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Abstract—The increased complexity of modern systems
necessitates automated anomaly detection methods to de-
tect possible anomalous behavior determined by malfunc-
tions or external attacks. We present formal methods for
inferring (via supervised learning) and detecting (via un-
supervised learning) anomalous behavior. Our procedures
use data to construct a signal temporal logic (STL) formula
that describes normal system behavior. This logic can be
used to formulate properties such as “If the train brakes
within 500 m of the platform at a speed of 50 km/hr, then
it will stop in at least 30 s and at most 50 s.” Our proce-
dure infers not only the physical parameters involved in
the formula (e.g., 500 m in the example above) but also
its logical structure. STL gives a more human-readable
representation of behavior than classifiers represented as
surfaces in high-dimensional feature spaces. The learned
formula enables us to perform early detection by using
monitoring techniques and anomaly mitigation by using
formal synthesis techniques. We demonstrate the power of
our methods with examples of naval surveillance and a train
braking system.

Index Terms—Anomaly detection, formal methods, learn-
ing, networked systems, signal temporal logic (STL).

I. INTRODUCTION

ODERN systems play increasingly important roles in

the operation of critical infrastructure such as transporta-
tion networks and power grids. The large scale and highly
nonlinear nature of some of these systems, however, renders the
use of classical analysis tools difficult. Due to their networked
nature, these systems are also vulnerable to external attacks
or disruptions. Recent high-profile attacks, e.g., the Maroochy
water breach [29] and the control system malware Stuxnet [12],
highlight the need to understand system security [23], [27],
[30]. In [27], a packet delay attack is considered, in which, by
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accessing and then delaying the sensor data, the adversary can
harm the physical components of the system. In [23] and [30],
more general issues such as detectability and identifiability for
a wide range of attacks are investigated. In all the cited works,
the physical system evolves according to a linear model that is
known to the designers. This assumption is not consistent with
the growing complexity of modern systems and the involvement
of agents, such as humans, whose behaviors are generally quite
hard to predict.

In this work, we present model-free algorithms for system
security. As data classifiers, we use formulae of signal temporal
logic (STL), a specification language used in the field of formal
methods to specify behaviors of continuous systems. STL can
be used to express system properties that include time bounds
and bounds on physical system parameters, such as “If the boat
remains in region A while maintaining its speed below 10 kph
for 10 min., it is guaranteed to reach the port within 15 min.?”
STL formulae resemble natural language, which means they
can be useful for human operators. Further, the rigorous math-
ematical definition of the logic means that they can be used
in computational routines to automatically monitor systems for
undesired behaviors.

We consider two critical security problems. The first is
anomaly learning via supervised learning. In this case, given
system outputs labeled according to whether a system behaves
normally or not, we infer a temporal logic formula that can
be used to distinguish between normal system behaviors, e.g.,
the brakes of a train are engaged if the velocity is beyond a
certain threshold, and anomalous (or undesired) behaviors, e.g.,
the brakes are not properly engaged due to attacks. Preliminary
results for this problem appeared in [18]. The second problem is
anomaly detection via unsupervised learning. In this case, the
system outputs are not labeled, i.e., there is no expert-in-the-
loop that determines whether a given trace represents normal
or attacked operation, and we infer a formula to detect out-of-
the-ordinary (anomalous) outputs. Preliminary results for this
problem appeared in [16].

We extend our previous work further by considering an
on-line anomaly learning algorithm. That is, we present an
algorithm to modify the classifying formula as more data is
collected over time. This procedure has lower computational
costs than the supervised learning procedure developed in [18],
making it applicable to high dimensional systems producing
large amounts of data. Further, our new procedure requires no
a priori system data, meaning it is applicable to systems from
which no prior outputs are available. We have also streamlined
the software implementations from [16], [18] to reduce the
computation time. The case study results in this paper were
generated with this updated software.
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a) Related work: Most of the recent research on log-
ical inference, the problem of inferring from data a logical
expression that describes system properties, has focused on the
estimation of parameters associated with a given temporal logic
structure [2], [3], [15], [33]. That is, a designer gives a structure
such as “The speed settles below v m/s within 7 seconds” as
an input and the inference procedure finds optimal values for
v and 7. The given structure reflects domain knowledge of the
designer and properties of interest to be queried. However, the
selected formula may not reflect achievable behaviors (over-
fitting) or may exclude fundamental behaviors of the system
(under-fitting). Furthermore, by giving the formula structure
a priori, the inference procedure cannot derive new knowledge
from the data. Thus, in our procedures, we infer the formula
structure (the form of the property that the system demon-
strates) along with its optimal parameterization. We guide the
search via the robustness degree [9], [11], a signed metric on the
signal space which quantifies to what degree a signal satisfies
or violates a given formula.

Anomaly detection is the problem of detecting patterns from
data that do not conform to expected behavior. It has been used
in a wide range of applications, such as intrusion detection
for cyber-security, fault detection in safety-critical systems, and
video surveillance of illicit activities [5]. Tools from statistics,
machine learning, data mining and information theory, such
as k-means clustering and k-nearest neighbor (k-NN) graphs,
have been adapted to solve the anomaly detection problem
[19]. In general, existing techniques for anomaly detection infer
a surface embedded in a high-dimensional feature space that
separates normal and anomalous data. However, it is hard to
interpret the meanings of the surfaces even by domain experts
[32]. In contrast, STL formulae have concrete meanings that
are easy to be interpreted by humans with basic knowledge
of temporal logic (not necessarily domain experts). Further,
considering STL formulae as models, it is straightforward
to construct monitors for run-time verification for potentially
complex systems [8].

b) Contributions: 1InSection III-A, we define a new logic
called inference parametric signal temporal logic iIPSTL) [16].
iPSTL is a generalization of reactive Parameteric Signal Tem-
poral Logic (rPSTL), which we defined in [18]. iPSTL is ex-
pressive enough to capture properties that are crucial to a wide
range of applications, e.g., naval surveillance (Section IV-A).

Second, in Section III-D, we show that we are able to build a
directed acyclic graph (DAG) for all iPSTL formulae. The DAG
representation encapsulates a partial ordering on the inclusivity
of formulae, thus enabling us to formulate both the anomaly
learning and the anomaly detection problems as optimization
problems whose objective functions involve the robustness
degree (Section V-A). We solve the optimization problems by
combining discrete search over the DAG and a continuous
search over the parameters (Section V). To our knowledge,
our body of work represents the first time that inference of a
temporal logic structure and parameter estimation have been
solved simultaneously in the context of formal methods. This is
also one of the first instances.

Third, and finally, in Section VI, we use two case studies,
a naval surveillance example (adapted from [19]) and a train

network monitoring example (adapted from [28]), to demon-
strate our algorithms. Our results point to some very promising
future application directions, such as on-line monitoring and
automated anomaly mitigation.

Il. PRELIMINARIES

A. Signal

Given two sets A and B, F(A, B) denotes the set of all
functions from A to B. Given a time domain R := [0, c0)
(or a finite prefix of it), a continuous-time, continuous-valued
signal is a function s € F(R*,R™). We use s(t) to denote the
value of signal s at time ¢, and s]t] to denote the suffix of signal
s fromtime ¢, i.e., s[t] = {s(7)|T > t}. We use x5 to denote the
one-dimensional signal corresponding to the variable x of the
signal s. Notations such as ys, vs can be defined similarly.

