
320 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

Temporal Logic Planning and Control of Robotic
Swarms by Hierarchical Abstractions

Marius Kloetzer, Student Member, IEEE, and Calin Belta, Member, IEEE

Abstract—We develop a hierarchical framework for planning
and control of arbitrarily large groups (swarms) of fully actuated
robots with polyhedral velocity bounds moving in polygonal
environments with polygonal obstacles. At the first level of hi-
erarchy, we aggregate the high-dimensional control system of
the swarm into a small-dimensional control system capturing
its essential features. These features describe the position of the
swarm in the world and its size. At the second level, we reduce
the problem of controlling the essential features of the swarm to a
model-checking problem. In the obtained hierarchical framework,
high-level specifications given in natural language, such as linear
temporal logic formulas over linear predicates in the essential
features, are automatically mapped to provably correct robot
control laws. For the particular case of an abstraction based on
centroid and variance, we show that swarm cohesion, interrobot
collision avoidance, and environment containment can also be
specified and automatically guaranteed in our framework. The
obtained communication architecture is centralized.

Index Terms—Control, model checking, motion planning,
robotic swarms, temporal logic.

I. INTRODUCTION

AS A RESULT of recent technological advances, it is now
possible to build teams of hundreds of small and inex-

pensive ground, air, and underwater robots. Such swarms of
autonomous agents provide increased robustness to individual
failures, the possibility to cover wide regions, and improved
computational power through parallelism. However, planning
and controlling such large teams of agents with limited commu-
nication and computation capabilities is a hard problem that re-
ceives a lot of attention from various communities. Even though,
in some cases, it was observed or proved that local interaction
rules in distributed natural or engineered multiagent systems
produce global behavior, the fundamental questions still remain
to be answered. What are the essential features of a large group?
How do we specify its behavior? How can we generate control
laws for each agent so that a desired group behavior is achieved?

The starting point for this paper is the observation that tasks
for large groups evolving in complex environments are “qualita-
tively” specified. This notion has a dual meaning. First, a swarm
is naturally described in terms of a small set of “features,” such

Manuscript received March 18, 2006; revised July 28, 2006. This paper was
recommended for publication by Associate Editor J. Wen and Editor L. Parker
upon evaluation of the reviewers’ comments. This work was supported in part
by the National Science Foundation under Grant CAREER 0447721 and under
Grant 0410514. This paper was presented in part at the IEEE International Con-
ference on Robotics and Automation (ICRA), Orlando, FL, 2006.

The authors are with the Center for Information and Systems Engineering,
Boston University, Boston, MA 02446 USA (e-mail: kmarius@bu.edu;
cbelta@bu.edu).

Color versions of Figs. 2–4 are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TRO.2006.889492

as shape, size, and position of the region in the plane or space
occupied by the robots, while the exact position or trajectory
of each robot is not of interest. Second, the accomplishment of
a swarming mission usually does not require exact values for
swarm features, but rather their inclusion in certain sets. For ex-
ample, in the planar case, if the robots are constrained to stay
inside an ellipse, there is a whole set of values for the pose and
semi-axes of the ellipse which guarantees that the swarm will
not collide with an obstacle of given geometry. Moreover, spec-
ifications for mobile robots are often temporal, even though time
is not necessarily captured explicitly. For example, a swarm
might be required to reach a certain position and shape even-
tually, or maintain a size smaller than a specified value until
a final desired value is achieved. Collision avoidance among
robots, obstacle avoidance, and cohesion are required always.
In a surveillance mission, a certain area should be visited “in-
finitely often.”

Motivated by the above ideas, in this paper, we present a com-
putational method for planning and control of robotic swarms
based on abstractions. Our framework is hierarchical. At the
first level, we construct a continuous abstraction by extracting
a small set of features of interest of the swarm. Even though
the treatment in this paper is quite general, the focus is on a
3-D abstraction consisting of the mean and variance of the po-
sitions of the team, which lead to a description of the swarm
position and size. At the second level of hierarchy, we map arbi-
trary linear temporal logic 1 formulas over linear pred-
icates in the abstract variables to a control strategy in the ab-
stract space, which is eventually projected back to the individual
robots. We show that for this particular abstraction, and under
the assumption that the environment and the obstacles are polyg-
onal, containment in the environment, swarm cohesion, and in-
terrobot and obstacle collision avoidance translate naturally to

formulas over linear predicates in the continuous ab-
straction space. We also show that the semantics of LTL for-
mulas over linear predicates in the abstract space is rich enough
to capture temporal specifications such as the examples at the
end of the previous paragraph. Our framework therefore allows
for a rich spectrum of swarm specifications.

One way of reducing the dimension of the control problem
for a large number of robots is to constrain them to a rigid
virtual structure [1]. In this case, the problem is reduced to a
left invariant control system in SE(2) or SE(3). Most of the
recent works on stabilization and control of virtual structures
model formations using formation graphs [2]–[4]. Virtual struc-
tures unnecessarily constrain the problem, making this approach

1LTL is a propositional linear temporal logic that does not allow for the
“next” temporal operator. Our motivation for this choice and more details are
included in Section II.

1552-3098/$25.00 © 2007 IEEE
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

KLOETZER AND BELTA: TEMPORAL LOGIC PLANNING AND CONTROL OF ROBOTIC SWARMS BY HIERARCHICAL ABSTRACTIONS 321

inappropriate for tasks such as obstacle avoidance, passing of
narrow tunnels, etc. The rigidity assumption is relaxed in an at-
tempt to produce optimal trajectories in a geometrical frame-
work in [5], however, the amount of computation becomes pro-
hibitively large. The notions of invariance with respect to world
frames and permutations of robots are properly approached in
shape theory in the well-known “ -body problem,” where it is
agreed that the coordinates divide into internal (shape) and ori-
entational coordinates. However, in some applications, it is not
clear how to construct shape coordinates explicitly, unless they
are local, or the problem is restricted to three or four bodies
[6]. Some of these ideas were applied to robotics [7], [8]. The
problem of constructing an abstract description of the swarm
with a product structure of a group and a reduced shape space
is approached in [9].

