategy is won by the protagonist. Since winning strategies
for Rabin games are memoryless [38], the control function is
simply a map .

To solve Rabin games, we implement the recursive algorithm
based on the construction of attractor sets from [21]. Given a
set , the protagonist’s attractor is the set of states from
which the protagonist can enforce a visit to , while the adver-
sary’s attractor is the set of states from which the protagonist
cannot prevent a visit to .

Definition 3: The protagonist’s direct attractor of , denoted
by , is the set of all states , such that there exists
an input satisfying .

Definition 4: The adversary’s direct attractor of , denoted
by , is the set of all states , such that there exists
a state for each input .

In other words, by applying input the protagonist can en-
force a visit to from state , regardless of the
adversary’s following choice. Similarly, the adversary can en-
force a visit to from state , regardless which
input has been chosen by the protagonist. The protagonist’s
attractor can be computed iteratively via computation
of converging sequence , where

and . Intuitively,
is the set from which a visit to the set can be en-

forced by the protagonist in at most steps. The adversary’s
attractor is computed analogously.

The following computation is then performed for each pair
:

1) The adversary’s attractor is computed and removed
from the game .

2) The protagonist’s attractor is computed within the
current game and marked as a part of the winning region.
The rest of the game becomes the new game

.
3) Steps 1) and 2) are recursively applied to until a fixpoint

is reached.
4) A sub-game with Rabin condition is

then solved.
The winning region is computed as where is
the union of all winning regions parts from step 2). The control
function can be easily computed and the winning strategy

is obtained by allowing initial states only (i.e.,
.

In order to complete the solution to Problem 1, we adapt
as a control strategy for . Although

the control function was memoryless, is history de-
pendent and takes the form of a feedback control automaton

, where the set of states and initial
states are inherited from , the set of inputs is the set of
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states of , and the memory update function
and output function are defined as

if otherwise

if otherwise

The set of initial states of is given by , where
is the projection from states of to . The

control function is given by as follows: for a sequence
, , we have , where
, , and , for all

. It is easy to see that the product automaton of
and will have the same states as but contains only transi-

tions of closed under . Then, all trajectories of the closed
loop satisfy and therefore is the solution to
Problem 1.

IV. PROBLEM FORMULATION AND APPROACH

In this section, we formulate the problem of controlling
a PWA system from LTL specifications. Let ,
be open polytopes in , where is a finite index set,
such that for all and

, where denotes the closure of
. A discrete-time piecewise affine (PWA) control system is

defined as

(2)

where, at each time step , is the state of the
system, is the input restricted to a polytopic set , and

, , are the system parameters
for mode .

At each time step the exact state of the system
is unknown but we can observe the current mode . The se-

mantics of system (2) are given over words in . Informally,
a trajectory of the system produces a word by listing the index
of the polytope visited at each step (e.g., trajectory
satisfying and for some will
produce word ). We assume that polytope is an in-
variant for all trajectories of the system (in Section V-B we will
show that polytopic control constraints guaranteeing this can be
computed). Therefore, only infinite words are produced which
can be checked against the satisfaction of an LTL formula over

(see Section II). We consider the following problem.
Problem 2: Given a PWA system (2) and an LTL formula

over , find a control strategy, such that all trajectories of the
closed loop system satisfy .

In order to complete the formulation of Problem 2, we need to
formalize the definitions of a control strategy for a PWA system
(2) and the satisfaction of LTL formulas by trajectories of (2).
We do this through an embedding into a transition system, for
which both LTL satisfaction (Section II) and a control strategy
(Def. 2) are clearly defined.

Definition 5 (Embedding Transition System): The embedding
transition system for system (2) is
defined as follows:

• ;
• ;

Fig. 1. Illustration of our approach to Problem 2. First, we use the state equiv-
alence relation induced by the polytopes from the definition of the PWA system
to construct a quotient � � , which has finitely many states but an infinite set
of inputs. We then define an equivalence relation in the control space, which
leads to the construction of the finite control transition system � . This control
transition system is synchronized with a deterministic Rabin automaton � that
accepts the language satisfying the formula to produce a product automaton
� . A game-theoretic approach is then used to generate a memoryless control
strategy for � , which is translated to a (history dependent) control strategy for
� . The solution to Problem 2 is obtained by implementing the control strategy
for � as a feedback control automaton for the initial PWA system that reads
the index of the region visited at each step and supplies the next input.

