
396 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Temporal Logic Motion Planning and Control With
Probabilistic Satisfaction Guarantees

Morteza Lahijanian, Student Member, IEEE, Sean B. Andersson, Member, IEEE, and Calin Belta, Member, IEEE

Abstract—We describe a computational framework for auto-
matic deployment of a robot with sensor and actuator noise from
a temporal logic specification over a set of properties that are sat-
isfied by the regions of a partitioned environment. We model the
motion of the robot in the environment as a Markov decision pro-
cess (MDP) and translate the motion specification to a formula of
probabilistic computation tree logic (PCTL). As a result, the robot
control problem is mapped to that of generating an MDP control
policy from a PCTL formula. We present algorithms for the syn-
thesis of such policies for different classes of PCTL formulas. We
illustrate our method with simulation and experimental results.

Index Terms—Motion planning, probabilistic computation tree
logic (PCTL), stochastic control.

I. INTRODUCTION

MOTION planning is a rich field, and many textbooks
(e.g., [3]) describe the variety of available algorithms.

Early studies of motion planning considered only the geometry
of the robot and environment, together with simple point-to-
point tasks. As the field has evolved, methods, such as tree-
based techniques [4], [5] and layered planning [6], have made
motion planning possible even for systems with complex dy-
namics [7]–[9]. However, the “classical” motion planning spec-
ifications remain simple and are given as “go from A to B and
avoid obstacles,” where A and B are two regions of interest in
some environment.

Recently, there has been increasing interest in developing
computational frameworks allowing planning for more compli-
cated tasks. Increased expressivity is necessary in specifications
that require reaching one of a set of goals (“go to either A or
B”), convergence to a region (“reach A eventually and stay
there for all future times”), visiting targets sequentially (“reach
A, and then B, and then C”), surveillance (“reach A and then B

Manuscript received November 12, 2010; revised May 24, 2011; accepted
October 5, 2011. Date of publication November 21, 2011; date of current version
April 9, 2012. This paper was recommended for publication by Associate Editor
T. Simeon and Editor D. Fox upon evaluation of the reviewers’ comments. This
work was supported in part by Boston University through the National Science
Foundation under Grant CNS-0834260 and Grant CMMI-0928776, the Army
Research Office (ARO) under Grant W911NF-09-1-0088, the Air Force Office
of Scientific Research (AFOSR) under Grant FA9550-09-1-0209, and the Office
of Naval Research (ONR) under Grant ONR MURI N00014-09-1051. This pa-
per was presented in part at the IEEE International Conference on Robotics and
Automation, Anchorage, AK, 2010, and at the American Control Conference,
San Francisco, CA, 2011

The authors are with the Department of Mechanical Engineering, Boston Uni-
versity, Boston, MA 02215 USA (e-mail: morteza@bu.edu; sanderss@bu.edu;
cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2011.2172150

infinitely often”), or the satisfaction of more complicated tem-
poral and logic conditions about the reachability of regions of
interest (“Never go to A. Do not go to B unless C or D were
visited”). To accommodate such specifications, in [10]–[14],
the authors suggested the use of temporal logics, such as lin-
ear temporal logic (LTL) and computation tree logic (CTL) as
motion-specification languages. In [11], the authors augment the
tree-search framework with LTL trajectory properties. In [12]
and [13], the authors generate trajectories that satisfy LTL spec-
ifications on the sequence of regions that are visited by a robot
by using controllers that could drive the robot between adja-
cent regions. In [14], the authors combine receding horizon
planning with LTL motion planning. Generally, temporal logic
motion planning and control are achieved based on algorithms
that are inspired from model checking [15] and temporal logic
games [16].

Most of the existing formal synthesis approaches are based
on abstracting the robot motion in a partitioned environment to
a finite transition system [15]. They operate under two funda-
mental assumptions. First, the transition system is either purely
deterministic, in which each control action gives rise to a unique
transition from each region, or purely nondeterministic, in which
control actions enable possibly several transitions, with no in-
formation on the likelihoods of those transitions [17]. Second,
the robot is able to determine its position in the environment
precisely. Unfortunately, in real-world systems, noise in the ac-
tuators and sensors can invalidate both of these assumptions.
In general, one must deal with a partially observed Markov
decision process (POMDP) describing the motion of the robot
in the environment. For basic region-to-region tasks, numer-
ous algorithms exist to determine a robot control strategy for a
POMDP model [18]–[20]. For more complicated tasks, proba-
bilistic counterparts to temporal logics exist for specifying the
task [21]–[23]. However, the problem of generating a control
strategy for a POMDP by a formula in such a logic remains
unsolved.

We focus on a simpler version of this problem. We consider
a robot that moves in a partitioned environment by applying
a given set of motion primitives allowing it to steer between
adjacent regions. Because of sensor and actuation noise, while
applying an available motion primitive at a region, the robot can
transit to more than one adjacent region. We assume that the
probabilities of these transitions are known and the robot can
determine its current region precisely. In indoor environments,
the latter assumption is not overly restrictive since simple envi-
ronment modifications can be made to enforce it, such as placing
a large number of radio-frequency identification (RFID) tags.
In previous work, we solved this problem by abstracting the

1552-3098/$26.00 © 2011 IEEE
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 397

Fig. 1. Robotic indoor environment. (Left) iRobot Create mobile platform that is equipped with a laptop, a laser range finder, and RFID reader moves autonomously
through the corridors and intersection of an indoor-like environment, whose topology can be easily reconfigured by moving the foam walls and (right) robot
closeup.

robot motion to an MDP and deriving an algorithm to syn-
thesize control strategies for a small segment of probabilistic
computation tree logic (PCTL) formulas, namely those contain-
ing only a single temporal operator “until.” To define the states
of the MDP, we used the regions that are given by the partitioned
environment and found the transition probabilities by using a
Monte Carlo method. We derived the control synthesis algo-
rithm through infinite horizon dynamic programming methods.
A similar approach was taken in [24] to solve for a probabilistic
reachability motion planning problem (equivalent to the basic
“until” temporal operator available in the PCTL) with a different
MDP abstraction technique. In particular, in [24], the authors
combined a roadmap representation of the configuration space
with a stochastic model of the robot motion to build a stochas-
tic motion roadmap. While the underlying synthesis methods
in that work and in this paper are similar, the framework that
we defined in [1] and build on here allows for significantly
more expressivity in the specification of the tasks. We extended
our approach in [2] to support additional PCTL formulas with
multiple and different temporal operators.

In this paper, we complete the effort that was started in [1]
and [2] and present the entire MDP control synthesis algorithm
from PCTL formulas that include Boolean operators, tempo-
ral operators, expected cost operators, and any combinations
thereof. We can also accommodate nested probabilities, which
allow for complex specifications, such as “Eventually reach A
and then B with probability greater than 0.9, while always avoid-
ing the regions from which the probabilities of converging to C
is greater than 0.2” and “Eventually reach a region from which
the probability of converging to A is 0.8, while minimizing the
total amount of travel time.” In short, given a specification as a
PCTL formula, the algorithm returns the maximum probability
or the minimum cost of satisfaction and a control strategy that
achieves this probability or cost. Our algorithm uses subalgo-
rithms corresponding to each temporal operator as the building
blocks for the construction of a control strategy from a formula
with multiple temporal operators. The most computationally

expensive subalgorithm requires solving a linear programming
problem.

The contribution of this study is threefold. First, we present
the algorithms for MDP control synthesis from PCTL formu-
las in a unified way. While the building blocks of our control
synthesis algorithm are based on an adaptation of the existing
PCTL model checking algorithms [25], the synthesis approach
to PCTL formulas with more than one operator and the frame-
work are, to the best of our knowledge, novel and quite general.
Second, we develop a framework for automatic robot deploy-
ment from temporal logic specifications with probabilistic sat-
isfaction guarantees, which combines experiments, simulations,
and statistical hypothesis testing with the synthesis algorithms
that are mentioned earlier. Third, we illustrate the method in our
Robotic InDoor Environment (RIDE) [26], in which an iRobot
Create platform that is equipped with RFID readers, and a laser
range finder moves autonomously through the corridors and
intersections of an easily reconfigurable environment.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem and state our approach. In
Section III, we formally define an MDP, a probability measure
over paths of an MDP, and the specification language PCTL.
The MDP control synthesis from PCTL formulas and the issues
of conservatism and complexity of the algorithms are discussed
in Section IV. The results of experimental and simulation case
studies are included in Section V. The paper is concluded with
final remarks in Section VI.