The continuous abstraction defined in this paper is inspired
from [9]. One of the contributions of this paper is defining and
proving its consistency. This paper also relates to results on re-
ducing the dimension of control systems, such as the ones re-
ported in [10]–[12]. However, as opposed to [10], where the
approach is time-abstract, our notion of consistency captures
time explicitly. The problem of explicitly computing a timed
trajectory for a control system from a trajectory of a lower di-
mensional (abstract) control system is considered in [11]. While
focusing on simpler control systems, we generate trajectories
for whole equivalence classes produced by the abstraction map,
rather than one particular trajectory. From this point of view,
our aggregation produces a bisimulation quotient, and relates to
using foliations for constructing quotients as in [12] and [13].

The discrete abstraction of this paper is an application of re-
sults from [14], and it also relates to [15]. Recent works advo-
cating the use of discrete abstractions and temporal logic in mo-
bile robotics include [16]–[19]. One of the main contributions
of this paper is to show that a large class of robotic swarm speci-
fications translate naturally to linear temporal logic (LTL), and a
fully automated framework for generation of robot control laws
can be constructed. Moreover, as far as we know, this paper is
the first example of a combination of continuous and discrete
abstractions for groups of robots.

II. PRELIMINARIES

In this section, we first review the syntax and semantics of
the linear temporal logic . The reader is referred to [20]
for more details. We then define the semantics of this logic over
continuous curves. A more formal treatment can be found in our
previous work [14].

A. Linear Temporal Logic

Let be a finite set of atomic
propositions.

Definition 1: [Syntax of formulas] A linear tem-
poral logic formula over is recursively defined as
follows:

• every atomic proposition , is a formula;
and

• if and are formulas, then , , are
also formulas.

The semantics of formulas are given over , words
in the power set (infinite sequences of sets of propositions)
of the form , where , .

Definition 2: [Semantics of formulas] The satisfac-
tion of formula at position of word , denoted by

, is defined recursively as follows:
• if ;
• if ;
• if or ;
• if there exists a such that

and for all , we have .
A word satisfies an formula , written as , if

.
The symbols and stand for negation and disjunction. The

Boolean constants and are defined as and
. The other Boolean connectors (conjunction),

(implication), and (equivalence) are defined from and in
the usual way. The temporal operator is called the until op-
erator. Formula intuitively means that (over a word)
will eventually become true and is true until this happens.
Two useful additional temporal operators, “eventually” and “al-
ways,” can be defined as and , re-
spectively. Formula means that becomes eventually true,
whereas indicates that is true at all positions of . More
expressiveness can be achieved by combining the temporal op-
erators. Examples include (is true infinitely often) and

(becomes eventually true and stays true forever).

B. Semantics Over Continuous Curves

Let us now assume that the propositions in are strict
linear inequalities in , , i.e., is given by

(1)

where and . Let be a (pos-
sibly nonsmooth) continuous curve in (is allowed to have
self-intersections). We also assume that and

for all , where
(if it exists). The semantics of an formula in over a
continuous curve follows naturally from the above definitions.
A word generated by is a sequence ,

, obeying the following rules: 1) is the
set of all atomic propositions satisfied by ; 2) a symbol

, is added to if there exist ,
so that satisfies all the propositions in

, satisfies all the propositions in , and sat-
isfies only propositions from , for all ;
3) an infinite number of symbols , is added to if
the region represented by is a “sink” for trajectory , in the
sense that such that all and only propositions in
are satisfied by . Finally, a trajectory
satisfies , written as if and only if (as defined
above).

Intuitively, a word produced by trajectory is an enumeration
of the sets of propositions from satisfied by while time
evolves. Some illustrative examples are given in Fig. 1, where

, are open half-spaces, and ,
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

322 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

Fig. 1. Illustrative examples of continuous trajectories in .

, , ,
, . Continuous trajectory

starts from the region where the predicates in are true
and converges to a point in the region where the predicates
in are true. By the above definition, the word is

. Trajectory starts from and loops infinitely,
as shown in the figure. The corresponding word will be

. For trajectory originating
in and converging inside , the word is .

LTL, the most used propositional linear temporal logic [20], is
richer than in the sense that it allows for an additional
temporal operator, called “next.” The increased expressivity of
LTL is manifested only over words with a finite number of suc-
cessive repetitions of a symbol. Our choice of over LTL
is motivated by the fact that a word corresponding to a contin-
uous trajectory will never have a finite number of successive
repetitions of a symbol.

III. PROBLEM FORMULATION AND APPROACH

Consider a set of identical planar fully actuated pointlike
robots described by

(2)

where is the position vector of robot in a world frame
and is its velocity, which can be directly controlled.

is a polyhedral set capturing the control constraints,
and is a polygonal environment. Assume that contains a
set of polygonal obstacles , . When necessary,
and as it will become clear from the context, we also use
and to denote the propositional logic formulas describing
the polygonal environment and the obstacles, respectively (they
consist of conjunctions and disjunctions over linear inequalities
in).