• if and only if and there exist
and such that and ;

• ;
• if and only if .
Note that the embedding transition system is always deter-

ministic and non-blocking but both its set of states and set
of inputs are infinite.

Definition 6: Trajectories of system (2) originating in
satisfy formula if and only if satisfies .

Problem 2 is an LTL control problem, where we seek a con-
trol strategy for the infinite, deterministic transition
system . In Section III, we discussed the problem of control-
ling a finite, nondeterministic transition system from LTL spec-
ifications (Problem 1) and provided a solution based on Rabin
games. Then, the overall approach to Problem 2 (illustrated in
Fig. 1) involves the construction of a finite abstraction for (re-
ferred to as the control transition system ) such that a control
strategy generated for using the method from Section III can
be adapted for . As it will become clear later, our approach
is robust in the sense that the closed loop system is guaranteed
to satisfy the specification even though absolute state measure-
ments are not available and applied inputs are perturbed.

Remark 1: There are several simplifying assumptions in the
formulation of Problem 2. First, we define the PWA system (2)
on a set of open full-dimensional polytopes, thus ignoring states
where the dynamics are ambiguous (states on the boundaries be-
tween regions), and capture the reachability of those sets only
in the semantics of the embedding . This is enough for prac-
tical purposes, since only sets of measure zero are disregarded
and it is unreasonable to assume that equality constraints can
be detected in real-world applications. Trajectories starting and
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remaining in such sets are therefore of no interest. Trajectories
starting in the interior of full-dimensional polytopes also cannot
“vanish” in such zero measure sets unless the dynamics of the
system satisfy some special conditions, which are easy to de-
rive but omitted due to space constraints. Second, the specifi-
cation is formulated over the polytopes , which are given a
priori. However, arbitrary linear inequalities can be accommo-
dated by including additional polytopes (as long as the region

visited at each step can be observed), in which case the
system will have the same dynamics in several modes. Third,
for notational simplicity we consider the mode (parameters) of
system (2) to be determined only by the region of the state par-
tition and not to depend on the applied input. Our
methods can also handle a more general definition of PWA sys-
tems where the input space is also partitioned in a number of
regions and different system dynamics for different combina-
tions of state and input regions are defined.

V. CONTROL TRANSITION SYSTEM

In this section, we define the control transition system
for the embedding

(Def. 5) in Section V-A and present
an algorithm for its computation in Section V-B. In Section VI,
we will show how is used to solve Problem 2.

A. Construction

The observation map of induces an equivalence relation
over the set of states . We say that two states

are equivalent (written as ) if and only if .
This equivalence relation induces a quotient transition system

, where is the
finite set of all equivalence classes formed in . The infinite
set of inputs is preserved from and the transitions
of are defined as if and only if there exist

and such that . Note
that, in general, is nondeterministic, even though is
deterministic. Indeed, for a state of the quotient it is
possible that different states have transitions in to
states from different equivalence classes under the same input.
The set of observations of is preserved from
and the observation map is identity. The transition map
can be related to the transitions of by using the operator
defined in (1):

(3)

for all and . For each state , we
define an equivalence relation over the set of inputs as

. In other words, inputs
and are equivalent at state if they produce the same set

of transitions in . Let , , denote
the equivalence classes of in the partition induced by the
equivalence relation :

(4)

Let be an input in such that
where

denotes the distance between inputs and is
a predefined parameter specifying the robustness of the control
strategy. As it will become clear in Section V-B, is the
Euclidean distance in and can be computed as the
center of a sphere inscribed in .

Initially, the states of are the observations of (i.e.,
). The set of inputs available at a state is

and the transition map is
. In general, it is possible that at a given

state , in which case state is blocking. As it will
become clear in Section V-B, such states are removed from the
system in a recursive procedure together with their incoming
transitions and therefore . The set of observations
and observation map of are preserved from , which
completes the construction of the control transition system.