B. Signal Temporal Logic

Signal temporal logic (STL) [2], [21] is a temporal logic
defined over signals. STL is a predicate logic with interval-
based temporal semantics. The syntax of STL is defined as'

¢ = gl=plp1 A p2|d1 V ¢2|Flap)B|Glap) @ )

where g : R" — {T, L} is a predicate, where T, L are short-
hand for true and false, respectively. =, A, and V are Boolean
negation, conjunction, and disjunction, respectively. F[, ;) and
Glq,p) are the temporal “Finally” (“eventually”) and “globally”
(“always”) operators, respectively. (Please refer to [2] and [21]
for detailed descriptions of the syntax and semantics of STL.)

We use the notation s = ¢ as a shorthand of (s,0) = ¢,
meaning that a signal s satisfies the STL formula ¢ at time 0.
We call the set of all signals s such that s = ¢ the language
of ¢, denoted L(¢). We say that ¢, and ¢o are semantically
equivalent, denoted ¢ = ¢, if L(¢p1) = L(¢2).

C. System

We define a system as any object 8 that produces observable
output signals that are related to the evolution of some internal
state, e.g., a system of ordinary differential equations or a
hybrid automaton. The family of all trajectories that a system
8 may produce is called the language of 8, denoted L(8). A
trajectory of § is a mapping x : RT™ — X, where X C R™is the
(possibly) high-dimensional physical state space of the system.
The operation of the system is observed via an output signal
x(t) which is a possibly non-deterministic function of x(¢) (due
to measurement noise for instance).

We are interested in the case in which a system behaves
abnormally, e.g., in the case that an adversary can affect the
sensors or actuators of the system in order to disrupt its normal
operation. Given a system 8, we define its normal behavior as
the set of signals L v (8) and its abnormal behavior as the set of
signals L 4(8) such that Ly (8) N La(8) = 0 (i.e., anomalous

I The full syntax of STL include an interval-bounded “Until” operator. Since
this operator can be difficult to interpret and is not used in the fragment iPSTL
(defined in Section III-A), it is omitted from the syntax here.
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behaviors are qualitatively different from normal behaviors)
and Ly (8) U La(8) = L(8).

Ill. INFERENCE PARAMETRIC SIGNAL TEMPORAL LOGIC

In this section, we first give the syntax and semantics of
inference parametric signal temporal logic (iPSTL). We then
present some properties of iPSTL that are essential for the
design of our learning algorithms presented in Section V.

A. Syntax and Semantics of iPSTL

Parametric STL is an extension of STL in which constants
involved in predicates and time intervals are replaced with free
parameters. A PSTL formula combined with a valuation, i.e.,
a mapping from parameters to real values, induces an STL
formula. In this work, we focus on a fragment of PSTL that we
call inference PSTL (iPSTL). The syntax of iPSTL is given as

(22)
(2b)

= Fir) ro) i
@i = Firy )Gy ) llpi A piloi V i

where ¢ is a linear predicate of the form (y, ~ ), where y; is
a coordinate of the signal s, 71 and 7o are time parameters, 7
is a scale parameter, and ~€ {<, >}. Connectives A and V are
Boolean conjunction and disjunction, respectively, and G|, .,)
and F|., ;) are the temporal operators “Globally” (“always”)
and “Finally” (“eventually”), respectively.

The semantics of iPSTL is recursively defined as

slt] = (ys ~m) 0 ys(t) ~
S[t] ': (bl N ¢2 iff S t} ': (bl and S[ ] ): ¢2

S[t]':(i)l\/d)g iff [ |:¢1ors[]|:¢2
slt] F Glryr) (ys ~ 1) 0ff ys(¥) ~ 7
V' e t+T,t+ 1)

Sl E Fiyyop(ys ~ @) iff 3t € [t+1i,t+ 1)
s.t.ys(t') ~ .

Formula (2a) can be read as “At some instance ¢ in the time
interval [y, 72), an event described by ¢; occurs.” A valuation
0 is a mapping that assigns real values to the parameters appear-
ing in a iPSTL formula. Any valuation € of an iPSTL formula
induces an STL formula. For example, given ¢ = Fi,, -,)(ys >
7T) and 9([7—177—277T]) = [Oa 4, 5]’ we have ¢g = F[O,4) (ys > 5)
In this paper, we use the valuation function # and its output
(the assigned values) interchangeably. We call the fragment of
all such STL formulae inference STL (iSTL). Given an iPSTL
formula ¢ and a valuation 0, we denote the corresponding iSTL
formula as ¢y.

B. Signed Distance and Robustness Degree
A signed distance from a signal s € F(RT R™) toaset S C
F(RT,R™) is defined as

) —inf{p(s,8")[s" € cl(S)}
Dp(Svs) = {inf{p(s, S/)|S/ c ff(R"",]R”) \ S}

ifs&S
ifse S

with ¢l(S) denoting the closure of .S, p is a metric defined as

p(s,s") = sup{d (s(t), s'(t))} ©)

teT

and d corresponds to the metric defined on the domain R™ of
signal s. We use D(s, ¢) to denote D,(s, L(¢)) if p is clear
from the context.

The robustness degree of a signal s with respect to an STL
formula ¢ at time ¢ is given as (s, ¢, t) [9], [11]. The robustness
degree can be calculated according to the following recursive
quantitative semantics:

r(s,(ys 2 c1),t)  =ys(t) —a
r(s,(ys <Cl)7t) :Cl_ys(t)
T(S,(j)l /\¢27t) = min (r(svd)lat)vr(sad)%t))
7’( d)l \/¢27 ) :max(r(s,d)l,t),r(s,gbg,t))
r (S G[cl,cz)¢v ) - t’e[t-{r—rclir,}‘/+cz) 7’(8, d)v 13 )
r (57 F[cl,02)¢7 ) = max ’I“(S, ¢7 t/)

t'e[t+cy,t+ca)

where the ¢; are real values. We use 7(s, @) to denote (s, ¢, 0).
The sign of r(s, ¢) tells whether (positive) or not (negative) s
satisfies ¢. The magnitude of (s, ¢) gives a measure of how
different s would have to be in order for its satisfaction of ¢ to
change.

C. Expressivity

iPSTL can be used to express a wide range of important
system properties, such as

* Bounded-time invariance, e.g., Fio 7,)(G[r,, ) (ys < 7))
(“There exists a time ¢ € [0, 71) such that y, will always
be less than 7 in [t + T2, ¢ + 73).”)

* Reachability to multiple regions in the state space, e.g.,
F[O,Tl) (F[TQ,Tg) (ys > 7T1) \ F[Tz,Tg) (ys < 7T2)) (“There
exists a time ¢ € [0, 71) such that eventually y; is either
less than 7 or greater than w2 from ¢ + 79 seconds to ¢ +
T3 seconds.”)

D. Properties of iPSTL

In this subsection, we first define a partial order over :PSTL,
the set of all iPSTL formulae. The formulae in {PSTL can be
organized in a directed acyclic graph (DAG) where a path exists
from formula ¢; to formula 9 iff ¢; has a lower order than
2. The DAG representation plays a key role in our learning
algorithms.