We collect all the robot states in
(referred to as the configuration of the “swarm”) and the robot
controls in . To recover the indi-
vidual states and controls, we define the canonical projection

, , . Equation (2) can
therefore be written as

(3)

Swarming tasks are specified in high-level language in terms
of a small set of properties to be satisfied by the swarm. Ex-
amples of such properties include containment of motion inside
the environment , avoidance of obstacles , ,
cohesion (i.e., all pairwise distances smaller than a maximum
predefined value), and interrobot collision avoidance (i.e., all
pairwise distances larger than a minimum predefined value). In
addition to these, the motion tasks are usually given in terms
of temporal and logical specifications over a small set ,

of essential features, while the exact values of are
not of interest. The essential features usually include informa-
tion about the position, orientation, size, and shape of the region
in the plane spanned by the swarm. For example, assume that

, where gives the centroid of a swarm,
and is its size (e.g., area). If it is desired that the swarm
converges to a configuration in which its centroid belongs to
a polygon and with a size smaller than , this can
be written more formally as “eventually always (and

),” with the obvious interpretation that it will eventually
happen that and , and this will remain true for all
future times. If during the convergence to the final desired con-
figuration it is necessary that the swarm visits a position with
a size , then the specification becomes “eventually ((
and) and (eventually always (and))).” If,
in addition, it is required that the size is smaller than for all
times before is reached, the specification changes to “
until ((and) and (eventually always (and

))).”
The starting point for this work is the observation that

such specifications translate naturally to formulas
over linear predicates interpreted over trajectories of essential
features (as defined in Section II). For example, the last
specification in the above paragraph corresponds to the formula

. In this
paper, we consider the following problem.

1) Problem 1: Identify a set of features describing the re-
gion spanned by the swarm, and construct robot control strate-
gies , so that:

1) containment, obstacle avoidance, interrobot collision
avoidance, and cohesion are achieved; and

2) arbitrary formulas over arbitrary linear predi-
cates in are satisfied by all produced trajectories ,

.
To provide a solution to Problem 1, we propose a hierarchical

abstraction approach (see Fig. 2 for a graphical illustration). In
the first level of abstraction, called continuous abstraction, we
extract the essential features of the swarm by building a smooth
surjective map

(4)

where is called the (continuous) abstraction, or aggregation,
or quotient map, and is denoted as the abstract state of the
swarm. In addition to providing a description of the swarm po-
sition, size, and shape, we will require to perform a correct
aggregation of the large-dimensional state space of the
swarm. As we define in Section IV, a correct aggregation has

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

KLOETZER AND BELTA: TEMPORAL LOGIC PLANNING AND CONTROL OF ROBOTIC SWARMS BY HIERARCHICAL ABSTRACTIONS 323

Fig. 2. Hierarchical abstraction architecture for planning and control of robotic swarms. High-level specifications given in human-like language such as temporal
logic formulas are used to construct a discrete and finite description of the problem. Tools resembling model checking are involved to find a solution for this problem,
which is then implemented as a hybrid control strategy for the continuous abstraction. Individual robot control laws are then generated through projection.

three requirements. First, the flow (3) and the quotient map (4)
have to be consistent, which intuitively means that swarm con-
figurations that are equivalent (indistinguishable) with respect
to are treated in an equivalent way by the flow (3). Second, a
correct aggregation should allow for any motion on the abstract
space , which we call the actuation property. Third, we do
not allow the swarm to spend energy in motions which are not
“seen” in the abstract space (detectability).

If the state is correctly aggregated, then any trajectory
can be produced by the swarm. In the second level of ab-

straction, called discrete abstraction, we employ the method
from [14] to generate control strategies in so that arbitrary

formulas over arbitrary linear predicates in are
satisfied by the abstract trajectories . A description of this
method is given in Section V.

A particular abstraction is presented in Section VI. It is based
on a 3-D continuous abstraction , where and are
the centroid and variance of the robot positions, respectively. We
show that the containment, obstacle avoidance, cohesion, and
interrobot collision avoidance conditions reduce to for-
mulas over linear predicates in , therefore providing a common
framework for both requirements 1) and 2) of Problem 1. More-
over, the polyhedral control bounds are satisfied by imposing
corresponding bounds for the velocity of the continuous abstrac-
tion. Finally, we show that for all robots, the feedback controller

depends only on the state of the robot and the small-dimen-
sional state of the continuous abstraction .

IV. CONTINUOUS ABSTRACTION

Let and be two vector fields giving the
full dynamics of the swarm

(5)

and its abstract dynamics

(6)

respectively, where . Let
denote the differential (tangent) map of at point . If

, then is a real matrix whose rows
are , .2

Definition 3 (-Related Vector Fields [21]): The vector fields
and are called -related [is the smooth

surjection from (4)] if

(7)

and the following matching condition is satisfied:
with (8)

The –relation is an extension of the more used notion of
push–forward, which is only defined when is a diffeomor-
phism [21].

Definition 4 (Correct Aggregation): The map (4) and the
vector field (5) define a correct aggregation of the swarm if the
following three properties are satisfied.

1) Consistency: , for all trajec-
tories and of (5) with .

2) Actuation: The linear map
is surjective for all .

3) Detectability: if and only if for
all .

In other words, consistency means that swarm configurations
which are equivalent with respect to the quotient produced by

2For simplicity, and since we deal with Euclidean spaces only, throughout this
paper, we will assume that vector fields, maps, and tangent maps are written in
coordinates and they are global.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

324 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

remain equivalent for all times under the flow (5) [or, the equiv-
alence classes of are invariant with respect to the flow (5)].
This condition is necessary and sufficient to reduce system (5)
to system (6), if the specifications for the trajectories of (5) are
given in terms of , rather than explicitly in terms of .
Actuation guarantees that any velocity (and therefore, any
motion) in the abstract space can be achieved by the swarm.
The detectability condition 3) guarantees that the swarm does
not spend energy in “uninteresting” motions. Indeed,
and would correspond to a motion of the swarm
resulting in no change in the abstract state , which cap-
tures the features of interest of the swarm.

Proposition 1: Given a vector field (5) and a map (4), the
consistency condition 1) from Definition 4 is equivalent with
the matching condition (8).