Following from the construction described so far, the control
transition system is a finite transition system. In Section VI,
we will show that a control strategy for can be adapted as a
robust control strategy (with respect to knowledge of exact state
and applied input) for the infinite . This will allow us to use

as part of our solution to Problem 2.

B. Computation

Initially, the states of the control transition system are
simply the labels of the polytopes from the definition of the
PWA system (2). To complete its construction, we need to com-
pute the set of inputs available at each state and the
transition map , while eliminating the states that are unreach-
able in order to guarantee that remains deadlock free.

Given a polytope from the definition of the PWA system
(2), let

(5)

be the set of all inputs guaranteeing that all states from transit
inside (i.e., is the set of all inputs allowed at ). In other
words, regardless which and are selected, will
transit inside under in . Then, in order to guarantee that
is an invariant for all trajectories of the system (an assumption
that we made in the formulation of Problem 2) it is sufficient
to restrict the set of inputs available at each state to

.
Proposition 1: Let be the H-rep-

resentation of the polytope from the definition of the PWA
system (2). Then, is a polytope with the following H-repre-
sentation:

(6)
Proof: See Appendix A.

The set of states reachable from state in under the
allowed inputs is

(7)
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and can be computed using polyhedral operations, since4

(8)

Given a polytope from the definition of the PWA system
[(2)] and an arbitrary polytope , let

(9)

denote the set of all inputs under which can make a transition
from a state in to a state inside . Equivalently, applying any
input guarantees that will not make a
transition inside , from any state in . The following propo-
sition states that is a polytope that can be computed
from the V- representations of and :

Proposition 2: Let and be the matrices in the H-repre-
sentation of the following polytope:

(10)

which can be computed from the V-representations of polytopes
and as

(11)

Then, is a polytope with the following H-representa-
tion:

(12)

Proof: See Appendix B.
Proposition 3: Given a state and a set of states

, the set from (4) can be computed as follows:

(13)

Proof: See Appendix C.
We can guarantee that if a state is not reachable from state

in (i.e., ) then and
therefore, if ; thus, the compu-
tation in (13) reduces to

(14)

A non-empty input region is in general nonconvex [see
Eq. (14)] but can be represented as a finite union of open poly-
topes.5 We define and as the radius and center of
the largest sphere inscribed in a single polytope from . Note
that in general this might be conservative (i.e., a sphere inscribed
in a union of polytopes from might have a larger radius) but
finding a less conservative solution is beyond the scope of this
paper.

In order to guarantee the robustness of the control strategy
(as described in Section V-A) we only include input sets that

4Throughout this paper, when “�” connects sets it denotes their set
(Minkowski) sum.

5Similarly to the situation discussed in Remark 1, a zero measure set is ig-
nored in such a representation.

are “large enough” (i.e., , where is a predefined
robustness parameter). In general, it is possible that blocking
states appear in (i.e., when for some ) and we
make such states unreachable to guarantee that is deadlock
free. Following from the results presented in this section, the
control transition system can be computed using polyhedral
operations only (the computation of is summarized as
Algorithm 1).

Algorithm 1 Construct

Input: PWA system [(2)] and robustness parameter

Output: Control transition system

1:

2: for each do

3: [(5)]

4: compute [(7)]

5: for each do

6: compute [(14)]

7: if then

8: include input in

9: include transition

10: end if
11: end for
12: end for

13:

14: Make deadlock free

15: return

VI. LTL CONTROL OF PWA SYSTEMS

In Section V, we defined the control transition system as
a finite abstraction of the infinite and showed that it can
be computed using polyhedral operations. In this section, we
show that a control strategy generated for using the approach
from Section III can be adapted as a robust control strategy
for the infinite . The satisfaction of LTL formulas by the
closed-loop systems is preserved, which completes the solution
to Problem 2.

Definition 7: A control strategy for can be trans-
lated into a control strategy for as follows. The initial
set gives the initial set . Given
a finite sequence of states where , the control
function is defined as .