1) Partial Orders Over iSTL and iPSTL: We define two
relations <g and < p for iSTL formulae and iPSTL formulae,
respectively.

Definition 1:

1) For two iSTL formulae ¢ and ¢s, ¢1 <g ¢ iff Vs €
H:(R-F,Rn),s ): ¢1 = S ): ¢2, i.e., L(¢1) - L((bg)

2) For two iPSTL formulae @1 and ¢s, @1 <p o iff Vo,
$1,0 =s ¢2,9, where the domain of 6 is ©(¢1) U O(¢2),
the union of parameters appearing in ¢ and s.
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Fig. 1. lllustration of the relationship between iPSTL formulae and
signed distances.

Based on these definitions and the semantics of iSTL and
iPSTL, we have

Proposition 1: Both <g and <p are partial orders.

Proof: See Appendix A.

Further, we have

Proposition 2: The partial order < p satisfies the following
properties.

) pr Ao Zp @ 2p 1 Veaforj=1,2

2) Giry )l 2P Fir, 7,)¢, where £ is a linear predicate.

O

The first property is an extension of the propositional logic
rules AN B = A= AV B. The second property states “If a
property is always true over a time interval, then it is trivially
true at some point in that interval.”

2) DAG and Signed Distance: The structure of iPSTL and
the definition of the partial order <p enable the following
theorem.

Theorem 1: The formulae in {PSTL have an equivalent
representation as nodes in an infinite DAG. A path exists from
formula ¢ to o iff 1 <p ¢2. The DAG has a unique top
element (T) and a unique bottom element (_L).

Proof: See Appendix B. (]

An example of such a DAG is shown in Fig. 5.

Next, we establish a relationship between the signed distance
of a signal s with respect to iSTL (iPSTL) formulae ¢() and
the partial order <g (<p).

Theorem 2: The following statements are equivalent:

1) ¢1 =5 d2;
2) Vs € F(RT,R™), D(s,¢1) < D(s,p2).

Proof: See Appendix C. U
Corollary 1: The following statements are equivalent:

) @1 2p @2
2) Vs € F(RT,R"), V0, D(s, d1.6) < D(s, dap).

Corollary 1 is illustrated in Fig. 1. The formulae are orga-
nized according to the relation ¢ <p @2, 3 =p @4, Which
means that D(s, ¢1,0) < D(s,¢2,9), D(s,¢3.9) < D(s,¢49)
for all valuations 6.

Remark 1: It has been shown in [11] that a robustness degree
(s, ¢) is an under-approximation of its corresponding signed
distance D(s, ). If D(s,¢1) and D(s, ¢2) are replaced by
r(s,$) and 7(s, ¢) in Theorem 2, it is still true that 2) implies
1) but the implication from 1) to 2) doesn’t always hold. As a
counterexample, consider ¢1 = Gio 1j(zs > 1) A Gjo1j(zs <
1) and ¢2 = Go,1)(zs > 2) A Gjo,1)(zs < 2). It is clear that

peninsula

Fig. 2. A naval surveillance example. Trajectories of vessels behaving
normally are shown in green. The red trajectories represent possible
human trafficking scenarios and the blue trajectories represent possible
terrorism scenarios. The layout resembles that of Boston harbor.

¢1 <5 ¢2. However, for a constant signal s with x4(t) =
0,Vt € [0,1], we have (s, $1) = —1 > r(s, ¢2) = —2, which
is in contradiction with 2) implies 1).

V. PROBLEM STATEMENT

In this section, we give a naval surveillance scenario that will
serve as a running example throughout the rest of this paper and
present the problems under consideration.

A. A Motivating Example

Example 1 (Naval Surveillance): In maritime surveillance
[19], the Automatic Identification System (AIS) enables law
enforcement authorities to collect data at regular intervals on a
large number of ships. The available data includes the vessels’
locations, courses, speeds, and destinations. This information
can be used to uncover security threats and suspicious activ-
ities such as drug smuggling, human trafficking, arm trading,
or terrorism. However, high volumes of traffic make manual
inspection of the collected data for anomalous behavior time-
consuming and error-prone. Thus there is a need for systems
that automate the process of detecting and responding to anom-
alous events. Consider the academic example shown in Fig. 2.

Normal Behavior: A vessel behaving normally (i.e., its
outputs belong to Lx(8)) approaches from the sea until it
reaches the narrow passage between the peninsula and the
island. Then, it heads directly towards the port. Some sample
trajectories are shown in green in Fig. 2.

Anomalous Behavior: Consider two scenarios modified
from [19] that may indicate illicit actions, i.e., the vessels’ tra-
jectories belong to L 4(8). In the first scenario, a vessel (shown
in red in Fig. 2) deviates to the island. This may indicate a
human trafficking scenario in which the vessel initially follows
a normal track, then heads to the shore to pick up people before
returning to its original path. In the second scenario, a vessel
(shown in blue in Fig. 2) approaches a ferry, loiters, and then
quickly returns to the open sea. This behavior may indicate
terroristic activity in which the vessel plants an explosive device
on or near the ferry. (|
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The motivating example requires us to learn a classifier that
differentiates desired behaviors from undesirable behaviors. A
single output of each system can have a large number of data
points, which means that finding a classifier using traditional
machine learning methods would require the definition of fea-
tures. For example, we could use time to reach a point in the
state space in the maritime example or frequency of oscillation
in the brake example. However, these features or set of features
must be defined by some expert with knowledge of the problem
domain (or by visual data inspection).

Our methods are able to solve each of these problems directly
without using such user-defined features, thus minimizing the
need for an expert in the anomaly learning and detection
processes. The key is to learn an iPSTL formula as a classi-
fier. To give an example, the normal vessel behavior can be
described by the iPSTL formula

© = Fio,500) (G[o,200)(ys = 20) A G 200) (ys < 35)
A Fyo,350) (s < 25))

As shown in Fig. 2, the two scale parameters related to ys, 20
and 35, define the bounds of the normal traces corresponding to
the narrow passage between the peninsula and the island. The
scale parameter related to x4, 25, defines the right boundary of
the port. In plain English, this formula reads “There is a time ¢
within [0, 590) such that the vessel’s y coordinate should always
be between 20 and 35 for the next 200 units and the vessel will
eventually reach an = coordinate that is less than 25 within
350 units”. The people smuggling scenario shown in red in
Fig. 2) violates the conjunction of the first and second clauses
while the terrorism scenario (shown in blue in Fig. 2) violates
the third clause.

B. Off-Line Anomaly Learning

We wish to construct a classifier that can separate outputs
from a system behaving normally from outputs from a system
behaving abnormally. First we consider the case in which our
inference procedure can learn from historical data that has been
labeled according to whether or not it represents a normal
behavior. More formally, we wish to solve Problem 1.