II. PROBLEM FORMULATION AND APPROACH

Consider a robot moving in a partitioned environment. We
assume that the robot is programmed with a small set of feed-
back control primitives allowing it to move inside each region
and from a region to an adjacent region. We make the natural
assumption that these control primitives are not completely re-
liable. In other words, if, at a given region, a control primitive
that is designed to take the robot to a specific adjacent region
is used, it is possible that the robot will instead transition to a

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

398 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Fig. 2. Schematic representation of the environment from Fig. 1. Each region
has a unique identifier (C1 , . . . , C9 for corridors and I1 , . . . , I5 for intersec-
tions, respectively). The properties that are satisfied at the regions are shown
between curly brackets inside the regions S = Safe, R = Relatively safe, U =
Unsafe, M1 = Medical supply 1, M2 = Medical supply 2, D1 = Destination
1, and D1 = Destination 1. The numbers that are shown at the boundaries
between corridors and intersections indicate the positions and tag numbers of
the RFID tags.

different adjacent region. We assume that the probabilities of
these transitions are known and that the robot can precisely de-
termine its current region. We consider the following problem.

Problem 1: Given a motion specification as a temporal logic
statement about properties that are satisfied by the regions in
a partitioned environment, find a robot control strategy that
maximizes the probability of satisfying the specification.

Consider, e.g., an environment with the schematic represen-
tation that is shown in Fig. 2. The regions are corridors and in-
tersections, which are identified by C1 , . . . , C9 and I1 , . . . , I5 ,
respectively. There are six properties of interest about the re-
gions: Safe (the robot can safely drive through a corridor or
intersection with this property), Relatively safe (the robot can
pass through the region but should avoid it if possible), Unsafe
(the corresponding region should be avoided), Medical supplies
1 and 2 (there are medical supplies of type 1 and 2 in the re-
gions that are associated with these properties, respectively), and
Destinations 1 and 2 (regions to be visited). Some examples of
temporal logic motion specifications are as follows.

Specification 1: Reach Destination 1 by driving through either
only Safe regions or through Relatively safe regions only if
Medical Supply 1 is available at such regions.

Specification 2: Reach Destination 1 by going through the
regions from which the probability of converging to a Relatively
safe region is less than 0.50 and always avoiding Unsafe regions.

Specification 3: Reach Destination 1 by driving through re-
gions that are Safe or at which Medical supply 2 is available,
and then with the probability greater than or equal to 0.50 reach
Destination 2 by avoiding Unsafe regions and regions that are
Relatively safe but do not have Medical supply 1.

Specification 4: Eventually, visit Destination 1 and then, with
the probability greater than 0.9, reach Destination 2, while
avoiding Unsafe regions by minimizing the total amount of
travel time.

It should be noted that Specification 1 requires the robot
to visit only one destination, while Specification 2 involves
the properties of regions and a probability, and Specification 3
requires to visit multiple destinations. Specification 4 combines
cost and probability for multiple destinations.

As will be made clear later, the temporal logic specification
will be a formula of PCTL. A robot control strategy will be
defined as an assignment of a control primitive to each region
of the environment that the robot visits given the history of the
visited regions. Since the outcome of a control primitive is char-
acterized probabilistically, the satisfaction of the specification is
defined in a probabilistic sense. Among all the possible control
strategies, our solution to the aforementioned problem will have
the highest rate of success.

Central to our approach is a representation of the motion of
the robot in the environment as an MDP (see Section III-A). For
the construction of such a model over a given environment and
robot motion and sensor models, we use a combination of phys-
ical experiments, simulations, and statistical hypothesis testing
to determine the success/failure rate of each action (feedback
control primitive). To ensure that the transitions are Markovian,
we augment the state space by choosing an ordered set of parti-
tion regions for each state in the MDP. As discussed earlier, we
assume that, despite the stochastic nature of its motion, the robot
can determine its current region precisely. This can be achieved
in a variety of ways. For example, in the RIDE, we place a
set of RFID tags that uniquely identify the regions. Given this
model, Problem 1 reduces to generating a control strategy for
an MDP, such that the probability of satisfying a PCTL formula
is maximized. This problem is treated in Section IV.

It should be noted that the problem that we consider in this
paper mainly focuses on high-level mission planning given low-
level controllers. Even though the design of the motion primi-
tives (low-level control primitives), which are required to enable
transitions between regions and in the construction of an MDP
model of the motion of the robot in the environment, is an im-
portant and challenging problem itself, it is out of the scope of
this paper. However, we argue that the proposed framework is
quite general and can be used to control robots with complex
dynamics provided some motion primitives. The performance
of the algorithm is independent of the preciseness of the design
of the low-level control primitives. Nevertheless, the maximum
probability value of satisfaction of the specification is directly
related to the reliability of such controls. Generally, as the mo-
tion primitives become more reliable, the maximum probability
of satisfaction increases.

III. PRELIMINARIES

A. Markov Decision Process

Given a set Q, let |Q| and 2Q denote its cardinality and power
set, respectively.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 399

Fig. 3. Four-state MDP.

Definition 1 (Markov Decision Process): An MDP is a tu-
ple, i.e., M = (Q, q0 , Act, Steps,Π, L, c), where we have the
following.

1) Q is a finite set of states.
2) q0 ∈ Q is the initial state.
3) Act is a set of actions.
4) Steps: Q → 2Act×Σ(Q) is a transition probability function,

where Σ(Q) is the set of all discrete probability distribu-
tions over the set Q.

5) Π is a finite set of atomic propositions.
6) L : Q → 2Π is a labeling function assigning to each state

possibly several elements of Π.
7) Cost : Q × Act → R

≥0 is a cost function.
The set of actions that are available at q ∈ Q is denoted

by A(q). The function Steps is often represented as a matrix
with |Q| columns and

∑|Q |−1
i=0 |A(qi)| rows. For each action

a ∈ A(qi), we denote the probability of transitioning from the
states qi to qj under the action a as σqi

a (qj) and the corresponding
probability distribution function as σqi

a . Each σqi
a corresponds

to one row in the matrix representation of Steps. The cost func-
tion “cost” assigns to each state q ∈ Q and action a ∈ A(q) a
nonnegative cost cost(q, a).

To illustrate these definitions, a simple MDP is shown in
Fig. 3. The actions that are available at each state are A(q0) =
{a1}, A(q1) = {a2 , a3 , a4}, and A(q2) = A(q3) = {a1 , a4}.
The labels are L(q0) = {Init}, L(q2) = {R2}, and L(q3) =
{R3}. The matrix representation of “Steps” is given by

Steps =

q0 ; a1

q1 ; a2
q1 ; a3
q1 ; a4

q2 ; a1
q2 ; a4

q3 ; a1
q3 ; a4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In this example, the cost of all the state–action pairs is zero.

B. Paths, Control Policies, and Probabilistic Measures

A path ω through an MDP is a sequence of states, i.e.,

ω = q0
(a0 ,σ

q 0
a 0 (q1))

——−→ q1
(a1 ,σ

q 1
a 1 (q2))

——−→ · · · qi

(ai ,σ
q i
a i

(qi + 1))
——−→ qi+1 . . .,

where each transition is induced by a choice of action at the

Fig. 4. Fragment of DTMCs Dμ 1 for control policy μ1 .

current step i ≥ 0. We denote the ith state of a path ω by ω(i)
and the set of all finite and infinite paths by Pathfin and Path,
respectively.

A control policy defines a choice of actions at each state
of an MDP. Control policies are also known as schedulers or
adversaries and are formally defined as follows.

Definition 2 (Control Policy): A control policy μ of an
MDP model M is a function mapping a finite path, i.e.,
ωfin = q0q1q2 · · · qn , of M onto an action in A(qn). In other
words, a policy is a function, i.e., μ : Pathfin → Act, that spec-
ifies for every finite path, the next action to be applied. If a
control policy depends only on the last state of ωfin , it is called
a stationary policy.

For each policy μ, a probability measure Probμ over the set
of all paths (under μ) Pathμ is induced. It is constructed through
an infinite-state Markov chain as follows. Under a policy μ,
an MDP becomes a Markov chain that is denoted Dμ whose
states are the finite paths of the MDP M. There is a one-to-one
correspondence between the paths of Dμ and the set of paths
Pathμ in the MDP. Hence, a probability measure Probμ over
the set of paths Pathμ can be defined by setting the probabil-
ity of ωfin ∈ Pathfin

μ equal to the product of the corresponding
transition probabilities in Dμ .

Next, we define the cylinder set C(ωfin) as

C(ωfin) = {ω ∈ Pathμ |ωfin is a prefix of ω}

i.e., the set of all infinite paths with prefix ωfin . The probabil-
ity measure on the smallest σ-algebra over Pathμ containing
C(ωfin) for all ωfin ∈ Pathfin

μ is the unique measure satisfying

Probμ(C(ωfin)) = Probμ(ωfin) ∀ωfin ∈ Pathfin
μ . (1)

To illustrate this measure, consider the MDP that is shown in
Fig. 3 and the stationary control policy that is defined by the
mapping

μ1(· · · q0) = a1 , μ1(· · · q1) = a2

μ1(· · · q2) = a4 , μ1(· · · q3) = a1

where “· · · qi” denotes any finite path terminating in qi . The
initial fragment of the resulting Markov chain is shown in Fig. 4.
From this fragment, it is easy to see that the probability of the
finite path q0q1q2 is Probμ1 (q0q1q2) = 0.5. Under μ1 , the set of

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

all infinite paths with this prefix is

C(q0q1q2) = {q0q1q2 , q0q1q2q0q1 , q0q1q2q0q1q3 , . . .}

where the sequence under the overline is repeated infinitely.
According to (1), we have that

Probμ1 (C(q0q1q2)) = Probμ1 (q0q1q2) = 0.5.