The overall solution to Problem 2 consists of constructing the
control transition system (Section V), finding a satisfying
control strategy for (Section III) and adapting it as
the control strategy for the original , or equivalently
PWA system (Def. 7). At each step , the input to be applied in

is given by the control function (i.e., )
and we can guarantee that regardless which input
such that is applied in , we have

. This leads to the language inclusion
, which implies that if satisfies an ar-

bitrary LTL formula , then so does , and guarantees
the correctness of the solution.
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In order to implement a control strategy generated using this
approach, at each step we only need to know which polytope

is visited by the PWA system but not the exact values of
its state variables (i.e., we only need the observation of a
state of rather than the state itself). Furthermore, perturbing
the applied input does not affect the correctness of the control
strategy, as long as the effective input is within the same input
space sphere of radius , defined in Section V-B. This makes the
generated control strategy robust to both state measurements
and perturbations in the applied input—properties which can
be tuned through the granularity of the state space partitioning
of the PWA system or parameter , respectively. The more
robust the required control strategy is, the more conservative
the solution—a tradeoff we discuss in the following section,
where we propose strategies for decreasing the conservatism of
our method.

VII. CONSERVATISM AND STUTTERING BEHAVIOR

In Section III, we described a solution to the problem of con-
trolling a finite and possibly nondeterministic transition system
from LTL specifications (Problem 1). In order to generate a con-
trol strategy for an infinite transition system such as (Problem
2) we described the construction of a finite control abstraction

in Section V. However, due to spurious trajectories (i.e., tra-
jectories of not present in —a notion that will be explained
in more detail through this section) we cannot guarantee that a
control strategy will be found for even if one exists for
and therefore, the overall method is conservative.

To reduce conservatism, in [30] we eliminated spurious
trajectories through state refinement. Such a strategy can be
adapted for our control procedure by either tessellating certain
regions to refine the state partition or by using the dynamics of
the system to find region subsets, from which trajectories can
be controlled to other regions. However, any state refinement
also requires more accurate measurement of the system’s state,
while in our problem formulation (Section IV) we assumed that
the initial state partition captures certain physical limitations
of our measurement capabilities (i.e., a control strategy cannot
differentiate between states when ).
In the following, we focus on one particular source of conser-
vatism (self loops at states of , which cannot be followed
infinitely often), which is often present when abstractions are
constructed, and develop a strategy for eliminating it.

A. Characterizing Stuttering Behavior

Inspired by the abstraction of stutter steps described in [22],
in this paper we characterize only a specific class of spurious
trajectories, which we introduce through an example (Fig. 2).
Assume that a constant input produces a trajectory

in where
[Fig. 2(a)]. The corresponding word

is a trajectory of (i.e., ) and, from the construc-
tion described in Section V, it follows that and

[Fig. 2(b)]. Then, there exists a trajectory
of that remains infinitely in state under input ,
which is not necessarily true for . Such spurious trajectories
do not affect the correctness of a control strategy but increase

Fig. 2. Trajectory remaining forever in state � exists in the finite abstrac-
tion (b), although such a behavior is not necessarily possible in the concrete
system (a).

the overall conservativeness of the method. We address this
by characterizing stuttering inputs, which guarantee that the
system will leave a state eventually, rather than in a single step,
and use this additional information during the construction of
the control strategy for .

Definition 8: Given a state and a set of states
, the set of inputs is stuttering if and only if

and for all input words , where , there exists
a finite such that the trajectory produced in
by the input word satisfies for and

.
Using Def. 8, we identify a stuttering subset of

the inputs available at a state . Let
for some be an input of computed as described
in Section V. Then if and only if is stuttering.
Note that a transition from a state where

is stuttering is always nondeterministic (i.e., ) and
contains a self loop (i.e., ) but the self loop cannot be
taken infinitely in a row (i.e., a trajectory of cannot remain
infinitely in region under input word ). An input

induces a transition where: 1)
when trajectories of and produced by input
word remain infinitely in state and region , respec-
tively, 2) when trajectories of and leave state
and region , respectively, in one step under input , 3) when

trajectories of produced by input word can
potentially remain in region infinitely. Although in case 3) it
is also possible that trajectories of produced by input word

leave region in finite time, we have to be conserva-
tive in order to guarantee the correctness of the control strategy.