Problem 1: Let {xz}i\i1 be a set of trajectories generated
by 8. Let s; be the observed output signal associated with
xz; and p; be the corresponding label assigned by expert or
database knowledge. p; = 1 if s; represents a normal behavior
and p; = —1 if s; represents an anomalous behavior. From the
pairs {(s;, pi)}f\il, find an iSTL formula ¢ describing normal
behaviors (with subscript NV indicating “normal” behavior) such
that the misclassification rate

FA+ MD
MR ({(sp) 1y on) = —2m @)

is minimized, where F'A = |{s;|s; = ¢, p; = 1)}| is the num-
ber of false alarms (signals improperly classified as anomalous)
and MD = |{si|s; = ¢,p; = —1}| is the number of missed
detections (signals improperly classified as normal). In the
above | - | denotes the cardinality of a set.

This problem is modified from the supervised learning
problem previously addressed in [18]. In [18], we made the
assumption that the classifying formula would have the form
¢ = Fi7, 7,) (e = ¢c), where ¢, is called the cause formula
and ¢, is called the effect formula. We assumed that some
change in the first part of the system’s output (before some
time ?) resulted in some observable phenomenon later. Thus,
we used the data after time 7 to learn ¢, and then used all of
the data to learn ¢.. The problem and solution presented in
this paper is more general and doesn’t require us to define the
time £. When an expert has a good estimate for the time £, the
computation time may be lower using the previous method, but
if the assumptions of [18] are not met, the algorithm presented
in this paper provides a more general and robust solution.

C. Off-Line Anomaly Detection

Now, we consider the more challenging problem in which
the inference procedure learns from historical data without the
knowledge of whether a given output was produced by a system
behaving normally or abnormally. More formally, we wish to
solve Problem 2.

Problem 2: From the set {s;},", (defined in Problem 1),
find an an iSTL formula ¢ describing normal behaviors such
that the misclassification rate

FAp +MDp
M
is minimized, where FAp = |{s;|s; £ ¢,2; € Ln(8)}| and

MDp = [{si|s; = ¢, & Ln(S)}-
This problem was previously addressed in [16].

MRp ({si}ily. ¢n) =

D. On-Line Learning

So far, we have assumed that the inference procedures have
access to historical system data. However, this assumption is
not valid for systems that have not previously been deployed or
from which no data has been recorded. For these systems, we
need a way to perform on-line supervised learning. That is, we
need to be able to construct and update a classifying formula as
more data becomes available over time. More formally, on-line
supervised learning is defined by Problem 3.

Problem 3: A system or a group of systems produce
outputs s; with expert-given labels p; as defined in Problem
1. Maintain a formula ¢4 such that the misclassification rate
MR({(si,pi)}._,, ¢%) as defined in Problem 1 is minimized.
When a new pair (s;+1,pi+1) becomes available, use d)‘}v and
the new pair to construct d)’}i{l.

Problem 3 has not previously been addressed. An on-line
version of the anomaly detection problem can be similarly pro-
posed. However, due to the inherent difficulty of this problem,
we will address it in the future.

V. SOLUTIONS

In this section, we show how to solve the anomaly learning,
anomaly detection and online learning problems presented in
Section IV.
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A. Learning as Optimization With Robustness Degree

The misclassification rate used in Problem 1-3 is called 0-1
loss in the machine learning literature [4], [31]. One issue with
the misclassification rate is it ignores the degree of “wrongness”
for misclassified samples, i.e., trajectories. Suppose we have
two anomalous signals, s; and so. Both are misclassified as
normal, but with s; barely violating the formula ¢ specify-
ing normal behavior while sy greatly violates ¢ (D(s2,¢) <
D(s1,¢) < 0). The consequences of these two mistakes can be
dramatically different. Thus, we need to take different samples’
degrees of misclassification into consideration.

Ideally, one natural choice for such a degree is signed dis-
tance D(s, ¢), which can be used as a fitness function (or utility
function). Then, the learning problems under consideration
can be converted into optimization problems. According to
Theorem 1 and Corollary 1, the optimization problem can be
solved by combining a discrete search over a DAG to find
an iPSTL formula ¢ with a continuous search to find its
appropriate parameterization 6.

Fig. 1 conceptually illustrates the solution to this problem.
A formula is sought to describe the single normal output s.
The discrete search starts from the most exclusive formula
and follows directed edges until a satisfying formula is found.
A continuous search is performed on each node to find a
valuation 6 that maximizes D(s, ¢; ), where 4 is the index
of the current node. It can be observed that the formulae
induced from optimal valuations (denoted with * superscripts)
of formulae 1, @2, @3 are all still violated by s (have negative
signed distances). Thus, we have to go up the DAG to formula
4 to find a formula that s “barely” satisfies, i.e., a formula
with a small yet positive signed distance.

Unfortunately, D(s, ¢), or more precisely L(¢), cannot be
computed or represented analytically for most real systems
[11]. Thus, its approximation 7(s, ¢) has been used as a sur-
rogate. Even though r(s, ) is an approximation of D(s, ¢)
[11], 7(s, ¢) has been utilized successfully in model checking,
analysis and formal synthesis of a wide range of systems [3],
(91, [10], [13], [24].

In this paper, we also use robustness degree (s, ¢) to ap-
proximate D(s, ¢). Fig. 3 illustrates the interaction between
the graph search and parameter estimation using robustness
degree. Suppose we have a single boat’s trajectory s, whose
2 and y coordinates are shown in the top left and right plots,
respectively. The center left figure shows the robustness degree
with respect to o1 := Fjg (25 > 100) for various values of
7, while the center right figure shows the robustness degree
with respect to 2 := Fjg 40)(ys < ) for various values of 7.
Note that by selecting the parameter 7 or 7 for each ¢;, we can
maximize or minimize the robustness degree of the signal with
respect to the induced formula ¢; 4. The bottom left plot shows
the robustness degree for 3 := 1 A @5 for various pairs (7, 7)
and the bottom right plot shows the robustness degree with
respect to 4 := 1 V a. Note that o3 <p p1(p2) <p @4. By
considering (3 rather than ¢; or (5 alone, we can find a larger
class of iSTL formulae that strongly violate the specification,
which is useful for mining formulae with respect to undesirable
behavior. Similarly, by considering ¢4, we can find a larger
class of formulae that robustly satisfy the behavior.
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Fig. 3. Simple example of formula search using robustness degree.

Remark 2: For a given signal s, an :PSTL formula ¢ is
either monotonically increasing or monotonically decreasing
with respect to its parameter 6 [15]. Take ¢ := Fjg 40)(y < 7)
for instance. The robustness degree of ¢ for a particular signal
s is shown in the center right plot of Fig. 3. It can be observed
that if m > ma, (s, ¢x,) > 7(S, r,), @ case of monotonic
increase. The monotonic property alludes to bisection search
heuristics [7]. We choose simulated annealing to solve offline
learning problems (Section V-B and C) due to its proven success
in others’ work [1]. The monotonic property also justifies
our utilization of stochastic gradient descent to solve online
learning problems (Section V-D).

B. Anomaly Learning

1) Optimization: Problem 1 can be cast as the following
optimization problem.

Problem 4: Find aniSTL formula ¢ v ¢, such that the iPSTL
formula ¢ and valuation 6 minimize

M
Jul.0) = 22 S 1 r(si 60) + Mol )
=1

where r is the robustness degree defined in Section III-A, ¢g is
derived from ¢ with valuation 6, M is the number of labeled
signals, A is a weighting parameter, ||¢g| is the length of ¢y
(number of linear predicates that appear in ¢g) and [ is a loss
function, which is chosen to be hinge loss [31] in our case

Z(pi7r(8’ia¢9)) = Imax (0567" _pir(sia¢9)) (6)

where €, < 1.