C. Probabilistic Computation Tree Logic

We use PCTL [27], a probabilistic extension of CTL that
includes a probabilistic operator P , to write specifications of
the MDP.

Definition 3 (Syntax of PCTL): PCTL formulas are the state
formulas, which can be recursively defined as follows:

φ ::= true | π | ¬φ | φ ∧ φ | P�� p [ψ] | E�� c [φ] state formulas

ψ ::= Xφ | φU≤k φ | φU φ path formulas

where π ∈ Π is an atomic proposition; ¬ (negation) and ∧
(conjunction) are the Boolean operators; ��∈ {≤, <,≥, >}; p ∈
[0, 1], c ∈ [0,∞]; and k ∈ N.

State formulas φ are evaluated over the states of an MDP,
while the path formulas ψ are assessed over paths and only
allowed as the parameter of the P�� p [ψ] operator. Intuitively,
a state q satisfies P�� p [ψ] if there exists a control policy that
will ensure that the probability of all paths from q under that
policy satisfying ψ is in the range �� p. Similarly, if q satisfies
E��c [φ], then the expected cost of reaching a state satisfying φ is
�� c. Temporal logic operators X (“next,” also denoted by ©),
U≤k (“bounded until”), and U (“until”) are allowed in the path
formulas.

Definition 4 (Semantics of PCTL): For any state q ∈ Q, the
satisfaction relation � is defined inductively as follows:

1) q � true for all q ∈ Q;
2) q � π ⇔ π ∈ L(q);
3) q � (φ1 ∧ φ2) ⇔ q � φ1 ∧ q � φ2 ;
4) q �¬φ ⇔ q 2φ;
5) q �P��p [ψ] ⇔ pq

μ �� p;
6) q � E��c [φ] ⇔ eq

μ �� c.
Here, pq

μ is the probability of all the infinite paths that start
from q and satisfy ψ under policy μ, and eq

μ(φ) denotes the total
expected cost of reaching a state that satisfies φ from q under
policy μ. Moreover, for any path ω ∈ Path

1) ω � Xφ ⇔ ω(1)� φ;
2) ω � φ1 U≤k φ2 ⇔ ∃ i ≤ k, ω(i)� φ2 ∧ ω(j)� φ1∀j < i;
3) ω � φ1 U φ2 ⇔ ∃ k ≥ 0, ω � φ1 U≤k φ2 .
The other standard logical operators false, ∨ (disjunction),

and → (implication) can be easily derived from the basic syntax
given earlier:

false ≡ ¬true

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2 ≡ ¬φ1 ∨ φ2 .

We can also define the path formula operators ♦, “eventually,”
(also denoted by F), and ♦≤k , “bounded eventually,” (F≤k) as

P��p [♦φ] ≡ P��p [trueUφ]

P��p [♦≤kφ] ≡ P��p [trueU≤kφ].

Intuitively, ♦φ means that φ is eventually satisfied. Similarly,
♦≤kφ means that φ is satisfied within k time units.

Other common temporal operators are �, “always” (also de-
noted by G), and �≤k , “bounded always” (G≤k). Defining these
operators in PCTL is slightly more complex than in nonproba-
bilistic temporal logics. It can be done using the fact that, for
a state q, policy μ and path formula ψ, pq

μ(¬ψ) = 1 − pq
μ(ψ).

Then, it can be shown that [27]

P≤p [�φ] ⇔ P>1−p [♦¬φ].

More generally

P��p [�φ] ≡ P�̄�p [♦¬φ]

P��p [�≤kφ] ≡ P�̄�p [♦≤k¬φ]

where ≤̄ ≡≥, <̄ ≡>, ≥̄ ≡≤, and >̄ ≡<.

IV. PROBABILISTIC COMPUTATION TREE LOGIC

CONTROL SYNTHESIS

In this section, we consider the following problem.
Problem 2: Given an MDP model M and a PCTL speci-

fication formula φ, find a control policy that maximizes the
probability of satisfying φ.

Our control synthesis algorithm takes a PCTL formula φ
and an MDP M and returns both the optimal probability of
satisfying φ and the corresponding control policy. The basic
algorithm proceeds by constructing the parse tree for φ and
treating each operator in the formula separately. It should be
noted that, in general, we are interested in finding the control
policy that produces the maximum/minimum probability of sat-
isfying the given specification. Such PCTL formulas have the
form Pmax=?[ψ] and Pmin=?[ψ]. For the PCTL formulas of
the form P��p [ψ], we still use the algorithms that return opti-
mal policies (with the exception of the case that is discussed
in Section IV-B). For these formulas, we first find the control
policy μ and then check whether pq

μ(φ) satisfies the bound �� p.
For the case ��∈ {>,≥}, we use the policy that maximizes the
probability of satisfaction. Similarly, we determine the policy
corresponding to the minimum probability when ��∈ {<,≤}.

There is a set of unique algorithms for control synthesis of
each path formula. Thus, we categorize the PCTL formulas into
two groups: simple and complex. Simple formulas are those that
include only one P- or E-operator. An example of this class
of specifications is Specification 1 in Section II, which directly
translates to the PCTL formula

φ1 : Pmax=? [(S ∨ (R ∧ M1))U D1]. (2)

The control algorithm for such formulas is discussed in
Sections IV-A. Complex PCTL formulas are the ones that consist
of more than one path formulas. Specifications 2–4 in Section II,

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 401

which naturally translate to the PCTL formulas

φ2 : Pmax=? [(P<0.50 [X R] ∧ ¬U)U D1] (3)

φ3 : Pmax=? [(S ∨ M2)U (D1 ∧ P≥0.50 [¬U∧
¬(R ∧ ¬M1)U D2])] (4)

φ4 : Emin=? [D1 ∧ P>0.9 [¬UU D2])] (5)

belong to this class of specifications. To find a control strategy
for these formulas, we use the algorithms for simple formulas
as building blocks. Our approach to complex specifications is
discussed in Section IV-B.

A. Simple Probabilistic Computation Tree Logic Formulas

The optimal control synthesis algorithms for these formulas
are derived by making a few modifications to an existing model
checking algorithm [27]. We discuss these algorithms later and
make the connection between these algorithms and the maxi-
mum reachability probability problem [28] and the stochastic
shortest path problem [29].

1) Next Operator: For the “next” temporal operator, we
present two algorithms. One finds the optimal control strat-
egy, and the other determines all the satisfying policies. For the
PCTL formulas that include only one P-operator, the optimal
control strategy algorithm is always used. For the formulas that
include more than one probabilistic operator, both algorithms
are used. This becomes clear in Section IV-B.

a) Next Optimal—φ = Pmax=?[Xφ1]: For this operator,
we need to determine the action that produces the maximum
probability of satisfying Xφ1 at each state. Thus, we only need
to consider the immediate transitions at each state, and the prob-
lem reduces to the following:

x∗
qi

= max
a∈A(qi)

∑

qj ∈Sat(φ1)

σqi
a (qj)

μ∗(qi) = arg max
a∈A(qi)

∑

qj ∈Sat(φ1)

σqi
a (qj)

where x∗
qi

denotes the optimal probability of satisfying φ at the
state qi ∈ Q, Sat(φ1) is the set of states that satisfy φ1 , and μ∗

represents the optimal policy.
To solve the aforementioned maximization problem, we de-

fine a state-indexed vector φ1 with entries φ1(qi) equal to 1 if
qi � φ1 and 0 otherwise. To compute the maximum probabil-
ity, first, the matrix “Steps” is multiplied by φ1 . The result is
a vector whose entries are the probabilities of satisfying Xφ1 ,
where each row corresponds to a state–action pair. Then, the
maximization operation is performed on this vector, which se-
lects the maximum probabilities and the corresponding actions
at each state. The resulting control strategy is stationary, and the
complexity of achieving it is one matrix–vector multiplication
followed by a 1-D search.

Similarly, for the case of φ = Pmin=?[Xφ1], we need to de-
termine the actions that produce the minimum probability of
satisfying Xφ1 . This problem is solved with the same method
that is described earlier, but instead of the maximization step, a
minimization operation is performed.