Proof: For necessity, assume that the matching condition
(8) is satisfied. Let and be two trajectories with

. The Lie derivative of
along the vector field of (5) is given by

(9)
By evaluating (9) at time , we obtain

(10)

because and the matching condition is
satisfied by hypothesis. We conclude that

, i.e., the trajectories and remain equivalent for
all times.

For sufficiency, assume consistency is satisfied, and let ,
be two equivalent states, i.e., . Let and
be two trajectories such that and . Since

, the Lie derivative (9) is zero for all
times, which implies that it is zero at time 0, which translates to

. The matching condition is therefore
satisfied, and the proposition is proved.

The actuation condition 2) is equivalent to requiring that be
a submersion. In other words, , are functionally
independent, or equivalently, are linearly independent for
all , which again is equivalent to is full-row rank for all .
Indeed, it is well known that a linear map is surjective if and
only if it is full-row rank.

The submersion determines an orthogonal decompo-
sition of in (of dimension) and

(of dimension), where and denote the null
space and range of a matrix, respectively. With this observa-
tion, the detectability condition 3) is equivalent to restricting

.3 We can now collect all these results in the
following theorem.

Theorem 1: [Correct aggregation] The smooth surjection (4)
and the vector field (5) define a correct aggregation of the swarm
if and only if:

1) the matching condition (8) is satisfied;
2) is a submersion; and

3There is a slight abuse of notation in this equation. dh are differential forms
and their span is a co-distribution. However, when written in coordinates, they
can be treated as vector fields, when their span is a distribution.

3) .
If the conditions of Theorem 1 are satisfied, then arbitrary

“abstract” vector fields () in can be produced
by “swarm” vector fields using (7), which is well defined
since the aggregation is consistent. A particular solution of this
equation is the minimum (Euclidean) norm solution

(11)

where is the equivalence class of , or explicitly
. Note that

is invertible for all since is a submersion. It is obvious
that given by (11) satisfies condition 3) of Theorem 1.
It also satisfies condition 1), since for
all . This result is summarized in the following
Corollary of Theorem 1.

Corollary 1: If is an arbitrary vector field in and
is a submersion, then from (11) and define a correct

aggregation of the swarm.
Finally, note that if, in addition to being linearly independent,
, are orthogonal (in Euclidean metric), then

(11) assumes a particularly simple form

(12)

Remark 1: There is an interesting connection between con-
sistency [Definition 4, 1)] and bisimilar quotients of contin-
uous systems: the quotient system produced by the equivalence
classes determined by in is a bisimilarity quotient if and
only if the aggregation is consistent. The interested reader is
referred to [22] for definitions of bisimilarity relations for tran-
sition systems, and to [12] for extending such ideas to affine
control systems. The consistency condition introduced here is
related to continuous abstractions for affine control systems as
defined in [10]–[12]. Our matching condition is related to the
geometrical condition for bisimilarity of two control systems
from [12], where drift is allowed. Note that a consistency condi-
tion for a (second-order) dynamical system can, in principle, be
derived by reducing the system to first order using state space
augmentation. However, the matching condition may be more
difficult to satisfy, and it will be the subject of future work.

V. DISCRETE ABSTRACTION

Once the large-dimensional state of the swarm is correctly
aggregated by properly choosing the aggregation map and the
robot control laws, we have the freedom to assign arbitrary
vector fields (6) in the abstract space . To provide a solution
to Problem 1, the produced trajectories should satisfy arbitrary

formulas over linear predicates in . To this goal, we
use the computational framework for control of linear systems
from specifications over linear predicates from [14].
In this section, we very briefly outline this procedure.

Let denote an arbitrary formula over linear predi-
cates in , and let [(1)] be the set of all linear predicates ap-
pearing in . The framework described in [14] consists of two
main steps. In the first, a finite-state transition system is con-
structed. This construction starts with a proposition preserving

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

KLOETZER AND BELTA: TEMPORAL LOGIC PLANNING AND CONTROL OF ROBOTIC SWARMS BY HIERARCHICAL ABSTRACTIONS 325

the partition of into polytopes determined by feasible combi-
nations of linear predicates from . The states of the transition
system are the equivalence classes produced by the partition. Its
transitions are determined by adjacency of polytopes and exis-
tence of affine feedback controllers making such polytopes in-
variant, or driving all states in a polytope to an adjacent polytope
through a common facet. The second step consists of producing
runs of the transition system that satisfy formula . This is, in
essence, a model checking problem. A Büchi automaton [23] is
first generated from formula , and then the product between
the transition system and the Büchi automaton is constructed.
All runs of the transition system obtained as projections of runs
of the product automaton satisfy .

The algorithms in [14] return a set of initial states in the form
of a union of polytopes in and a feedback control strategy
for (6) induced by the runs found using model checking. All
trajectories of the closed-loop system satisfy as defined
in Section II-B. The feedback controllers can have different
values at different times at the same state . The produced trajec-
tories are, in general, non-smooth, can have self-intersections,
and are continuous in time. Arbitrary polyhedral control con-
straints can be accommodated.

Remark 2: While addressing the problem of planning and
control of a large group of fully actuated planar robots, the hi-
erarchical abstraction framework proposed in this paper is quite
general. It can be used for any process with directly controllable
velocity [such as (5)] and specifications given in terms of tem-
poral logic formulas over linear predicates in some output vari-
ables [such as (4)], provided that the state of the initial system
is correctly aggregated with respect to the output map (Theorem
1). Moreover, since the continuous and discrete abstraction pro-
cedures are completely independent, any type of discrete ab-
straction can be built on top of the continuous abstraction pre-
sented in this paper. For example, instead of linear predicates
resulting in the construction of affine feedback controllers [14]
for the continuous abstraction, one might use rectangular pred-
icates (i.e.,), which will result in the construction of
multiaffine controllers [24].