Note that our treatment of stuttering is different from [22] in
two aspects. First, we require that leaves a state after a finite
number of transitions are taken under the same stuttering input
and therefore an infinite sequence of stuttering self transitions
is never possible. Second, we identify a set of stuttering inputs
rather than constructing as a time-abstract system. While we
only characterize spurious infinite sequences of self loops (i.e.,
cycles of length 1), in general, it is possible that cycles of arbi-
trary length are spurious in . Considering higher order cycles
is computationally challenging and decreases the conservative-
ness of the approach only for very specific cases, while spurious
self loops are commonly produced during the construction of
and can be identified or constructed through polyhedral opera-
tions as described in Prop. 4 and 5.

Proposition 4: Given a state and a set of states
, input region is stuttering if and only if and
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,
where is the identity matrix.

Proof: See Appendix D.
Prop. 4 provides a computational characterization of stut-

tering input regions. In general, however, it is possible that an
input region cannot be identified as stuttering but a stut-
tering subset can be identified. Then, if such a
subset is “large enough” (i.e., ) it can be used in

and allow more general control strategies. In Prop. 5 we de-
scribe the computation of such stuttering subsets.

Proposition 5: Given an arbitrary , the input region

, where is always stuttering.
Proof: See Appendix E.

Although Prop. 5 is valid for an arbitrary , the volume
of the stuttering subset depends on . Since only
“large enough” input regions are considered in (see Alg. 1),

should be chosen in such a way that is maximized.
This problem is beyond the scope of this paper but a possible
(suboptimal) solution involves the uniform sampling of rotation
groups as discussed in [39].

B. Rabin Games With Stuttering

The algorithm from Section III can be adapted to handle the
additional information about stuttering inputs captured in ,
while the correctness and completeness of the control strategy
computation for the product automaton is still guaranteed.

is constructed as in Section III and therefore it naturally in-
herits the partitioned input set for each state

. Going back to the Rabin game interpretation of the con-
trol problem discussed in Section III, we need to account for the
fact that a transition under the same stuttering input cannot be
taken infinitely many times in a row. As a result, the construc-
tion of the control strategy is still performed using the algorithm
from [21] and only the computation of the protagonist’s direct
attractor [Def. (3)] is modified as follows.

Let be a state and be a stuttering input
of (Def. 8). We are interested in edge of tran-
sition , where and
(recall from Section III that is the projection from
states of to ). Edge is -nontransient if

and transient otherwise. A sequence of edges
, where for any

is called a cycle and a cycle consisting of
-nontransient transitions only is called a -nontransient cycle.

The self loop at state under the stuttering input
cannot be followed infinitely many times in a row in . Conse-
quently, in the product graph , a -nontransient cycle cannot
be followed infinitely many times in a row without leaving it,
which leads to the following modification of Def. 3.

Definition 9: The protagonist’s direct attractor of , denoted
by , is the set of all states , such that there exists
an input where 1) or 2) lies on a -nontran-
sient cycle and, for all states of the cycle and all transient
edges originating there, .

In other words, the protagonist can enforce a visit to by
following a -nontransient cycle finitely many times and even-
tually leaving it to a state from . Even so, when applying input

the protagonist cannot prevent a visit to a state reachable via
a -nontransient edge but the adversary cannot enforce such a
visit either (i.e., once input is applied, following or avoiding a

-nontransient edge cannot be enforced by the protagonist or the
adversary). In Section III, the adversary’s attractor of could
be interpreted equivalently as the set of states from which 1) the
adversary can enforce a visit to or 2) the protagonist cannot
prevent a visit to . When stuttering inputs are considered inter-
pretation 1) is no longer consistent with Def. 4, whereas 2) still
is. However, the Rabin game algorithm presented in Section III
is based on interpretation 2) and, as a result, the definition of
the adversary’s direct attractor (Def. 4) remains unchanged. The
protagonist’s and adversary’s attractors are computed from their
respective direct attractors (Defs. 9 and 4) as in Section III.

By identifying stuttering inputs during the construction of
the control transition system (Props. 4 and 5) and modi-
fying the approach from Section III through Def. 9 to handle
this additional information during the construction of a control
strategy for , we can reduce the conservatism associated with
the overall method. Even so, our solution to Problem 2 remains
conservative but it is important to note that the only source of
conservativeness is the construction of —the solution to the
LTL control problem for is complete.