To demonstrate this method, consider the MDP in Fig. 3 and
the formula, i.e., φ = Pmax=?[X(¬R3)]. The property (¬R3)
is satisfied at states q0 , q1 , and q2 ; thus, ¬R3 = (1 1 1 0)T .
Then, Steps · ¬R3 =

q0 ; a1

q1 ; a2
q1 ; a3
q1 ; a4

q2 ; a1
q2 ; a4

q3 ; a1
q3 ; a4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

1
1
1
0

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0.6
0.56
1
1
1
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, xqi
= 1 for i = 0, . . . , 3 and the optimal stationary policy

is μ∗(q0) = a1 , μ∗(q1) = a4 , μ∗(q2) = a1 or a4 , and μ∗(q3) =
a4 .

b) Next all—P��p [Xφ1]: Here, we are interested in find-
ing all the policies that satisfy the formula. The algorithm is
the same as the one for Optimal Next (see Section IV-A1a) up
to the maximization step. After obtaining the vector Steps · φ1 ,
which includes the probabilities of satisfying Xφ1 for each
state–action pair, we eliminate the state–action pairs whose
probabilities are not in the range of �� p. This operation de-
termines all the states, actions, and their corresponding proba-
bilities that satisfy P��p [Xφ1]. This algorithm is only used in
complex PCTL formulas, as explained in Section IV-B.

To illustrate this algorithm, consider the example in
Section IV-A1a with the formula, i.e., φ = P≥0.6 [X(¬R3)]. All
satisfying actions at states q0 , q1 , q2 , and q3 are {a1}, {a2 , a4},
{a1 , a4}, and {a4}, respectively.

2) Bounded Until Operator: For this operator, we also in-
troduce two algorithms: optimal and stationary. The optimal
algorithm produces a history-dependent control policy. The sta-
tionary algorithm results in a stationary policy and is used only
for nested formulas.

a) Bounded Until Optimal—φ = Pmax=?[φ1U≤kφ2]: To
find the probabilities pq

max(φ1U≤kφ2), we first group the MDP
states into three subsets: states that always satisfy the specifica-
tion Qyes , states that never satisfy the specification Qno , and the
remaining states Q? :

Qyes = Sat(φ2)

Qno = Q \ (Sat(φ1) ∪ Sat(φ2))

Q? = Q \ (Qyes ∪ Qno).

Trivially, the probabilities of the states in Qyes and in Qno

are 1 and 0, respectively. The probabilities for the remain-
ing states qi ∈ Q? are defined recursively. If k = 0, then
pqi

max(φ1U≤kφ2) = 0 ∀qi ∈ Q? . For k > 0

xk
qi

= max
a∈A(qi)

⎛

⎝
∑

qj ∈Q ?

σqi
a (qj)xk−1

qi
+

∑

qj ∈Qy e s

σqi
a (qj)

⎞

⎠

∀qi ∈ Q?

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

μ∗k

(qi) = arg max
a∈A(qi)

⎛

⎝
∑

qj ∈Q ?

σqi
a (qj)xk−1

qi
+

∑

qj ∈Qy e s

σqi
a (qj)

⎞

⎠

∀qi ∈ Q?

where xk
qi

and μ∗k
(qi) denote the probability of satisfying φ

and the corresponding optimal action at the state qi ∈ Q? at
time step k, respectively.

Thus, the computation of pq
max(φ1U≤kφ2) can be carried out

in k iterations, each similar to the process that is described for
Optimal Next (see Section IV-A1a). The additional step here is
that after each maximization operation, the entries of the resul-
tant vector corresponding to states Qyes and Qno are replaced
with 1 and 0, respectively. This step is performed to guarantee
that the state-indexed vector always carries the correct prob-
abilities. The complexity of this algorithm is k matrix–vector
multiplication and k maximization operations. The overall pol-
icy is time dependent. That is, for each time index k, an action
is assigned to each satisfying state.

The bounded until the minimization problem, i.e.,
φ = Pmin=?[φ1U≤kφ2], requires to find the probabilities
pq

min(φ1U≤kφ2). This problem is solved with a similar method
presented earlier, where instead of maximization, a minimiza-
tion operation is carried out at each iteration.

To illustrate the optimal algorithm for “bounded until,” again
consider the MDP in Fig. 3 and the PCTL formula, i.e., φ =
Pmax=?[trueU≤2R3]. By inspection, we have Qyes = {q3},
Qno = ∅, and Q? = {q0 , q1 , q2}. By following the method pre-
sented earlier, we compute x1 = (0 0.44 0 1)T and μ∗1

(q1) =
a3 . This means that there exists only one state in Q? that satisfies
the formula in one step or less, q1 with the probability 0.44, and
action a3 . Another iteration results in x2 = (0.44 0.444 0 1)T

and μ∗2
(q0) = a1 and μ∗2

(q1) = a2 . Thus, q1 satisfies the for-
mula with the maximum probability of 0.444 in two steps or
less with selection of actions a2 and a3 in the first and second
time steps, respectively. Moreover, q0 satisfies the formula with
the probability 0.44 in two steps with the selection of actions a1
at q0 in the first time step and a3 at q1 in the second time step.

b) Bounded Until Stationary—φ = P��p [φ1U≤kφ2]:
Here, we introduce a suboptimal algorithm for the U≤k

operator, which produces a stationary control policy. This
algorithm is used for control synthesis of nested formulas,
where a stationary policy is required.

The algorithm is the same as the one for “Bounded Until
Optimal” (see Section IV-A2a) with the exception that the
optimal actions determined at each iteration are fixed for the
remaining iterations. For instance, consider the example in
Section IV-A2a with the formula P>0.4 [♦≤2R3]. After the first
iteration, we find that x1 = (0 0.44 0 1)T and μ(q1) = a3 . For
the next iteration, we only use action a3 at q1 , which results
in x2 = (0.44 0.44 0 1)T with the policy, i.e., μ(q0) = a1 and
μ(q1) = a3 . Thus, the states q0 and q1 satisfy the formula with
the stationary policy, i.e., μ(q0) = a1 and μ(q1) = a3 .

For the PCTL formulas of the form, i.e., φ = P��p [φ1U≤kφ2],
it is theoretically possible to find all the satisfying policies. This
becomes important for completeness of the solution for nested

formulas (see Section IV-B1). However, it only can be achieved
by enumerating every satisfying path and leads to exponential
growth in the complexity of the algorithm. Thus, for large MDPs
and time index k, finding all the satisfying policies might be
impracticable. For this reason, we only use the optimal and
stationary algorithms that are given earlier for U≤k .

3) Unbounded Until Operator—φ = Pmax=?[φ1Uφ2]:
Here, we are interested in computing probabilities pq

max(φ1Uφ2)
over all policies and finding the control strategy that gives rise to
these optimal probabilities. To solve this problem, again, begin
by dividing Q into the three subsets: Qyes (states satisfying
the formula with the probability 1), Qno (states satisfying the
formula with the probability 0), and Q? (the remaining states).
We find Qno by using Algorithm 1 [27].

The computation of optimal probabilities for the states in Q?

is in fact the maximal reachability probability problem [28].
Thus, we can compute these probabilities by solving the fol-
lowing linear programming problem over the set of variables
{xqi

|qi ∈ Q?}:

minimize
∑

qi ∈Q ?

xqi
subject to:

xqi
≥

∑

qj ∈Q ?

σqi
a (qj) . xqj

+
∑

qj ∈Qy e s

σqi
a (qj)

for all qi ∈ Q? and (a, σa) ∈ Steps(qi).
The problem admits a unique optimal solution, and the ac-

tions that give rise to this optimal solution at every state can be
identified. Hence, the stationary control policy that produces the
maximum probability that satisfies the specification can be ob-
tained. The aforementioned linear programming problem can be
solved using classical techniques, such as the simplex method,
ellipsoid method [30], or value iteration. The complexity is a
polynomial of the size of the MDP.

We solve the case of the minimum probability (i.e., φ =
Pmin=?[φ1Uφ2]) in an analogous fashion, using Algorithm 2
in lieu of Algorithm 1 to find the set Qno . This change is nec-
essary because when computing pq

min , Qno contains all those
states that satisfy the formula with the probability 0 for some
policy μ, while in the computation of pq

max , Qno is the set of
states that never satisfy the formula under any policy.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 403

To illustrate this method, again consider the MDP in Fig. 3
with the specification Pmax=? [¬R3 U R2]. Since state q2 is the
only one that satisfies the formula with the probability 1 and
q3 is the only one that fails the formula with the probability
1, we have the Qyes = {q2}, Qno = {q3}, and Q? = {q0 , q1}.
From this, we have that xq2 = 1 and xq3 = 0. The solution to
the linear optimization problem can be found to be xq0 = xq1 =
0.56 under the policy, i.e., μ(q0) = a1 and μ(q1) = a3 .

The “until” operator is in fact the same as U≤k as
k → ∞. With this approach, the algorithm that is given in
Section IV-A2a can also be used to solve this problem. Con-
vergence to a solution with this method is guaranteed by value
iteration. Thus, it is theoretically possible to find all of the satis-
fying policies for the formulas of the form P��p [φ1Uφ2]. How-
ever, as explained in Section IV-A2, because of high complexity,
finding all the solutions is not tractable for even moderately sized
problems. Thus, we only use the optimal algorithm that is given
earlier to solve for such PCTL formulas.