VI. HIERARCHICAL ABSTRACTION BASED

ON MEAN AND VARIANCE

In this section, we focus on a particular abstraction map
[in (4)], given by

(13)

It is easy to see that is smooth everywhere in except for
the set , which corresponds to (all the
robots coincide). In what follows, we exclude this degenerate
case. We will show that this choice of an abstraction provides a
useful and fully automatic solution to Problem 1. Specifically,
we will show that the containment, obstacle avoidance, inter-
robot collision avoidance, and cohesion requirements translate
to formulas over linear predicates in , which leads

to a unifying computational framework for both requirements
1) and 2) of Problem 1.

We first need to design robot control laws to make sure that
the state of the swarm is correctly aggregated as described in
Definition 4. The differential of is given by

(14)

where denotes the identity matrix of size . From (14), it can
be seen that is a submersion (under the initial assumption that

). Moreover, , are mutually orthogonal and
. Using (11) and by canonical projection, we

obtain the control laws for each robot in the form

(15)

where is an arbitrary vector field in the abstract space .
According to Corollary 1, the control laws (15) and the abstrac-
tion map (13) define a correct aggregation of the swarm.

Note that the control of robot depends on its own state
and on the abstract state . Even though this corresponds

to a centralized communication architecture, it is easily imple-
mentable in a scenario where a swarm of ground vehicles is
deployed together with a central agent, such as an unmanned
aerial vehicle (UAV), or a blimp. At every time instant, the UAV
determines (for example, using a camera and GPS) or receives
the robot positions, calculates , and disseminates it to all the
robots (this is a small bandwidth signal). Each robot then com-
putes its own control using its own state and (15). Note also that
the overall control architecture is robust with respect to indi-
vidual failures, in the sense that if a robot fails, only the central
agent has to simply decrease by one the number of robots in the
swarm.

A careful examination of (15) shows that all position vectors
, undergo the same affine transformation param-

eterized by the abstract variables and . Equation (15) can in
fact be integrated, leading to

(16)

. Therefore, in a frame centered at the centroid
and parallel with the world frame , all position vectors scale
by the same value given by . By combining (15) and (16), we
also obtain

(17)

, where we emphasize that the control law de-
pends on the initial state of the robot, the initial value of the
abstract state, and the current value of the abstract state (as op-
posed to the equivalent form in (15), where the dependence was
on the current state of the robot and of the abstract state).

Remark 3 (Invariance of the Continuous Abstraction): As
we emphasized in [9], it is important that a swarm abstraction
map is invariant to permutations of robots and choice of world
frames. The invariance to robot permutations can be easily seen

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

326 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

from (13), where the abstraction map is defined as a “demo-
cratic” sum over all the members of the swarm. The invariance
with respect to the world frame translates to left invariance of
with respect to the diagonal action of SE(2) on , which can
be proved as in [9], where a slightly different abstraction map is
considered.

A. Description of the Region Spanned by the Swarm

Let denote the set of indices of robots which
are at the vertices of the convex hull of the swarm. Since the
controls (15) determine an affine transformation, then does
not change in time. At time 0, we convert from the vertex to the
hyperplane representation of the convex hull of the swarm

(18)

where are the unit outer normals to the facets of the
polytope, and are the distances from to the facets,

(note that). Since (15) corresponds to a particular
affine transformation consisting of translating and scaling by
the same factor, the convex hull of the swarm at time will be
described by

(19)

It is important to note that description (19) of the region spanned
by the swarm at time is a conjunction of linear inequalities in
the abstract variables . The coefficients ,

, , and the set are all determined at time 0 and constant
during the motion.

B. Containment and Obstacle Avoidance

Recall from Section III that the polygonal environment and
the obstacles are described by propositional logic formulas
and , over linear predicates in the plane. Using
description (19) of the area spanned by the swarm, containment
and obstacle avoidance is guaranteed if the following first-order
formula is true:

(20)

Since is linear in and , and , are linear in , (20) is
a formula in the logic of the reals with addition and comparison.
Informally, the formulas of this first-order logic consist of linear
inequalities with rational coefficients connected by logical and
quantification operators. A basic computational feature of this
logic is that any formula is equivalent to a quantifier-free for-
mula, which can be effectively computed [25]. Let denote
a quantifier-free formula equivalent to (20), which is, of course,
linear in the free variables and . Since containment in the en-
vironment and obstacle avoidance is desired for all times during
a task, this leads to the following formula over linear
predicates in and :

containment and obstacle avoidance: (21)

C. Cohesion and Interrobot Collision Avoidance

Since all pairwise distances scale by the same factor
under the affine transformation (15), the initial

maximum and minimum pairwise distances remain maximum
and minimum at any time. This leads to simple conditions for
guaranteeing maximum and minimum distances between robots
for all times, which we call cohesion and interrobot collision
avoidance, respectively. Let and denote specified
minimum and maximum pairwise distances. Let
and denote the minimum and maximum pairwise
distances at the initial time . Then the predicate

(22)

guarantees that at time , all pairwise distances are between
and . The specification that cohesion and interrobot colli-
sion avoidance are required for all times becomes an
formula over two linear predicates in the abstract variable

cohesion and interrobot collision avoidance: (23)

Remark 4: Due to technical reasons that go beyond the scope
of this paper, the control algorithm from [14] is re-
stricted to formulas over strict inequalities, as in (1). Therefore,
with the price of adding a bit of conservatism, we assume that
the inequalities from and are strict. We also restrict the
additional specifications [Problem 1, 2)] to be given in terms
of formulas over strict linear inequalities in and .
From an application point of view, this assumption makes sense,
since it is unreasonable to assume that a sensor could detect
equality constraints.