We continue [ by using the robustness degree as an interme-
diary fitness function, a measure of how well a given formula
fits observed data. Formula length is penalized in our approach
because if ¢ g, grows arbitrarily long, it becomes as complex
to represent as the data itself, which would render the inference
process redundant.
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SBSE

Fig. 4. The initial graph G, constructed from z, y coordinates.

2) Algorithm: The framework for solving Problem 1 is
detailed in Alg. 1.

Algorithm 1: Anomaly Learning

Input:

A set of labeled signals {(s;, pz)}z 1

A variable set V;

A misclassification rate threshold §;

A formula length bound W

Output:

An iPSTL formula ¢ and valuation 6.
l:fori:=1to W do

2: ifi =1 then
3: G1 < DAGInitialization(V');
4: List + ListInitialization(G1);
5:  else
6: G; «+ PruningAndGrowing(S;_1);
7: List + Ranking(G; \ Gi—1,);
8:  while List # () do
9: @ < List.pop();
10: (6, M R) « ParameterEstimation({(s;, p;)} 2, ¢)
11:  if MR < 6 then
12: return (¢, 6).

13: return MinimumCostNode(Gw );

Remark 3: In this section, for compactness, we denote
a formula ¢ = Fjo.1)¢; in the iPSTL fragment by ¢; for
short. For instance, when we show a formula G|, .,)(7s <
m) as a node in a DAG, the iPSTL formula it represents is
F[O,T) (G[leTz)(xS < 7T))

Initialization: Our algorithm operates on V, the set of
all variables represented in the output signals from the sys-
tem. The inference process begins in line 3 of Alg. 1, where
DAGlInitialization(V') generates the basis of the candidate for-
mulae. The basis is a set of linear predicates with temporal
operators, called basis nodes, of the form Oy, ,,y(zs ~ 1)
where O € {G, F}, ~¢ {>,<}and s € V. That is, the basis
represents all internal formulae ¢; of length 1. Edges are
constructed from ¢; to ¢y, in the initial graph Gy iff ¢; <p .
For example, in the naval surveillance example if we only
consider the (z,y) position of the boat, then the initial graph
is shown in Fig. 4.

ListInitialization(G;) (line 4) generates a ranked list of for-
mulae from the basis nodes. Since we do not yet know anything
about how well each of the basis nodes classifies behaviors, the
rank (used in parameter estimation) is generated randomly.

Parameter Estimation: After the graph is constructed, we
find the optimal parameters for each of the nodes. The candidate

Fig. 5. A subset of the DAG Gy after pruning and expansion. For
compact representation, only the internal formulae ¢; are shown and
the unique top element (T) and the unique bottom element (_L) are not
illustrated. This DAG corresponds to expanding the graph from formulae
of length 1 to formulae of length 2 in order to search for a formula with a
larger, more inclusive language.

formulae in List are iterated through from lowest rank to highest
(line 9). ParameterEstimation({(s;, pi)}i]\i 1, ¢)(line 10) uses
simulated annealing to find an optimal valuation for ¢ by
minimizing the cost J,.

Structural Inference: After the first set of parameters and
costs have been found, the iterative process begins. The de-
finition of the partial order allows for dynamic extension of
the formula search space. We cannot explicitly represent the
infinite DAG, so we construct a finite subgraph of possible
candidate formulae and expand it when the candidate formulae
perform insufficiently. In machine learning, subset selection is
the problem of selecting an explanatory subset of features that
best classifies sets of data. Feature subset selection (FSS) is an
iterative heuristic solution in which at each iteration, the best-
performing features are retained in the candidate explanatory
subset while the worst-performing features are discarded [31].
PruningAndGrowing(9;_1) (line 7) first applies the principle
of FSS by eliminating a fixed number of high-cost nodes from
G,;_1, i.e., those formulae that do not fit the observed data.
It then grows the graph §,;_; to include nodes with length 4
according to graph expansion rules derived from Proposition 2.
Consider a formula ¢; of length ¢ — 1 such that the missed
detection rate of ¢;, 0: is higher than the false alarm rate. This
means that the inferred formula needs to be made less restric-
tive, i.e., its language needs to be enlarged to include more of
the desirable traces. In order to do this, PruningAndGrowing
adds to the graph a formula ¢’ = ¢; V ¢, where ¢, € Basis is
a basis formula with good performance. If the false alarm rate
is higher, then a more restrictive formula would be required and
PruningAndGrowing would add ¢” = ¢; A ¢ to the graph. An
example of a subset of a graph G, grown from the (pruned) basis
graph is given in Fig. 5.

Ranking(9; \ 9;-1) (line 8) ranks the newly grown nodes
based on a heuristic function

1
Ipa (k)| Z

ki_1€pa(k;)

Ja(ki-1) )

where k; is anode in G;_1, pa(k;) is the set of k;’s parents, and
|pa(k;)| is the size of pa(k;). For example, in Fig. 5, for k; =
Flo,m) (@s > m1) A(Flo,ry) (s <m2)), palks) ={Fjo,r (zs > ),
(Fjo,r) (ys < m)} and [pa(k;)| = 2.
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The iterative graph growing and parameter estimation proce-
dure is performed until a formula with low enough misclassifi-
cation rate is found or W iterations are completed. At this point,
MinimumCostNode(§;) returns the node with the minimum
cost within G;.

Complexity: Without pruning, the discrete layer of the de-
scribed algorithm runs in time O(W - 2/V'1). Since PruningAnd-
Growing prunes a constant number of nodes at each iteration,
the complexity of the discrete layer is reduced to O(W - [V |?)
when pruning is applied. The continuous layer of the algorithm,
runs in time O(W (n?m) - log(M)), where n is the number of
times the “temperature” (average step size) of the algorithm
is lowered during an iteration of the algorithm and m is the
number of sampled valuations evaluated at each temperature.

Remark 4: Simulated annealing (SA) is used in this paper
to attempt to find the optimum parameter 6* of J, (¢, ) with a
fixed iPSTL formula ¢. Other global optimization techniques,
such as particle swarm optimization and Monte-Carlo sampling,
have also been applied to solve similar parameter estimation
problems [13], [22]. Even though SA converges in probability
to the global optimum, there is no theoretical proof on the
convergence rate and how far the solution is from the global
optimum after a number of iterations. Some promising avenues
include utilizing the monotonicity of the robustness function
(s, ¢g) with respect to 6 [15], [33] and using cross-entropy
method guided by robustness degree to sample inputs [25].

C. Anomaly Detection

1) Optimization: Since Problem 2 is an unsupervised learn-
ing problem, we use some notions from classical unsupervised
learning to aid in our approach. In particular, we consider one-
class support vector machines (SVMs). A one-class SVM is an
optimization technique that, given a set of data, lifts the data to
a higher-dimensional feature space and constructs a surface in
this space that separates normal data from anomalous data [26].
We map Problem 2 to the following optimization.