4) Expected Cost Operator—Emin=?[φ]: For the PCTL “ex-
pected cost” operator, we are required to compute the cost
eq

min(φ) and find the corresponding control policy.
To proceed, first, we compute the sets of states Q0 and Q∞,

which have a minimum expected cost of 0 and ∞, respectively,
of reaching a state satisfying φ. Thus, Q0 is the set of those
states that satisfy φ, and Q∞ contains all the states for which
pq

μ(♦φ) < 1 for some policies. Hence, we can identify Q∞ by
using the model checking of the PCTL formula P<1 [♦φ].

The problem of computation of the minimum expected cost
for the remaining states in Q? = Q \ (Q0 ∪ Q∞) is in fact the
stochastic shortest path problem that is introduced in [29] and
modified in [28]. Thus, these probabilities can be obtained by
solving the following linear programming problem over the set
of variables {yqi

| qi ∈ Q?}:

maximize
∑

qi ∈Q ?

yqi
subject to :

yqi
≤ cost(qi, a) +

∑

qj ∈Q ?

σqi
a (qj)yqj

for all qi ∈ Q? and (a, σa) ∈ Steps(qi)

where yqi
denotes the expected cost of reaching a state that

satisfies φ from the state qi . The problem admits a unique opti-
mal solution and the actions that give rise to such optimal costs
at states qi ∈ Q? constitutes a stationary control policy. This
optimal policy is unique.

B. Complex Probabilistic Computation Tree Logic Formulas

Complex PCTL formulas are those that consist of more than
one P- or E-operator. This type of formulas include combina-
tions of P-operators, which allows more expressivity, hence,
specifying complex tasks. This combination of formulas can be
achieved by two methods: 1) nesting P- and E-operators and 2)
using the Boolean operators. The methods of control synthesis
for these formulas are discussed as follows.

1) Nesting P- and E-operators: Since each probabilistic
and expected cost operator is a state formula itself, it is pos-
sible to combine these operators by nesting one inside another.
Such a combination of these operators allows more expres-
sivity in PCTL formulas. For instance, Specifications 2–4 in
Section II, whose PCTL formulas are φ2 , φ3 , and φ4 that are
shown in (3)–(5), respectively, belong to this class of formulas.

It should be noted that we require all inner P-operators to
be of the form P��p [ψ] as opposed to being Pmax=?[ψ]. This
is required because each nested probabilistic operator needs to
identify a set of satisfying states. Generally, the nested formulas
can be written in one of the following forms:

φ = Pmax=?[XφR] (6)

φ = Pmax=?[φLU≤kφR] (7)

φ = Pmax=?[φLUφR] (8)

where φR in (6) and at least one of φL and φR in (7) and (8)
include a P-operator. Subscripts L and R stand for to the left
and right of the temporal operator, respectively.

Our method of producing a control strategy treats each prob-
abilistic operator individually and proceeds as follows. First, we
find the set of initial states QφR

, from which φR is satisfied. A
corresponding control policy μφR

is also determined by apply-
ing the optimal algorithms that are given in Sections IV-A1a,
A2a, and A3.

Next, φL is considered and the set of initial states QφL
and

the corresponding control policy μφL
are determined. For φL ,

it is desired to find all the satisfying stationary policies. This is
important for completeness of our solution. The PCTL formu-
las (7) and (8) require to reach a state in QφR

only by going
through QφL

states. Thus, at QφL
states, all and only the ac-

tions that satisfy φL are to be considered. As discussed in (see
Section IV-A), however, finding all satisfying policies is only
feasible for the temporal operator X because of the computa-
tional complexity of the other operators. For operators U≤k and
U in φL , we use the stationary and optimal algorithms given in
Sections IV-A2b and A3, respectively, to find μφL

.
Then, we construct a new MDP M′ ⊆ M by eliminating the

actions that are not allowed by μφL
from states QφL

. In other
words, we remove all the action choices at states QφL

except
those allowed by μφL

in M. This step is performed to ensure
the satisfaction of the path formula in φL . If this process results

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

in states with no outgoing transition (blocking states), a self-
transition is added to each of these states. This guarantees a new
nonblocking MDP. In the last step, the optimal control algorithm
is applied to the outermost P-operator on the modified MDP
M′ to find the optimal control policy μφ and its corresponding
probability value p0 from the initial state q0 .

It should be noted that, by the nature of the PCTL formulas,
the execution of the optimal policy μφ only guarantees satisfac-
tion of a formula φ, which specifies that the system should reach
a state in QφR

through the states in QφL
. Hence, the path for-

mula that is specified in φR is not satisfied by μφ unless μφR
is

also executed. To ensure the execution of all the specified tasks
in φ and φR , we construct a history-dependent control policy of
the following form:

μ : “Apply policy μφ until a state in QφR
is reached. Then,

apply policy μφR
.”

For the same reason as state earlier, the returned probability
value p0 is the maximum probability of satisfying φ (reaching a
state in QR through states of QL) under μφ from the initial state
q0 . The probability of satisfying the path formula in φR from q0
by executing policy μ cannot be found directly because it is not
known: Which state in QR is reached first? However, since the
probability of satisfying φR from each state in QR is available,
a bound on the probability of satisfying φ and then φR from q0
can be defined. The lower and upper limits of this bound are
p0p

min
φR

and p0p
max
φR

, respectively, where pmin
φR

and pmax
φR

denote
the minimum and the maximum probabilities of satisfying φR

from QφR
, respectively.

Our approach for the control synthesis of nested formulas
is quite general and allows for multiple levels of nested path
formulas. This is because we treat each P- and E-operator indi-
vidually. To find a control strategy for such formulas, a recursive
calling of the aforementioned algorithm is applied starting with
the innermost path operator.

To illustrate control synthesis of complex formulas with
nested P-operators, consider the MDP that is shown in Fig. 5
with the labels L(q0) = {Init} for Initial, L(q2) = L(q4) =
{U} for Unsafe, and L(q1) = {D2} and L(q5) = {D1} for
Destinations 1 and 2, respectively, and the following complex
PCTL formula:

φ = Pmax=?
[
P≤0.3 [XU] U

(
D1 ∧ P≥0.4 [♦≤3D2]

)]
.

In other words, φ means “Find the maximum probability and
its corresponding policy to reach Destination 1 by going only
through the states from which the probability of converging to
an Unsafe state is less than or equal to 0.3, and then with the
probability greater than or equal to 0.4 reach Destination 2 in
less than three steps.”

The algorithm proceeds with finding the initial states
and control policies for φR =

(
D1 ∧ P≥0.4 [♦≤3D2]

)

and φL = P≤0.3 [XU]. By applying the optimal con-
trol algorithm for “Bounded Until” (see Section
IV-A2), we find the satisfying state, i.e., QR = {q5}, with
the control policy, i.e., μR (q0) = a1 and μR (q2) = μR (q4) =
μR (q5) = a2 and the maximum probability of pq5

μR
= 0.42. The

satisfying states of φL are QL = {q0 , q1 , q2 , q4 , q5}, and all the
satisfying actions are μL (q0) = μL (q2) = μL (q5) = {a1} and

Fig. 5. MDP with six states and two actions per state. The labels are L(q0) =
{Init}, L(q1) = {D2 }, L(q2) = L(q4) = {U}, and L(q5) = {D1 }. The
dashed edges correspond to the actions that do not satisfy P≤0 .3 [X U].

Fig. 6. MDP with four states. The dashed edges correspond to the actions that
are eliminated from the new MDP M′. This example illustrates the conserva-
tiveness of the PCTL control synthesis algorithm for complex formulas.

μL (q1) = μL (q4) = {a1 , a2}. This is achieved by applying the
algorithm that is given in Section IV-A1b. The actions that do
not satisfy φL are shown as dashed edges in Fig. 5. Next, we
eliminate these actions and construct a new MDP M′. By per-
forming the optimal control algorithm for “Until” (see Section
IV-A3) on M′, we find the maximum probability of satisfying
φ from the initial state q0 to be pq0

μφ
= 0.0574 with the control

policy, i.e., μφ(q0) = μφ(q2) = a1 and μφ(q1) = μφ(q4) = a2 .
The over all policy μ is “Apply μφ until q5 is reached, and then
apply μR ”. With this policy the probability of satisfying φ and
then φR from q0 is (0.0574) × (0.42) = 0.0241.

Our solution for nested P-operator formulas is conservative.
As mentioned earlier, for completeness of the solution, we need
to consider all the actions that satisfy φL at each state of QφL

.
However, because of computational complexity, we use the sta-
tionary and optimal algorithms forU≤k andU operators, respec-
tively, which return only the optimal actions as opposed to all
satisfying actions. Hence, our solution for the formulas whose
φL include “bounded until” or “unbounded until” operators is
not complete. In fact, for these formulas, the algorithm may re-
turn a suboptimal policy or may not find a solution at all while
one might exist. This is demonstrated in the following example.