D. Robot Control Bounds

We now map the robot control constraints to constraints for
the control of the abstract state. In other words, for an arbitrary
polyhedral set , we construct a polyhedral set
with the property that guarantees , ,
where is the velocity in the abstract space and is the control
of robot , which are related by the linear map (17).

Assume is given in the hyperplane representation

(24)

where , , and is some index set. Let us also
denote by , the matrix from (17). Then
it is easy to see that if and only if , where

(25)

and denotes the null space of a matrix. Since the swarm un-
dergoes an affine transformation, there exist constants ,

with , so that , for all
. From this, we conclude that ,
. Therefore, for all if and

only if for all . In other words, the polyhedral
control bounds are guaranteed for all members of the swarms

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

KLOETZER AND BELTA: TEMPORAL LOGIC PLANNING AND CONTROL OF ROBOTIC SWARMS BY HIERARCHICAL ABSTRACTIONS 327

Fig. 3. Initial deployment of a swarm consisting of 30 robots in a rectangular
environmentP with two obstaclesO andO . The regionsR andR are used
in the task specification.

if and only if they are satisfied by the robots at the vertices. This
leads to

(26)

Note that the sets from (25) are not polyhedral, since they
are products between polyhedral sets and vector spaces .
However, it is easy to see that the dimension of all is
1, and two and coincide if and only if

, which is excluded since we assume that the robots do not
overlap at time 0. We conclude that from (26) is polyhedral,
and the computational framework for the construction of the
control strategy as outlined in Section V can be applied.

E. Case Study

Consider a swarm consisting of robots moving
in a rectangular environment with two obstacles and

, as shown in Fig. 3. The initial configuration of the swarm
is described by mean and variance

. The convex hull of the swarm is initially the
square of center and side 2 shown in the top left corner
of Fig. 3. The cohesion requirement is given in terms of a
maximum pairwise distance , while the interrobot
collision avoidance imposes . The control bounds
for robots are captured by the set . The
corresponding constraint set as in (26) is an octahedron in

with vertices , , ,
. Let and be two square regions, as

shown in Fig. 3.
Consider the following swarming task given in natural lan-

guage: Always respect containment, obstacle avoidance, cohe-
sion, and interrobot collision avoidance. In addition, the cen-
troid must eventually visit region . Until then, the minimum
pairwise distance must be greater than 0.03. After is visited,
the swarm must reach such a configuration that its centroid is in
region and the spanned area is greater than the initial one,
and remain in this configuration forever. This task translates to

the following formula over linear predicates in and
:

(27)

where and were defined in Sections VI-B and VI-C,
respectively, and corresponds to pairwise distance
greater than 0.03. After eliminating the quantifier from (20),
consists of 27 occurences of 19 different linear predicates in
and .

By running the algorithms from [14], we conclude that there
exists a trajectory in the abstract space satisfying the formula
from the initial values of and , i.e., the task can be accom-
plished by the swarm.

The trace of the spanning polytope is given in Fig. 4, from
which, by close examination, it can be seen that the specified
task was accomplished. The robot control constraints are also
satisfied during the motion, as it can be seen from Fig. 4(b),
where the controls (velocities) of the robots at the vertices of
are plotted versus time.

F. Implementation and Computational Issues

We developed a program for planning and control of robotic
swarms in Matlab. Through a graphical interface, the package
takes as input the polygonal environment , the obstacles ,

, the control constraint set , the initial positions
of the robots, and an formula over linear predicates
in the mean and variance of the swarm. The program tests the
feasibility of the task, computes a control strategy, and displays
the produced motion.

From a computational point of view, five main steps are
involved.

1) Quantifier elimination for calculation of formula from
Section VI-B.

2) Generation of the transition system from Section V.
3) Derivation of a Büchi automaton from the

formula.
4) Calculation of the product automaton and generation of

runs.
5) Calculation of abstract controllers and generation of indi-

vidual robot controllers.
For 1), we used Redlog [25]. Steps 2) and 5) involve polyhedral
set operations and triangulations for which we used CDD [26].
For 3), we used LTL2BA [23]. Step 4) involved optimal path
generation on graphs for which we used the well-known Dijkstra
algorithm. However, the use of all these is transparent to the
user, who interacts with the Matlab interface only.

From a complexity point of view, first note that the number
of robots in the swarm has almost no effect on the total amount
of computation. Indeed, the number of robots is only involved in
the number of terms in the sums defining the abstract variables
[(13)]. However, the method we propose in this paper is compu-
tationally expensive. The determining factors are (in this order)
the quantifier elimination procedure (necessary for construc-
tion of formula [(20)] and the discrete abstraction proce-
dure (which combines the construction of the transition system
and of the Büchi automaton, and finding the runs on the product
automaton). The time required for quantifier elimination in the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

328 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

Fig. 4. Simulation results. (a) Trace of the spanning polytope P (light squares/yellow) and trajectory of centroid � (dark arrow line/red). (b) Controls u of the
robots � , i = 1; 2; 3; 4 at the vertices ofP . Dotted line shows shows the time evolution of the velocity in the x direction, while dashed line corresponds to velocity
in the y direction.

linear theory of the real closed fields is polynomial in the length
of the formula, exponential in the length of the quantified vari-
ables, and doubly exponential in the number of quantified blocks
[27].4 In our particular case [see (20)], only the length of the
formula can vary, and this is determined by the geometry of the
environment (), obstacles (,), and initial dis-
tribution of the swarm (). The number of states of both the
transition system and the Büchi automaton scale exponentially
with the number of linear predicates in formula [14], which
is the sum of the predicates in the quantifier-free formula (21)
with the number of predicates in the temporal logic specifica-
tion of the task (in practice, in LTL model checking, this limit
was never attained). In conclusion, the determining complexity
factors are the geometry of the environment, obstacles, and ini-
tial distribution of the swarm, followed by the number of linear
predicates in swarm centroid and variance giving the temporal
logic specification of the task. Also, from our previous work
[14], we know that the size of the continuous abstraction does
not affect the computation significantly, which is encouraging
for those interested in extending this work to richer continuous
abstractions, such as the ones proposed in [9].