Problem 5: Find an iPSTL formula ¢y g, such that the
formula ¢ and valuation #y minimize

Id)mnd o) —|— — Z Wi — (8)
such that
0 ;s > £
=1 o) =5y )
5 —1(si,p0) else

where ¢p is an iSTL formula, € is the “gap” in signal space
between outputs identified as normal and outputs defined as
anomalous, v is the upper bound of the a priori probability
that a signal x; € L4(8) [26], and p is a slack variable. y; is
positive if s; does not satisfy ¢y with minimum robustness ¢ /2.
The function d is a “tightness” function that penalizes the size
of L(¢g).

By minimizing the sum of the 1;, optimization (8) minimizes
the number of traces the learned formula ¢y classifies as
anomalous. By maximizing the gap ¢, optimization (8) attempts
to maximize the separation between normal and anomalous

outputs. By minimizing the function d(¢g), optimization (8)
prevents the learned formula from trivially describing all ob-
served signals (i.e., finding a formula such that L(¢) = L(8)),
which would render the optimization redundant.

2) Algorithm: Similar to the anomaly learning case, solving
(8) requires searching over the set of continuous variables
(@ and ¢) as well as over the discrete set of iPSTL formula
structures (the structure ¢ of ¢y ). Alg. 1 can be adapted to solve
(8) with the following two changes:

1) The input signals are not labeled, i.e.,

2) ParameterEstimation solves (8) instead of (5).

the inputs are

The ParameterEstimation procedure uses the heuristic tight-
ness function d when calculating the objective function in (8). In
this paper, we use a heuristic that penalizes the size of 7, as for
monitoring purposes we would prefer to infer formulae that can
describe behaviors of the early parts of the system’s outputs. For
each predicate appearing in ¢, if the comparison operator is <,
the size of 7 is penalized, as the size of the language of (z; < )
increases with 7. If the comparison operator is >, small values
of m are penalized for the same reason. Please see [16] for
more details. The time complexity of the anomaly detection
algorithm is the same as that of the anomaly learning algorithm.

D. Online Learning

Here, we consider how to extend Alg. 1 to solve Problem 3.
In principle, optimization problems such as (5) can be solved
for on-line settings via stochastic gradient descent [17], [31].
With mild assumptions, for a fixed iPSTL formula structure ¢,
such a method can find its optimal parameterization 6* if there
exists a ¢y~ with structure ¢ that can classify the data. Let 6; be
the parameterization of ¢ after ¢ pairs of signals and labels have
been observed. The stochastic gradient descent that minimizes
the loss function [ is given by

0; if pir (si, do,) > €r

10
ei—i—n%pi otherwise. (10)

9i+1 =

where 1 > 0 is a learning rate and the partial derivative is
calculated according to the centered first difference. If ¢ is the
correct iPSTL formula for classification, it should be expected
that there exist a step ¢ such that p;7(s;, ¢g,) > 0 for all i > i.
That is to say the total misclassification rate approaches 0.2
If, on the other hand, ¢ is not the correct formula, then the im-
provement on classification performance saturates at a certain
step 7 and a new formula should be sought.

We propose an on-line learning procedure described by
Algorithm 2. This new procedure can learn a formula ¢g as
the labeled signals (s;, p;) arriving sequentially. This procedure
operates on a collection of Ny candidate formulae {¢;, 67 }

The algorithm operates on this collection instead of con31der1ng

2The difference between subsequent valuations 6; and 0;11 should not be
too extreme, as this would cause the valuation to oscillate about the optimal
value 6*. Therefore, the learning rate 7 should be chosen to be a small, positive
number or to decrease with respect to the iteration number.
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a single formula at a time because there is initially very little
information about what kinds of behaviors the system may
satisfy. In practice, we choose Ny to be at least as large as
the size of the basis so that we do not exclude any rectangular
predicate from consideration. It is still more computationally
efficient than the offline learning method, however, because
for each trajectory and label pair (s;,p;) are introduced to
the algorithm, N, robustness calculations are performed, in
contrast to the n?m calculations that are performed by the
simulated annealing algorithm.

Algorithm 2: Online Learning

Input:
A sequence of labeled signals {(sq;,pi)}ﬁl;
Database of candidate STL classifiers formulae;
Maximum and minimum learning rates 7max, Jmin}
Geometric rate «;
Number of iterations before updating formula database
checklnt;
Maximum number of iterations numlter
Output:
An iPSTL formula ¢ along with its corresponding
valuation 6.

1: for ¢, € formulae do

2: 0% « ParameterEstimation((s;, i), ¥k );
:for i =1,...numlters do
traces <— UpdateTraces(traces, s;, p;);

for (¢, 0%) in formulae do

0% < ParameterUpdate((s;, pi), vk, 0%);

1) 4 max(an, Nmin);

if 7+ mod checkInt == 0 then

formulae +— UpdateFormulae(formulae);

10: 1) = Nmin;
11: return bestFormula(formulae,traces)

Lo nsw

The algorithm initializes the set of formulae to Ny formulae
from the basis and corresponding initial valuation guesses that
are found via simulated annealing with small values of n, m.
Then, when a new trajectory and label pair (s;,p;) becomes
available, the function ParameterUpdate is called to update each
value 67 in the formula database according to the rule (10).
Every checklnt trajectories, the misclassification rates of each
;.95 with respect to the trace database are evaluated and the
formula database is then populated with new formulae.

The function BestFormula returns the candidate formula
from the database that minimizes the misclassification rate
of the (¢ gb, @sppev) are therefore the first and second best
performing candidate formulae. If the missed detection rates
are greater than the false alarm rates, e.g., the size of the
languages of the formulae are too large, then the conjunction
of the two formulae is added to the formula database. This
corresponds to moving several “hops” down the DAG of iPSTL
formulae. Otherwise, the disjunction of the two is added. This
corresponds to moving several hops up the DAG. The subrou-
tine simplify removes tautologies from the constructed formula.
The subroutine getValuation maps the two valuations #°, #*° to

the corresponding valuation 6, of the simplified combined
formula.

Our algorithm uses a variable learning rate n throughout the
on-line inference procedure. We initially start at a high rate
Nmax and decrease it in a geometric fashion with rate 0 < v < 1
until it reaches a level 7,;,. Whenever the formula database
is replaced, this rate is reset to its original level. The variable
learning rate allows the ParameterUpdate formula to make
bigger steps whenever we initially know very little about the
optimal parameterizations for each structure and make smaller,
finer steps after more information has been collected.

Algorithm 3: UpdateFormulae

Input:

trace database tr;

formula database f;

Output:

updated database
1:for k = 1to Ny do

2: (s, 0°) + bestFormula(f,tr)

3: ufl = ufl U {(¢s,0°)}

4:  (mdb, fab) < calculateRates (i, 6°, tr)

5: form=1to Ny —kdo

6: (¢sb, 0%%) «+ bestFormula(f, tr \ (ufl U uf2), tr)
7: (mdsb, fasb) < calculateRates (4, 0°°, tr)

8: if (mdsb + mdb > fab+ fasb) then

9: Pnew = Simplify(@b A Sosb)
10: else
11: Onew = simplify(pp, V @)

12: Onew = getValuation(ppeyw, 67, 6°0)
132 f= fU {(@newvenew)}

14:  uf2 = uf2U (pg, 0sp)

15: return f;

Complexity: As mentioned above, each time a new trajec-
tory and label pair is introduced to the online learning proce-
dure, O(Ny) robustness calculations with complexity O(|p,|)
are performed. In contrast, a robustness calculation is per-
formed n?m times for each candidate formula and trace in the
off-line algorithm. It is difficult to directly compare the two
complexities due to variations in parameter sizes, but in practice
many more robustness computations are performed in off-line
learning. If N, formula database updates are performed, the
worst-case formula length is 2/¥~~1, though this represents an
unlikely extreme situation in which no tautologies are intro-
duced and the longest formulae in the database are always
among the best-performing. The user has some control over
the maximum length of the formula via the parameter checkInt
which determines how often the formula replacement occurs.
In practice, the maximum formula length is determined by the
length of the shortest formula that can separate the two classes
of trajectories.