Consider the MDP in Fig. 6 and the formula

φ = Pmax=?[P≥0.5 [♦≤2D1] U D2].

Since φR does not include a P-operator, we begin with ap-
plying the stationary algorithm for bounded until on φL =
P≥0.5 [♦≤2D1] and obtain QL = {q0 , q1} and μL (q0) = a2 and

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 405

μL (q1) = a1 . Next, we construct a new MDP M′ by eliminat-
ing action a1 from the state q0 and apply the optimal algorithm
for U . However, as shown in Fig. 6, there is no path to q2 from q0
in M′. Thus, the algorithm will return zero as a solution to the
maximum probability of achieving φ. Nevertheless, it is clear
that a solution exists since q0 satisfies φL with both actions a1
and a2 . Hence, the optimal solution to this problem is 0.5 with
the policy, i.e., μ(q0) = μ(q1) = a1 .

For the group of complex PCTL formulas, where φL does
not include U≤k or U , our solution is complete. This group of
specifications includes many natural motion planning tasks that
are useful in robotic applications. Examples include “Eventu-
ally reach A and then reach B, while always avoiding C” or
“Eventually reach A through regions from which the probability
of convergence to C is less than 0.3.”

2) CombiningP-Operators by Boolean Operators: Another
method to construct complex PCTL formulas is to combine
P-operators by the Boolean operators’ conjunction “∧” and
disjunction “∨.” These formulas are of the form, i.e., φ = φ1 ∧
φ2 and φ = φ1 ∨ φ2 , where both φ1 and φ2 include a path
formula. In other words, φ1 and φ2 include P��p [ψ].

To solve for formulas, i.e., φ = φ1 ∧ φ2 , first, we find the
satisfying states Qφ1 and Qφ2 and their corresponding control
policies μφ1 and μφ2 . In the case that φ1 or φ2 includes the
temporal operator X (“next”), all the satisfying policies are
considered. If φ1 or φ2 includes the temporal operator U≤k

(“bounded until”), the stationary policy is considered. For the
case of “until,” the optimal control policy is determined. The
solution exists only for the initial states, i.e., Qφ = Qφ1 ∩ Qφ2 ,
given that μφ1 and μφ2 assign the same actions to these states.
If Qφ1 and Qφ2 do not intersect, or the assigned actions for the
states of Qφ by μφ1 and μφ2 differ, no solution exists.

For the formulas, i.e., φ = φ1 ∨ φ2 , we find the satisfying
states Qφ1 and Qφ2 and their corresponding optimal control
policies μφ1 and μφ2 . The policy that gives rise to the highest
probability of satisfying the formula from the initial state q0 is
returned as a solution.

Similar to nestedP-operators, our method of finding a control
policy for the complex specifications that include a combina-
tion of P-operators with the Boolean operator conjunction “∧”
is sound but not complete. In other words, the algorithm will
only produce correct solutions but may fail to find a solution
even though one exists. That is because we use stationary and
optimal algorithms for the temporal operators “bounded until”
and “until,” respectively, which can only return the optimal ac-
tions regardless of the bound that is specified in the P-operator.

C. Complexity

The overall time complexity for PCTL control synthesis for
an MDP from a formula φ is linear in the size of the formula
and the polynomial of the size of the model. To see this, we first
define the size of a formula to be the sum of occurrences of P-
and E-operators and the size of an MDP model to be |M| =∑

qi ∈Q |A(qi)|, which is the total number of actions available
at all the states. In PCTL control synthesis, we are required
to consider each operator of φ separately, thus the complexity

Fig. 7. Schematic representation of a larger indoor environment. It consists of
13 corridors (C1 , . . . , C13) and eight intersections (I1 , . . . , I8). The properties
that are satisfied at the regions are shown between curly brackets inside the
regions S = Safe, R = Relatively safe, U = Unsafe, M1 = Medical supply type
1, M2 = Medical supply type 2, D1 = Destination 1, and D2 = Destination
2.

becomes linear in the size of the formula. As mentioned earlier,
the computational complexity of the “next” operator is only a
matrix–vector multiplication followed by a 1-D search, while
for the “bounded until,” it is k matrix–vector multiplication and
maximization/minimization operations. However, k is usually
small in PCTL formulas. Hence, the most expensive cases are
the “until” and “expected cost” operators, whose algorithms
require solving linear optimization problems of the size of the
model |M|. This be can done in polynomial time by using, e.g.,
the ellipsoid methods [30].

V. EXPERIMENTS AND SIMULATIONS

To test the algorithms that are proposed in this paper, we
deployed a robot from two simple and three complex PCTL
specifications utilizing our RIDE shown in Fig. 1. The RIDE
includes an experimental platform and a simulation tool. For
the simple specifications, we performed simulations using the
RIDE simulator with a small environment whose topology is
schematically shown in Fig. 2. For the complex specifications,
we considered a larger and more complex environment (see
Fig. 7) in the RIDE simulator. To verify that the simulation
results match with the real experiments, we also performed
experimental trials on the small environment. We showed that
the experimental and simulation results were statistically from
the same distributions with 95% confidence by using chi-square
and Fisher exact tests [31].

A. Experimental Platform and Simulation Tool

Our RIDE (see Fig. 1) consists of an environment with RFID
tags and a robot that can navigate in the environment au-
tonomously. The environment topology is easily reconfigurable

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

406 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

and consists of corridors of various widths and lengths and
intersections of several shapes and sizes. Each corridor and in-
tersection is bounded by a line of RFID tags (white patches in
Fig. 1 (left) and small ID numbers in Fig. 2) meant to trigger a
transition event. The correct reading of such an event guarantees
that the robot knows precisely its current region at any time. The
mobile platform is an iRobot Create that is fitted with a Hokoyu
URG-04LX laser range finder, APSX RW-210 RFID reader, and
an MSI Wind U100-420US netbook. Commands are provided
to the iCreate from Matlab using the iRobot Open Interface and
the iCreate Matlab Toolbox [32]. The communications between
the sensors, netbook, and robot occur through the use of USB
connections.

The robot’s motion is determined by specifying a forward
velocity and angular velocity. At a given time, the robot imple-
ments one of the following four controllers (motion primitives):
FollowRoad, GoRight, GoLeft, and GoStraight. Each of these
controllers operates by obtaining data from the laser scanner
and calculating a “target angle.” The target angle represents the
desired heading of the robot in order to execute the specified
command, and this angle is translated into a proportional con-
trol law for angular velocity. The target angle in each case is
found by utilizing two laser data points at certain angles that
are relative to the robot’s heading (different for each controller)
and finding the midpoint between them. The target angle is then
defined as the angle between the robot’s heading and a line
connecting the midpoint and the center of the robot. For each
of these four controllers, the forward velocity control specified
is based on the distance to the nearest obstacle in any direc-
tion. Therefore, as the robot approaches an obstacle, it will slow
down. A cap is placed on the maximum velocity to keep the
robot at reasonable speeds in more open areas of the environ-
ment. Each controller also provides for obstacle avoidance and
emergency actions.

To test the robot control strategies, as well as to generate
sample data necessary for the construction of the MDP model
of the robot motion (see Section V-B), we use a RIDE simulator
(see Fig. 8). The simulator was designed to resemble the phys-
ical setup very closely by emulating experimentally measured
response times, sensing and control errors, and noise levels and
distributions in the laser scanner readings. The configuration of
the environment in the simulator is easily reconfigurable to cap-
ture changes in the topology of the experimental environment.

B. Construction and Validation of the Markov Decision Process
Model

The small environment (see Fig. 2) consists of nine corridors
and two four-way and three three-way intersections. The larger
environment (see Fig. 7) has 13 corridors and two four-way and
six three-way intersections. In the corridors only the controller
FollowRoad is available. The controllers that are available at
four-way intersections are GoLeft, GoRight, and GoStraight,
while at the three-way intersections, only GoLeft and GoRight
controllers are available.

In order to use an MDP to model the motion of the robot, we
must ensure that the results of an action at a state depends only

Fig. 8. Snapshots from the RIDE simulator. The robot is represented as a
white disk. The arrow inside the white disk shows the robot’s heading. The
inner circle around the robot represents the “emergency” radius (if there is an
obstacle within this zone, the emergency controller is used). The outer circle
represents the radius within which the forward speed of the robot varies with
the distance to the nearest obstacle. If there are no obstacles in this area, the
robot moves at the maximum speed. The red dots are the laser readings that are
used to define the target angle. (a) The robot centers itself on a stretch of road
by using FollowRoad. (b) The robot applies GoRight in an intersection but fails
to turn right because the laser readings do not properly identify the road on the
right. (c) The robot applies GoLeft in an intersection and successfully turns left
because the laser readings fall inside the road.

on the current state. It is intuitively clear from the environments
in Figs. 2 and 7 that the orientation of the robot in a region
depends on the region it came from. Therefore, the result of an
action will depend on the previous region. To accommodate this
dependence, we define the states of the MDP to be the ordered
pairs of regions. For example, the state I1–C2 means that the
robot was on C1 and is now on I2 .