VIII. COMPLEXITY

As our proposed solution to Problem 2 consists of 1) the con-
struction of the control transition system and 2) the genera-
tion of a control strategy for , the overall computational com-
plexity is the cumulative complexity of the two parts. The com-
putation of involves enumerating all subsets of at any el-
ement of , which gives iterations in the worst
case, although in practice this can be reduced by considering
only reachable states [see Eq. (14)]. At each iteration, polyhe-
dral operations which scale exponentially with (the size of
the continuous state space) are performed [25], [34]. The char-
acterization of stuttering inputs checks each element from
through polyhedral operations, which scale exponentially in
(the size of the input space). To simplify the analysis, we as-
sume that (although in practice ) but the high
theoretical complexity of translating between V- and H- repre-
sentations of polytopes in higher dimensions [34] leads to an
overall worst case complexity of . In general,
generating a control strategy is the more expensive part of our
procedure and is discussed next. This computation depends on
the number of states and transitions of where, in the
worst case, (although this is significantly re-
duced through the optimizations described later in this section).

While the finite abstraction has at most states, the trans-
lation of an LTL formula into a Rabin automaton leads
to a doubly-exponential blowup [35], [37] and, therefore, the
product automata has, in general,

states and pairs in its acceptance con-
dition (in practice, is usually small as in the case studies sum-
marized in Table I). When the algorithm from [21] is used to
solve Rabin games, the complexity of the control strategy syn-
thesis procedure described in Section III is , where

is the number of transitions in and depends on the number
of transitions of . Extending the algorithm to deal with
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TABLE I
CASE STUDY COMPUTATION SUMMARY

The number of states, input regions, large enough input regions, and
stuttering inputs of the control transition system for each case study are
denoted by ���, �� � , �� �, and �� �, respectively. The number of states
and transitions in the product automaton are denoted by � and � and, for
all case-studies, there is only one acceptance pair �� � ��. Results for the
computation of the control transition system �� � and the generation of the
control strategy �� � for each case-study is given as a separate row, where
results obtained when the optimization proposed in Section VIII is disabled
are given in parentheses.

stuttering behavior as described in Section VII does not change
the overall complexity. Computation times for the examples
from Section IX, obtained on a 3.4-GHz, Intel Pentium 4 ma-
chine with 1 GB of memory, are summarized in Table I.

The doubly exponential blowup incurred from the translation
of LTL into Rabin automata and the complexity of the game so-
lution make the method computationally expensive. However,
there are several strategies for reducing this complexity. First,
it is possible to reduce the number of transitions of after
it is initially constructed without sacrificing solutions, which
leads to reducing the number of transitions in the product au-
tomaton. More “nondeterminism” available at a state does not
result in more winning strategies for the algorithm described
in Section III, while at the same time unnecessarily increases
the complexity of the method. Formally, let and

where be inputs of
available at state (i.e., ). If input
is used in a control strategy, then the specification is satisfied
regardless of which state is visited in the next step.
Clearly, the same holds for input since is a subset of

but keeping both inputs is unnecessary. Therefore, at each
state we set if or

if when the property described
above holds. Second, more efficient symbolic approaches can be
implemented for solving Rabin games [40]. Third, better com-
plexity can be achieved by restricting the specification language.
By considering only specifications generated by deterministic
Büchi automata, a single exponential formula translation is pos-
sible (this was the approach followed in [16]) while polynomial
time algorithms solving games for specific LTL fragments are
also available [41].

IX. IMPLEMENTATION AND CASE STUDIES

The method described in this paper was implemented in
MATLAB as the software package conPAS2, where all polyhe-
dral operations were performed using the MPT toolbox [25].
The tool takes as input a PWA system [as defined in Eq. (2)] and
an LTL formula and produces a set of satisfying initial regions
and a feedback control strategy for the system (see Section VI).

The tool, including all described examples, is freely down-
loadable from our web site at http://hyness.bu.edu/software.
To illustrate our methods, through the rest of this section we
consider the problems of controlling a two-tank system and a
synthetic gene network from LTL specifications.