VI. IMPLEMENTATION AND CASE STUDIES

The algorithms described in Section V were implemented
as a software tool called TempLogln (TEMPoral LOGic
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Off-line learning: Naval scenario

y (dam)

x (dam)

Fig. 6. Results of offline inference. The green trajectories represent
normal behaviors, the red trajectories represent human trafficking, and
the black trajectories represent terroristic activity. The blue lines are
boundaries given by the formula (12). The values of = and y are
expressed in decameters (dam) with 1 dam equal to 10 m.

INference) in MATLAB. We developed all of the components
of our solution in-house, including the graph construction,
search algorithms, and the simulated annealing algorithm. The
software is available at http://hyness.bu.edu/Software.html.

A. Naval Surveillance

1) Scenario Setup: In this sub-section, we use our anomaly
learning and on-line learning algorithms to the naval surveil-
lance scenario used in Example 1. We model each vessel as a
Dubins’ vehicle

T = vCoS«K
(11)

Yy =vsina

G =w

where x and y are the vessel’s coordinates, v is its constant
speed, « is its heading, and w is its angular velocity.> Further,
assume that the z and y coordinates collected by the AIS are
subjected to an additive white Gaussian noise N(0, 0.1).

2) Anomaly Learning: We generated 50 trajectories demon-
strating normal behaviors, 25 trajectories demonstrating suspi-
cious behaviors consistent with human trafficking behaviors,
and 25 trajectories demonstrating suspicious behaviors consis-
tent with terroristic behaviors. A subset of these trajectories are
shown in Fig. 6. Our goal was to find a formula that described
only the normal behaviors from this training set. Using our
implementation of Alg. 1 with n =15, m = 15 yielded the
formula

On = Fjo,320) (Glas,22m)¥s > 21.73) A (Gz0s,313)Ts < 34.51)
(12)

with total misclassification rate 0.0950. The total computation
time was 1313 s (approx. 22 minutes) on a computer with
2.41 GHz processor and 7.4 GB RAM.

In plain English, this formula reads “Within 320 minutes,
there exists a time ¢ such that the boat’s y coordinate remains

3The simple dynamics (11) is chosen for reader familiarity. The choice of
simulated dynamics does not affect the validity of our results, as our algorithm
depends on labeled traces and not explicit system models.

On-line learning
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Fig. 7. The misclassification rate over time for on-line learning with
respect to all traces.

above 21.73 dam between ¢ + 28 minutes and ¢ 4+ 227 minutes
and such that the = coordinate remains below 34.51 dam
between ¢ + 308 minutes and ¢ + 313 minutes.” The blue lines
in Fig. 6 correspond to the thresholds in (12).

3) On-Line Learning: Next, we used a larger set of signals
of the naval scenario and inferred a formula by using our on-
line learning algorithm. At each iteration of our algorithm,
we drew a signal uniformly at random from a set of 2000
trajectories, which consisted of 1000 normal trajectories, 500
human trafficking trajectories, and 500 terrorist trajectories.
The learning rate parameters we used were a = 0.995, max =
0.2, and ny,in, = 0.01. Fig. 7 shows the misclassification rate of
the inferred formula at time ¢ with respect to all 2000 traces.
As we can see, the rate does not monotonically decrease, but it
does decrease to a point. The formula that was inferred after all
2000 trajectories were used is

On = Flo,320) (G[174,228)Ys > 19.88) A(Glo2,207)Ts < 34.08)
(13)

The total misclassification rate of the final formula was
0.0885. The total computation time was 996 s (approximately
16 minutes) on a computer with 2.41 GHz processor and
7.4 GB RAM. This computation time included evaluating mis-
classification rates for the entire set at certain time intervals,
i.e., generating Fig. 7. Using the same parameters and not doing
this calculation yields a computation time of 648 s (approx. 11
minutes). This represents a significant computational speedup
over the off-line method, especially when we consider that the
method operated on a larger data set.

B. Train Network Monitoring

1) Model: Consider a train using an electronically-
controlled pneumatic (ECP) braking system. The train has
3 cars, each of which has its own braking system. We model
the train as a classical hybrid automaton, whose definition is
given in [20]. In this model, the braking system is automated
to regulate the velocity v below unsafe speeds and above low
speeds to ensure that the train reaches its destination, as shown
in the top-left sub-figure of Fig. 8. However, an adversary
can disable the brakes of the system and cause its velocity to
become unregulated, as shown in the other three sub-figures of
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Fig. 8. Outputs of the train velocity system under normal (upper-left)
and attack scenarios (other three). An adversary has the ability to
disable one, two, or three of the trains brakes in order to deregulate
its velocity. The variable b is the number of brakes affected by attack.

Fig. 8. More details on the particular model we used can be
found in [16], [28].

2) Anomaly Detection: We used the model given in the
previous section to generate 50 outputs of H. 43 of the trajec-
tories were from normal operation and 7 were from an attacked
operation. We only considered attacks in which all of the brakes
were disabled (b = 3). Our algorithm inferred the formula

¢ = F[O,lOO) (F[lo’gg) (US < 24.9) A F[13~9’44'2) (’Us > 1766))
(14)

In plain English, (14) means “Within 100 seconds, there
exists a time ¢, such that between ¢+ 10 s and ¢+ 69 s in
the future the velocity dips below 24.9 m/s and such that the
velocity exceeds 17.66 m/s between ¢ + 13.9 sand ¢ 4 44.2s.”
This formula is consistent with the observed un-attacked signals
(shown in top left of Fig. 8), as the properly-functioning brake
system forces the velocity to be below 24.9 m/s regularly while
ensuring that the speed never deviates too far below some
desired minimum speed. In contrast, when under attack (Fig. 8,
bottom right), this regulation never occurs. and the velocity is
allowed to remain about 24.9 m/s indefinitely.

The formula (14) perfectly separates the data, i.e., the mis-
classification rate is 0. The formula was inferred using 15
simulated annealing cycles with 15 sample points per cycle.
The computation time was 154 s on an 8 core PC with 2.1 GHz
processors and 8 GB RAM.