The set of actions that are available at a state of the MDP is
the set of controllers that are available at the second region of the
state. For example, when in the state C1–I2 , only those actions
from the region I2 are allowed, which are GoLeft, GoRight,
and GoStraight enabling transitions to the states I2–C4 , I2–C3 ,
and I2–C6 , respectively. When designing the robot controllers,
we also made sure that the robot did not get stuck in a region,
i.e., the robot can only spend a finite amount of time in each
region. Thus, the states are of the form intersection–corridor
and corridor–intersection (states such as Ii–Ii or Ci–Ci do not
exist). The resulting MDP for the small environment that is
shown in Fig. 2 has 34 states, while the larger environment (see
Fig. 7) includes 52 states.

To obtain transition probabilities, we performed a total of 500
simulations for each controller that is available in each MDP
state. In each trial, the robot was initialized at the beginning
of the first region of each state. If this region was a corridor,
then the FollowRoad controller was applied until the system
transitioned to the second region of the state. If the first region
was an intersection then the controller most likely to transition

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 407

the robot to the second region was applied. Once the second
region was reached, one of the allowed actions was applied
and the resulting transition was recorded. The results were then
compiled into the transition probabilities.

The set of properties of the MDP was defined to be Π =
{S,R,U,M1 ,M2 ,D1 ,D2}, where S = Safe, R = Relatively
safe, U = Unsafe, M1 = Medical supply type 1, M2 = Medical
supply type 2, D1 = Destination 1, and D2 = Destination 2.
Each state of the MDP was mapped to the set of properties that
were satisfied at the second region of the state.

Finally, to capture the cost of applying an action at a state
of the MDP, we assigned a nonnegative integer to each control
primitive. In particular, we defined the costs of taking actions
FollowRoad, GoRight, GoStraight, and GoLeft to be 0, 1, 2, and
3, respectively, which are independent of the state of the MDP.

C. Case Studies

As mentioned earlier, we considered two simple and three
complex motion specifications in the environments that are
shown in Figs. 2 and 7, respectively. We obtained the optimal
control strategy and probability/expected cost value for each
specification using our PCTL control synthesis algorithm. To
verify these theoretical results, we performed simulation trials
using the RIDE simulator. We also deployed the robot with the
control strategies from the simple specifications in the RIDE’s
experimental platform to confirm both simulation and theoreti-
cal values.

The simple motions specifications that we considered in the
small environment (see Fig. 2) are as follows.

Specification 5: Reach Destination 1 by driving through either
only Safe regions or through Relatively safe regions only if
Medical Supply 1 or 2 is available at such regions.

Specification 6: Reach Destination 1 by driving through Safe
or Relatively safe regions only.

The complex specifications that are given over the properties
of the larger environment (see Fig. 7) are as follows.

Specification 7: Reach Destination 1 by going through the
regions from which the probability of converging to a Relatively
safe region is less than 0.50 and always avoiding Unsafe regions.

Specification 8: Reach Destination 1 by avoiding Unsafe re-
gions and regions that are Relatively safe but do not have Medi-
cal supply 1 and then with the probability greater than or equal
to 0.50 reach Destination 2 by driving through regions that are
Safe or at which Medical supply 2 is available.

Specification 9: Reach Destination 1 and then with the prob-
ability 1 reach a region at which Medical supplies 1 and 2 are
available, while minimizing the total amount of the expected
cost of the control actions.

Given that we are interested in the policy that produces the
maximum probability of satisfying Specifications 5, 6, 7, and 8,
they translate naturally to the PCTL formulas φ5 , φ6 , φ7 , and
φ8 , respectively, where

φ5 : Pmax=? [(S ∨ (R ∧ (M1 ∨ M2)))U D1]

φ6 : Pmax=? [(S ∨ R)U D1]

φ7 : Pmax=? [(P<0.50 [X R] ∧ ¬U)U D1]

TABLE I
OBTAINED RESULTS FOR SPECIFICATIONS 5–9

φ8 : Pmax=? [¬U ∧ ¬(R ∧ ¬M1)U (D1∧
P≥0.50 [(S ∨ M2)U D2])].

For Specification 9, we are interested in the policy that produces
the minimum expected cost. Thus, it directly translates to the
PCTL formula

φ9 : Emin=? [D1 ∧ P≥1 [♦ (M1 ∧ M2)]].

1) Theoretical Results: Assuming that the robot is initially
at C1 and is oriented toward I2 in both environments, we com-
puted the maximum probabilities to be 0.227 and 0.674 for
Specifications 5 and 6, respectively, in the small environment.
In the large environment, the maximum probability of satis-
faction for Specification 7 was 0.152. For Specification 8, we
found the maximum probability of reaching Destination 1 to be
0.456, and the probability of reaching the first destination and
then the second destination determined in this specification was
0.259. It should be noted that we were able to produce an exact
number instead of a bound for the probability of satisfaction of
the nested formula φ8 because even though two states satisfy
D1 (I8–C13 and I7–C13), only one (I8–C13) is reachable from
the initial state. Finally, the optimal policy that satisfies Speci-
fication 9 produces the minimum expected cost of 5.43. These
theoretical values along with the simulation and experimental
results are tabulated in Table I.

2) Simulation Results: To confirm the predicted probabili-
ties and expected cost, we performed 500 simulations for each
of the optimal control strategies. The simulations showed that
the probabilities of satisfying φ5 and φ6 were 0.260 and 0.642,
respectively, in the environment that is shown in Fig. 2. For
Specification 7, the probability of satisfying φ7 was 0.118 in
the environment that is shown in Fig. 7. The rate of successful
runs for the strategy that is obtained from φ8 was 0.435 to reach
Destination 1 and 0.244 to reach Destination 1 and then Des-
tination 2. The average total cost of satisfying φ9 was 5.27. It
should be noted that the small discrepancy between the theoret-
ical values and simulation results is likely because of remaining
non-Markovian behavior of the transitions.

3) Experimental Results: In order to verify that the simu-
lation results hold for the motion of the robot in the RIDE
experimental platform, we carried out experimental runs in the
small environment. As the first step, we made sure that the MDP
that is obtained through the extensive simulation procedure was
a good model for the actual motion of the robot in the ex-
perimental platform. For this, we randomly selected four transi-
tion probability distributions and experimentally determined the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

408 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Fig. 9. Snapshots (to be read left-to-right and top-to-bottom) from a movie showing a robot motion that is produced by applying the control strategy maximizing
the probability of satisfying Specification 2 (9).

transition probabilities. We then compared the simulated-based
and experimental-based probabilities using either the Fisher ex-
act test when only a few experimental trials were available or
the chi-square test for homogeneity if there were a large number
of experimental trials. These tests confirmed that the experi-
mental data of four randomly selected transition probabilities
were not significantly different from simulation results with a
minimum certainty of 0.95. Next, we deployed the robot in the
small environment of RIDE for strategies that are obtained from
Specifications 5 and 6. This experiment was repeated 35 times
for each control strategy. It was inferred that the probabilities
of satisfying φ5 and φ6 were 0.229 and 0.629, respectively. By
using the chi-square and Fisher’s exact statistical tests, we con-
cluded that the frequency of trials satisfying the specifications
in the experiment matched the simulation data with a minimum
certainty of 0.95.

Snapshots from a movie showing a motion of the robot that
is produced by the control strategy maximizing the probability
of satisfying Specification 6 are shown in Fig. 9. With reference
to the notation that are given in Fig. 2, it can be seen that the
robot follows the route C1I2C3I1C5I4C8I5C9 . It can be easily
seen that this run satisfies Specification 2 (formula φ2), because
S or R is true until D1 is satisfied (at C9). This movie, together
with other movies of experimental and simulation trials that are
obtained by applying the aforementioned control strategies, is
available for download from [26].

D. Time Complexity

The control synthesis computations for the specifications that
are given in formulas φ8 and φ9 were computationally the most
expensive, i.e., because they required the solution of two linear
programming problems on the large MDP (with 52 states and
the size of 86). It took 0.053 and 0.059 s to synthesize control
policies for φ8 and φ9 , respectively, on a desktop computer
with 2 Intel Xeon Quad-Core processors at 2.66 GHz with 3 GB
RAM. However, the construction of the MDP through the Monte
Carlo simulation took much longer (about 8 h). Considering

the fact that the construction of the model is done offline and
the computational complexity of the PCTL control synthesis
algorithm is a polynomial in time, the computational framework
that is described in this paper is reasonably scalable to more
complex scenarios with larger environments. For example, this
PCTL control synthesis method was utilized to solve a vehicle
control problem in a hostile environment with more than 1000
states in its MDP model [33]. The computing time of the control
synthesis from a nested PCTL formula of the form similar to φ8
was 4 min on the same desktop computer.