For exemplification, we give here some numerical values ob-
tained by running the case study in Section VI-F on a Pentium 4
(2.66 GHz, 1 GB RAM) machine, with Windows XP and Matlab
7. The transition system from Section V had 744 states, and it
was constructed in about 60 s. The accepted run [corresponding
to initial condition ()] and the corresponding vector
fields (6) and (17) were generated in about 12 s.

G. Conservativeness and Limitations of the Approach

Our solution to Problem 1 is obviously conservative, in the
sense that our algorithm might not produce a solution even

4This is significantly better than the time required for quantifier elimination
in the full theory of the real closed fields (i.e., the terms are polynomials in the
variables with rational coefficients), which is, in general, doubly exponential in
the number of variables and polynomial in the number of predicates.

though a motion of the swarm satisfying the specification might
exist. There are three main sources of conservativeness in our
approach.

First, in order to guarantee that the swarm does not collide
with an obstacle, we impose that the whole convex hull of
the swarm has empty intersection with the obstacle. One can
imagine that there might exist motions of the swarm where
an obstacle enters the convex hull without hitting any of the
robots. Second, we restrict our attention to a very small set of
essential features, which only allow for translation and scaling
of the convex hull. For example, if rotation was allowed, mo-
tions would have been possible where the spanning polytope
would rotate to avoid obstacles, rather than just unnecessarily
shrinking. Third, our approach to the control of the essential
features of the swarm based on discrete abstractions is conser-
vative. Indeed, in the general framework for control of linear
systems from temporal logic specifications developed in [14],
we only focus on determining sets of initial states from which
a solution exists in the form of unions of full-dimensional
polytopes. However, while introducing more conservativeness
into the problem, this approach has the advantage of conferring
robustness of the solution with respect to exact knowledge of
the initial or current state.

While providing a fully automated solution for planning and
control of an arbitrarily large swarm from specifications given in
human-like language, our approach has three main limitations.
First, in its current form, it assumes that the environment is static
and known. Any change in the boundaries of the environment or
in the obstacles should be followed by a full recomputation. This
being said, for a static and known environment, our framework
is robust with respect to small errors in knowledge about the
environment. This results from the fact that the discrete abstrac-
tion procedure for control of the continuous abstraction from
temporal logic specifications over linear predicates (developed
in our previous work [14]) is robust to small changes in these
predicates.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

KLOETZER AND BELTA: TEMPORAL LOGIC PLANNING AND CONTROL OF ROBOTIC SWARMS BY HIERARCHICAL ABSTRACTIONS 329

Second, for the particular example that we consider, the
communication architecture is centralized. However, as
already mentioned at the beginning of Section VI, it can be
implemented using a leader agent (such a UAV flying above
the swarm) that has to broadcast a signal of small bandwidth.
Moreover, a simple decentralized version of this framework
can be constructed: assume that each agent uses exactly the
same control law, but can only compute the mean and variance
of its neighbors. Preliminary numerical simulations show
that if the individual neighborhoods overlap enough, then the
behavior of the swarm is exactly as the one obtained in the
centralized case.

Third, throughout this paper, we assume that the robots
are fully actuated point masses. However, to accommodate
robots of nonnegligible sizes, one can enlarge the obstacles
and shrink the environment boundaries [28]. To accommodate
more complex dynamics, one can use one of the following
two approaches. First, one can add another level in the hier-
archy. For example, using input–output regulation, controlling
a unicycle can be reduced to controlling the velocity of an
off-axis reference point [29]. Second, one might try to capture
robot underactuation constraints by properly constructing the
continuous abstraction, as suggested in [9].

VII. CONCLUSION

We proposed a fully automated framework for deployment of
arbitrarily large swarms of fully actuated robots. Our approach
is hierarchical. In the first level of the hierarchy, we aggregate
the large-dimensional state space of the swarm into a small-di-
mensional continuous abstract space which captures essential
features of the swarm. In the second level, we control the con-
tinuous abstraction so that specifications given in linear tem-
poral logic over linear predicates in the essential features are
satisfied. Individual robot control laws are generated by pro-
jection. For planar robots with polyhedral control constraints
moving in polygonal environments with polygonal obstacles,
and a 3-D continuous abstraction consisting of mean and vari-
ance, we show that a large class of specifications are captured.
Directions of future work include the development of larger and
more expressive continuous abstractions, modeling of commu-
nication requirements, and development of provable robot con-
trol laws based on local information only.

REFERENCES

[1] T. Eren, P. N. Belhumeur, and A. S. Morse, “Closing ranks in vehicle
formations based rigidity,” in Proc. IEEE Conf. Decision Control, Las
Vegas, NV, Dec. 2002, vol. 3, pp. 2959–2964.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[3] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
in Proc. IEEE Conf. Robot. Autom., Seoul, Korea, May 2001, vol. 4,
pp. 3961–3966.

[4] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mo-
bile sensor networks: Adaptive gradient climbing in a distributed envi-
ronment,” IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1292–1302,
Aug. 2004.

[5] C. Belta and V. Kumar, “Optimal motion generation for groups of
robots: A geometric approach,” J. Mech. Des., vol. 126, pp. 63–70,
2004.

[6] R. G. Littlejohn and M. Reinsch, “Internal or shape coordinates in the
n-body problem,” Phys. Rev. A, vol. 52, no. 3, pp. 2035–2051, 1995.