VII. CONCLUSION

In this paper, we brought together techniques from formal
methods and machine learning to develop a framework for
anomaly learning and detection. For three different scenarios
(off line supervised and unsupervised and online supervised
learning), we designed and implemented algorithms that infer
classifiers in the form of formulae in a specially tailored signal
temporal logic. While capturing many features of traditional
classifiers, these new types of classifiers include time-based
and logical semantics, which resemble natural language. We

Fig. 9. Relationship among ©(¢1), ©(v2) and O(ps3).

demonstrated our approach using two case studies, a naval
surveillance example and a train braking system. In future
work, we plan to exploit the quantitative semantics of the logic
for on-line monitoring and anomaly mitigation.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: A partial order =< is a binary relation that is
reflexive, transitive and antisymmetric.

(=s) Reflexivity ¢1 <s ¢1 is equivalent to L(¢1) C L(¢1),
which is trivially true. Transitivity ¢1 =g ¢2 and ¢ =g ¢3 is
equivalent to L(¢1) C L(¢2) and L(¢2) C L(¢s). It implies
L(¢1) C L(¢3), which means ¢ =g ¢3. Antisymmetry ¢1 =g
@2 and o =g @1 is equivalent to L(¢1) C L(¢2) and L(¢2) C
L(¢q). Itimplies L(¢1) = L(¢2), which means ¢1 = ¢o.

(=p) Regardless of the relationship among formulae o1, o
and ¢3, the relationship among their parameter sets O(¢1),
O(¢2) and O(p3) can be generally represented as in Fig. 9.
Due to the independence of assignment to each parameter, the
valuation of a formula’s parameters can be decomposed into the
valuations of its parameter subset. For instance, the valuation of
formula ¢ can be written as 0 = [04, 05, 0c, 0p], where row
vectors 04, 0, O and 0p denote the valuations of parameter
subsets A, B, C' and D, respectively.

Reflexivity: ¢1 <p 1 is equivalent to V0, ¢1 9 = ¢2 ¢ or
L(¢1,0) = L(¢1,0), which is trivially true.

Transitivity: If o1 <p @2 and 2 <p @3, we have

VO =1[04,08,00,0p,08,0F], ¢1,0 s d2,0

and V0’ = [ /Ba /Ca /Da /Ea /F‘velG] a¢279’ =s ¢379/
= Vo' = [ va Z‘IBa g‘v Ibv %‘7 IIINH/C/;] 7¢179” =s ¢279”
and ¢2.97 =g P30
= Vo' = [ va Z‘IBa g‘v Ibv %‘7 IIINH/C/;] 7¢179” =s ¢379”
due to transitivity of <g
= Vo = [ ZA? /]/B’a g‘v /bv /évglcll] a¢1,9“’ =s ¢3,9“’
=  p1 3Pp ¥s3.

Antisymmetry: If o1 <p 2 and ¢35 <p 1, we have

V0, 91,0 s P20 and g2 9 <5 P16
V0, 91,9 = ¢2,¢ due to antisymmetry of <g

P1 =2

=
=
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APPENDIX B
PROOF OF THEOREM 1

Proof: A partially ordered set (X, <) forms a lattice if
any two elements x1,x2 € X have a join and a meet [6].
The join and meet can be computed by means of two binary
operators, Ll : X x X — X and M: X x X — X, using the
supremum and infimum functions, i.e.,

1 Uze  :=sup{xi,z2}

x1 My inf {x1, 20} (15

Any partially ordered set (X, <) with a lattice structure can
be represented by a directed acyclic graph (DAG). First, a
Hasse diagram [6] can be constructed with each node of the
diagram corresponding to an element of X. Then, the DAG
can be obtained by adding a direction to each line segment
of the Hasse diagram, which point from a “lower” element (in
Cartesian coordinates, has a strictly smaller second coordinate)
to a “higher” element (has a strictly larger second coordinate).
The join (meet) of two elements x; and x5 is the “lowest”
(“highest”) node where two paths starting from node x; and
node x, and along forward (backward) edges meets.

Proving Theorem 1 is equivalent to proving that the set of
iPSTL formulae with partial order <p form a lattice. More
formally,

Lemma 1: For all 1, g € iPSTL, where :PSTL is the set
of all iPSTL formulae, their join ¢ M@y and meet g LI g
exist and are unique.

Proof:
Join: Treat the subformulae G;p and Fjp where p is a
linear predicate and [ is a time interval I := [71, 7o) as different

Boolean predicates. Calculate the Disjunctive Normal Form
(DNF) of ¢1 A w2 [14]. Then, if G;p and Fp coexist in a
term replace them with Gp; if Gyp and Fr—p coexist in a
term, we replace them with L (False) or equivalently delete the
corresponding term; similarly, if G;—p and Fjp coexist in a
term, we delete the corresponding term. The resulting formula
is the join ¢ I w9, which is unique because DNFs are unique.
Meet: The existence and uniqueness of 1 Ll o can be
proved similarly by utilizing the Conjunctive Normal Form
(CNF) of Y1V pa. U
Remark 5: Notice that the nodes corresponding to ¢; :=
Fr,(Fr,p) and @3 := Fr, ((F,p) V (F1,p)), where I; — I5 are
time intervals, are different in the DAG. According to the
definition of partial order <p over iPSTL, we have 2 <p <p1,4
meaning that the unique meet of the two nodes is the node
corresponding to ¢; and the unique join of the two nodes is the
node corresponding to .
Thus, (iPSTL, <p) is a lattice and therefore has an equiva-
lent representation as an infinite DAG. U

41t is worth pointing out that, during ordering of the two formulas, constraints
on the parameters are added. For this particular case, I1 = I3 and Iz = Iy,
meaning the bounds of the paired time intervals should be the same.

APPENDIX C
PROOF OF THEOREM 2

) Since L(¢1) C L(¢s), for any s € F(RT
1) seL(¢); 2) s€
L(=¢2). Here, L(=¢) :=
F(R', R") \ L(ds). For

Proof: (=
R™), there are three possibilitif:S'

L(=¢1) N L(¢2); 3) s € L(—=¢1) N
F(RT,R™)\ L(¢1) and L(—¢s) :=
Condition 1

L(¢1) C L(¢2) = L

Thus

D(s,¢1) =inf {p(s,y)|y € cl (L(~¢1))}
=inf{p(s,y)ly € cl(L(=¢2)
U (L(=¢1) N L(¢2)))}
=inf{p(s,y)ly € cl (L(—¢2))
ory € cl (L(=¢1) N L(¢2))}
=inf{inf {p(s,y)ly € cl (L(—¢2))},
inf {p(s, y)|y € cl (L(=¢1) N L(¢2))}}
)
(

)
(

=min{inf {p(s, y)|y € cl (L(=¢2))},
inf {p(s, y)[y € cl (L(=¢1) N L(¢2))}}
< inf{p(s,y)ly € cl (L(=¢2))}

= D(s, ¢2)

Condition 3 can be proved similarly. For Condition 2, since s &
L(¢1) and s € L(¢3), we have D(s,¢1) <0 and D(s, ¢2) >
0. Then, it is true that D(s, ¢1) < D(s, ¢2).

(<) Assume otherwise, then there exists an s € F(RT,R")
such that D(s, ¢1) < D(s,¢2) and s € L(¢1) but s & L(¢p2).
Thus, we have D(s, ¢1) > 0 and D(s, ¢2) < 0, which results
a contradiction, since D(s, ¢1) and D(s, ¢2) cannot be zero,
simultaneously. (]
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