First, we consider the two-tank system shown in Fig. 3(a).
The system has two state variables that represent the
water levels in the two tanks and range in (0,0.7). It has one
control dimension representing the inflow rate, which
ranges in . The state space of the system is partitioned
into 49 rectangular regions (i.e., ) by 7 evenly
spaced thresholds along each dimension. These thresholds sig-
nify that we can only detect whether the water level in each tank
is above or below the marks at 0.1, 0.2, , 0.7 [see Fig. 3(b)].
Valve is opened only if submerged (i.e., if the water level in
either tank is above 0.2—the height of the valve) and, therefore,
the valve is closed when the system is in regions 1,2,8, and 9
and opened otherwise [see Fig. 3(a), (b)]. Discrete-time, linear
equations describing the dynamics of the system in each mode
are derived as in [42] using a 5-s. time step and m ,

m , and m as the cross sectional areas of the
two tanks, valve , and valve , respectively. The dynamics
of the system for each region are given by

for

otherwise,

for

We seek a control strategy for the system guaranteeing the sat-
isfaction of a specification, expressed informally as “whenever
tank 2 is empty, it will eventually get filled up.” To formalize this
specification we define propositions “the level of tank 2
is below 0.1” (i.e., “tank 2 is empty”) and “the level of
tank 2 is above 0.4” (i.e., “tank 2 is full”), which can be ex-
pressed as disjunctions of regions from as
and . We consider specification

(15)

Satisfying control strategies were found from all regions ex-
pect 49 when the required robustness was set to
[Fig. 3(b)]. If stuttering inputs are not characterized as described
in Section VII, satisfying control strategies are identified for re-
gions 29, , 48 only. A simulated trajectory of the closed-loop
system is shown in Fig. 3(c) and computation times are given as
case study #1 in Table I.

Besides the two-tank system discussed above, we apply
our method to generate control strategies for a synthetic gene
network inspired by the genetic toggle switch [43] [Fig. 4(a)].
The system has two state variables ranging in
(0,100) that represent the concentrations of the two proteins
and the state space is partitioned into 36 rectangular regions
(i.e., ). The system has two control dimension

representing external control over the expression
rates from the two promoters and ranging in ( 15, 15) and
( 18, 18). Gene regulation is captured by piecewise affine ramp
functions which induce three ranges of different dynamics.
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Fig. 3. (a) A two-tank system. Water is drained at a constant rate from tank 2 though valve � , while tank 1 is filled at a rate that is controlled externally. Water can
also flow in either direction, from the tank with more water to the one with less, through valve � , which is opened only if submerged. (b) Simulated trajectories
of the uncontrolled system. Initial conditions are shown as blue circles. Control strategies guaranteeing the satisfaction of specification � � �� � �� � are
found from all shaded regions. (c) A simulated trajectory of the closed loop system. The water levels of tanks 1 and 2 are shown respectively as a blue (solid) and
a red (dashed) line. The trajectory is guaranteed to satisfy specification � .

Fig. 4. (a) Schematic representation of the genetic toggle switch from [43]. The system consist of two promoters and two genes, coding for proteins that mutually
repress each other, and acts as a switch allowing only one of the genes to be expressed depending on initial conditions. (b) Control strategies guaranteeing the
satisfaction of specification � � � � �� are found from all shaded regions. Simulated trajectories from different regions satisfy the specification. (c)
A simulated trajectory of the closed loop system is guaranteed to satisfy specification � . Concentrations of proteins 1 and 2 and the external control over their
respective expression rates are shown as a blue (solid) and a red (dashed) line.

Fig. 5. (a) Trajectories of the uncontrolled PWA system go towards one of two possible stable equilibria located in regions � and � (initial states are shown
as small circles). (b) Control strategies guaranteeing the satisfaction of specification � � � � � � � ��� � � �� are found from all shaded regions. A
sample satisfying simulated trajectory is shown. (c) A simulated trajectory of the closed-loop toggle switch system is guaranteed to satisfy specification � . Protein
concentrations and external expression rate control are labeled as in Fig. 4(c).