[7] F. Zhang, M. Goldgeier, and P. S. Krishnaprasad, “Control of small for-
mations using shape coordinates,” in Proc. IEEE ICRA, Taipei, Taiwan,
2003, vol. 2, pp. 2510–2515.

[8] E. Justh and P. Krishnaprasad, “Steering laws and continuum models
for planar formations,” in Proc. IEEE Conf. Decision Control, 2003,
pp. 3609–3614.

[9] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
IEEE Trans. Robot., vol. 20, no. 5, pp. 865–875, Oct. 2004.

[10] G. J. Pappas and S. Simic, “Consistent abstractions of affine control
systems,” IEEE Trans. Autom. Control, vol. 47, no. 5, pp. 745–756,
May 2002.

[11] P. Tabuada and G. J. Pappas, “Hierarchical trajectory generation for a
class of nonlinear systems,” Automatica, vol. 41, no. 4, pp. 701–708,
2005.

[12] ——, “Bisimilar control affine systems,” Syst. Control Lett., vol. 52,
no. 1, pp. 49–58, 2004.

[13] M. Broucke, “A geometric approach to bisimulation and verification of
hybrid systems,” in Hybrid Systems: Computation and Control, F. W.
Varager and J. H. van Schuppen, Eds. New York: Springer-Verlag,
1999, vol. 1569, Lecture Notes in Computer Science, pp. 61–75.

[14] M. Kloetzer and C. Belta, J. Hespanha and A. Tiwari, Eds., “A fully
automated framework for control of linear systems from LTL specifi-
cations,” in Proc. Hybrid Syst.: Comput. Control: 9th Int. Workshop,
Berlin, Heidelberg, 2006, vol. 3927, Lecture Notes in Computer Sci-
ence, pp. 333–347.

[15] P. Tabuada and G. Pappas, “Model checking LTL over controllable
linear systems is decidable,” in Hybrid Systems: Computation and Con-
trol, O. Maler and A. Pnueli, Eds. New York: Springer-Verlag, 2003,
vol. 2623, Lecture Notes in Computer Science, pp. 498–513.

[16] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Trans. Robot.,
vol. 21, no. 5, pp. 864–874, Oct. 2005.

[17] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on LTL specifications,” in Proc. 43rd IEEE
Conf. Decision Control, Dec. 2004, vol. 1, pp. 153–158.

[18] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot mo-
tion planning: A timed automata approach,” in Proc. IEEE Int. Conf.
Robot. Autom., New Orleans, LA, Apr. 2004, pp. 4417–4422.

[19] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 2005, pp. 2020–2025.

[20] E. A. Emerson, “Temporal and modal logic,” in Handbook of The-
oretical Computer Science: Formal Models and Semantics, J. van
Leeuwen, Ed. Amsterdam, The Netherlands: North-Holland/MIT
Press, 1990, vol. B, pp. 995–1072.

[21] M. Spivak, A Comprehensive Introduction to Differential Geometry.
Berkeley, CA: Publish or Perish, 1979.

[22] R. Milner, Communication and Concurrency. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[23] P. Gastin and D. Oddoux, H. C. G. Berry and A. Finkel, Eds., “Fast
LTL to Büchi automata translation,” in Proc. 13th Conf. Comput. Aided
Verification, 2001, vol. 2102, LNCS, pp. 53–65.

[24] M. Kloetzer, L. Habets, and C. Belta, “Control of rectangular multi-
affine hybrid systems,” in Proc. 45th IEEE Conf. Decision Control, San
Diego, CA, 2006, pp. 2619–2624.

[25] V. Weispfenning, “A new approach to quantifier elimination for real
algebra,” Universität Passau, Germany, Tech. Rep. MIP-9305, 1993.

[26] K. Fukuda, “cdd/cdd+ package,” [Online]. Available: http://www.cs.
mcgill.ca/~fukuda/soft/cdd_home/cdd.html

[27] V. Weispfenning, “The complexity of linear problems in fields,” J. Sym-
bolic Comput., vol. 5, no. 1-2, pp. 3–27, Feb./Apr. 1988.

[28] J. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[29] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of for-

mations of nonholonomic mobile robots,” IEEE Trans. Robot. Autom.,
vol. 17, no. 6, pp. 905–908, Dec. 2001.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 2, APRIL 2007

Marius Kloetzer (S’05) received the B.S. and M.Sc.
degrees in computer science from the Technical Uni-
versity of Iasi, Iasi, Romania. He is currently working
toward the Ph.D. degree in systems engineering at
Boston University, Boston, MA.

His research interests include robot motion plan-
ning and verification and control of hybrid systems.

Calin Belta (S’00–M’03) received the B.S. and
M.Sc. degrees in control and computer science from
the Technical University of Iasi, Iasi, Romania,
the M.Sc. degree in electrical engineering from
Louisiana State University, Baton Rouge, and the
M.Sc. and Ph.D. degrees in mechanical engineering
from the University of Pennsylvania, Philadelphia.

He is currently an Assistant Professor in the De-
partment of Manufacturing Engineering, Boston Uni-
versity, Boston, MA. His research interests include
verification and control of hybrid systems, robot mo-

tion planning and control, gene and metabolic networks .
Dr. Belta received a National Science Foundation CAREER award in 2005,

a Fulbright study award in 1997, and was the Valedictorian of his class in 1995.
He received the Best Paper Award at the International Conference on Systems
Biology in 2004, and was a finalist for the ASME Design Engineering Technical
Conference Best Paper Award in 2002, and for the Anton Philips Best Student
Paper Award at the IEEE International Conference on Robotics and Automation
in 2001.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:47:10 UTC from IEEE Xplore. Restrictions apply.