VI. CONCLUSION

A computational framework has been presented for automatic
deployment of a mobile robot from a temporal logic specifica-
tion about properties of interest that are satisfied at the regions
of a partitioned environment. The motion of the robot has been
modeled as an MDP and the robot deployment problem has been
mapped to the problem of generation of an MDP control strat-
egy maximizing the probability of satisfying a PCTL formula.
For the latter, a control synthesis algorithm has been presented
that accepts all PCTL formulas. The method with simulation
and experimental results has been illustrated in our RIDE.

This study can be extended to at least three directions in the
future. One possible future work is to relax the assumption that
the robot can determine its current region in the environment.
The removal of this assumption results in a POMDP model of
the motion of the robot in the environment. Thus, the problem
becomes: How to generate a control strategy from a temporal
logic formula for a POMDP? Another possible future direction
is to extend the presented computational framework to a multia-
gent case, where a group of mobile robots can be deployed from
a specification that is given as a temporal logic statement with
probabilistic guarantees. This study can also be improved by de-
veloping an automated abstraction framework, which takes the
dynamics and noise model of the robot and the map of the parti-
tioned environment as input to construct an exact MDP model.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: TEMPORAL LOGIC MOTION PLANNING AND CONTROL WITH PROBABILISTIC SATISFACTION GUARANTEES 409

ACKNOWLEDGMENT

The authors would like to thank J. Wasniewski, K. Ryan, and
B. Chang-Yun Hsu from the Boston University, Boston, MA, for
their help with the construction of Robotic InDoor Environment
(RIDE), the programming of Roomba, and the development of
the RIDE simulator.

REFERENCES

[1] M. Lahijanian, J. Wasniewski, S. Andersson, and C. Belta, “Motion plan-
ning and control from temporal logic specifications with probabilistic sat-
isfaction guarantees,” in Proc. IEEE Int. Conf. Robot. Autom., Anchorage,
AK, 2010, pp. 3227–3232.

[2] M. Lahijanian, S. B. Andersson, and C. Belta, “Control of Markov deci-
sion processes from PCTL specifications,” presented at the Amer. Control
Conf., San Francisco, CA, 2011.

[3] S. M. LaVall, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[4] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Dept. Comput. Sci., Iowa State Univ., Ames, IA, Tech. Rep.
98–11, 1998..

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[6] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics
by a synergistic combination of layers of planning,” IEEE Trans. Robot.,
vol. 26, no. 3, pp. 469–482, Jun. 2010.

[7] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem,” Int. J. Robot. Res., vol. 25,
no. 4, pp. 317–342, 2006.

[8] K. Hauser, T. Bretl, J. C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” Int. J. Robot. Res., vol. 27,
no. 11–12, pp. 1325–1349, 2008.

[9] K. Hauser and J. C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” in Proc. Int. Workshop Algorithmic Found. Robot.,
Guanajuato, Mexico, 2008, pp. 615–630.

[10] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot motion
planning: A timed automata approach,” in Proc. IEEE Int. Conf. Robot.
Autom., New Orleans, LA, Apr. 2004, pp. 4417–4422.

[11] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of LTL safety
properties in hybrid systems,” in Proc. 15th Int. Conf. Tools Algo. Con-
struct. Anal. Syst.: Held Part Joint Eur. Conf. Theory Practice Softw.,
2009, pp. 368–382.

[12] H. K. Gazit, G. Fainekos, and G. J. Pappas, “Where’s Waldo? sensor-based
temporal logic motion planning,” in Proc. IEEE Conf. Robot. Autom.,
Rome, Italy, 2007, pp. 3116–3121.

[13] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Automat.
Control, vol. 53, no. 1, pp. 287–297, Feb. 2008.

[14] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon con-
trol for temporal logic specifications,” in Proc. Int. Conf. Hybrid Syst.,
Comput. Control, 2010, pp. 101–110.

[15] E. M. M. Clarke, D. Peled, and O. Grumberg, Model Checking. Cam-
bridge, MA: MIT Press, 1999.

[16] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in Proc. Int. Conf. Verification, Model Checking Abstract Interpretation,
Charleston, SC, 2006, pp. 364–380.

[17] M Kloetzer and C. Belta, “Dealing with non-determinism in sym-
bolic control,” in Hybrid Systems: Computation and Control: 11th In-
ternational Workshop (Lecture Notes in Computer Science), M. Egerst-
edt and B. Mishra, Eds. Berlin, Germany: Springer, 2008, pp. 287–
300.

[18] D. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, Bel-
mont, MA: Athena Scientific, 1995.

[19] J. Pineau, G. Gordon, and S. Thrun, “Anytime point-based approximations
for large POMDPs,” J. Artif. Intell. Res., vol. 27, pp. 335–380, 2006.

[20] N. L. Zhang and W. Zhang, “Speeding up the convergence of value iter-
ation in partially observable Markov decision processes,” J. Artif. Intell.
Res., vol. 14, pp. 29–51, 2001.

[21] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-checking
algorithms for continuous-time Markov chains,” IEEE Trans. Softw. Eng.,
vol. 29, no. 6, pp. 524–541, 2003.

[22] C. Baier, “On algorithmic verification methods for probabilistic systems,”
Ph.D. dissertation, Fakultät für Mathematik & Informatik, Universität
Mannheim, 1998.

[23] L. de Alfaro, Model Checking of Probabilistic and Nondeterministic Sys-
tems. New York: Springer-Verlag, 1995, pp. 499–513.

[24] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with Markov motion un-
certainty,” presented at the Robot., Sci. Syst., Conf., Atlanta, GA, 2007.

[25] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” Int. J. Softw. Tools
Technol. Transf., vol. 6, no. 2, pp. 128–142, 2004.

[26] Robotic indoor environment (RIDE). (2010). [Online]. Available:
hyness.bu.edu/ride/

[27] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical
Techniques for Analyzing Concurrent and Probabilistic Systems, (CRM
Monograph Series 23), P. Panangaden and F. van Breugel, Eds., Provi-
dence, RI, 2004.

[28] L. de Alfaro, “Formal verification of probabilistic systems,” Ph.D. disser-
tation, Dept. Comput. Sci., Stanford Univ., Stanford, CA, 1997.

[29] D. P. Bertsekas and J. N. Tsitsiklis, “An analysis of stochastic shortest
path problems,” Math. Oper. Res., vol. 16, pp. 580–595, 1991.

[30] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Belmont, MA: Athena Scientific, 1997.

[31] A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez, L. Rodriguez-
Cardozo, N. Ramos-Delgado, and R. Garcia-Sanchez. (2004).
Fisherextest: Fisher’s exact probability test. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/5957

[32] J. M. Esposito and O. Barton. (2008). Matlab toolbox for the
iRobot create. [Online]. Available: www.usna.edu/Users/weapsys/
esposito/roomba.matlab/

[33] I. Cizelj, X. C. Ding, M. Lahijanian, A. Pinto, and C. Belta, “Probabilis-
tically safe vehicle control in a hostile environment,” presented at the Int.
Fed. Automat. Control 18th World Congr., Milan, Italy, 2011.

Morteza Lahijanian (S’11) received the B.S. de-
gree in bioengineering from University of California,
Berkeley, in 2004 and the M.S. degree in mechanical
engineering from Boston University, Boston, MA, in
2009, where he is currently working toward the Ph.D.
degree in mechanical engineering.

His research interests include dynamics and con-
trol theory with applications in robotics and systems
biology, motion planning with discrete abstraction,
formal synthesis, and hybrid systems.

Sean B. Andersson (M’03) received the B.S. de-
gree in engineering and applied physics from Cor-
nell University, Ithaca, NY, in 1994, the M.S. degree
in mechanical engineering from Stanford University,
Stanford, CA, in 1995, and the Ph.D. degree in elec-
trical and computer engineering from the University
of Maryland, College Park, in 2003.

He was a Project Engineer with AlliedSignal
Aerospace in 1995, a Senior Controls Engineer with
Aerovironment during 1996–1998, and a Lecturer in
applied mathematics with Harvard University during

2003–2005. He is currently an Assistant Professor of mechanical engineering
and of systems engineering with Boston University, Boston, MA. His research
interests include systems and control theory with applications in scanning probe
microscopy, dynamics in molecular systems, and robotics.

Dr. Andersson received the National Science Foundation CAREER award in
2009.

Calin Belta (M’03) received the B.S. and M.Sc. de-
grees in control and computer science from the Tech-
nical University of Iasi, Iasi, Romania, and the M.Sc.
and Ph.D. degrees in mechanical engineering from
the University of Pennsylvania, Philadelphia.

He is currently an Associate Professor with Boston
University, Boston MA. His research interests include
dynamics and control, motion planning, robotics, and
systems biology.

Dr. Belta is an Associate Editor of the SIAM
Journal on Control and Optimization and of the

IEEE Robotics and Automation Society and Control Systems Society Con-
ference Editorial Boards. He received the Air Force Office of Scientific Re-
search Young Investigator Award in 2008 and the National Science Foundation
CAREER Award in 2005.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:47:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