At low repressor concentration expression from the regulated
promoter is maximal, expression is basal at high repressor con-
centration and the response is graded in between. The overall
PWA model is constructed using two ramp functions (one for
each promoter) which leads to nine different modes (the exact

dynamics for each mode are omitted due to space constraints
but are available with conPAS2). The PWA model captures the
characteristic bi-stability of the system, where trajectories go
towards one of two possible stable equilibria located in regions

and [see Fig. 5(a)].
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First, we generate a control strategy that drives the system to
low concentration of protein 1 and high concentration of protein
2 while avoiding intermediate concentrations of both proteins.
We define propositions “protein 1 is below 20 and protein
2 is above 75” and “protein 1 is above 40 and below 80
and protein 2 is above 20 and below 50” which can be expressed
as disjunctions of regions from as and

. We are interested in specification

(16)

which cannot be translated into a deterministic Büchi au-
tomaton. Satisfying control strategies where found from all
regions expect 13 , , 20 when the required robustness was set
to [Fig. 4(b)]. If stuttering inputs are not character-
ized as described in Section VII, satisfying control strategies
are identified for region 10 only. A simulated trajectory of the
closed loop system is shown in Fig. 4(c) and computation times
are given as case study #2 in Table I.

Next, we generate a control strategy forcing the system to
oscillate between states where the concentration of one protein
is high and the other is low and vice versa, while states where
the concentrations of both proteins are high or low are never
reached. We define propositions “protein 1 is below
40 and protein 2 is above 50,” “protein 1 is above 80
and protein 2 is below 20,” “protein 1 is below 40 and
protein 2 is below 20,” and “protein 1 is above 80 and
protein 2 is above 50,” which can be expressed as disjunctions
of regions from as , ,

, and . The specification
we consider is

(17)

Satisfying control strategies where found from all regions ex-
pect 1, , 4 and 33, ,36 when the required robustness was set
to [Fig. 5(b)]. If stuttering inputs are not character-
ized as described in Section VII, no satisfying control strategies
are identified. A simulated trajectory of the closed loop system
is shown in Fig. 5(c) and computation times are given as case
study #3 in Table I.

X. CONCLUSION

We described a computational framework for automatic gen-
eration of feedback control strategies for discrete-time, contin-
uous-space PWA systems from rich specifications given as LTL
formulas over polytopic regions in the state space. Our approach
consists of two main steps: 1) abstracting the original infinite
PWA control system to a finite control system, and 2) gener-
ating a control strategy for the finite control system from the
LTL specification. For the latter, we use ideas from temporal
logic games and automata theoretic model checking to develop
an algorithm that provides a complete solution and incorporates
information about stuttering behavior that arises during the ab-
straction process but can be characterized. The particular ap-
proach to the construction of the abstraction guarantees that a

control strategy generated for the finite control system can be
easily transformed into a control strategy for the initial PWA.
While provably correct, the overall solution is conservative and
computationally expensive.

APPENDIX

A. Proof of Proposition 1

Note that the set defined in (5) can be equivalently written as

(18)

Let such that . Then,

Let such that .
Then, . Let

, where for all
and . Then,

B. Proof of Proposition 2

The set defined in (10) is a polytope with the V-representation
given in (11) Let such that .
Let and , where
for all and . Let and

, where for all and
. Then,

Let , where
and . Let

and . Of course, for all
, for all and

. Then, for and
we have and therefore

such that .
To conclude the proof of Proposition 2, let be the ma-

trices in the H-representation of the set defined in (10) and note
that the set defined in (9) can be written as

(19)
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C. Proof of Proposition 3

From (3) and (4) we have

D. Proof of Proposition 4

Let
. Then, there exists

such that and a trajectory of the system
produced by applying input sequence and starting at
remains forever inside . Therefore, from Def. 8, is not
stuttering.

Let
. From the separating hyperplane

theorem it follows that there exists such that, for all
.

Then, any trajectory of the system originating in and pro-
duced by input word , where will have a
positive displacement along the direction of at every step.
Since is bounded, all trajectories will leave it in a finite
number of steps and, therefore, is stuttering.

E. Proof of Proposition 5

which, from Prop. 4, guarantees that is stuttering.
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