
Temporal Logic Control for an Autonomous Quadrotor in a
Nondeterministic Environment

Alphan Ulusoy? Michael Marrazzo† Konstantinos Oikonomopoulos† Ryan Hunter† Calin Belta?†

Abstract— We present an experimental setup for automatic
deployment of a quadrotor in an environment with known
topology and nondeterministically changing properties. The
missions are specified as rich, temporal logic statements about
the satisfaction of the properties. The main objective is to
be able to synthesize, test, and evaluate control policies for
complex aerial missions. Our testbed consists of quadrotors, a
motion capture system that provides precise and continuous
position information of the quadrotor, projectors that can
emulate dynamically changing environments, physical obstacles,
and computers that control the quadrotor, the motion capture
system, and the projectors. Our computational approach is
hierarchical. At the bottom level, we partition the environment
and construct an abstraction in the form of a finite transition
system such that the quadrotor can execute its transitions
by using low level feedback controllers. At the top level, we
draw inspiration from LTL model checking and use a value
iteration algorithm to determine an optimal control policy that
guarantees the satisfaction of the specification under nonde-
terministically changing properties. We illustrate the approach
for the particular case of a surveillance mission in a city-like
environment.

I. INTRODUCTION

The last decade has witnessed many exciting advances in
the field of small scale unmanned aerial vehicles (UAVs),
commonly referred to as micro air vehicles (MAVs). As
opposed to typical UAVs with wing spans exceeding 1
m and gross takeoff weights exceeding 5 kg, MAVs are
typically smaller than 15 cm in all dimensions with gross
takeoff weights less than 200 g [1], [2]. Among different
MAVs, quadrotors have attracted significantly more attention
than their similarly sized counterparts. This has been mostly
due to their ability to perform vertical takeoff and landing,
operate in closed spaces with small volumes, and their
relative operational safety when compared to a single rotor
vehicle with a considerably larger spinning blade.

Current literature on MAVs focuses on design [3]–[5]
and control [5]–[9] problems involving quadrotors. There
are also various works on autonomous quadrotor navigation
and planning [10]–[12]. The majority of such works either
focus on waypoint based navigation or classical reach-avoid
problems, where a quadrotor is expected to reach a goal
region safely. Recently, several groups presented various
UAV testbeds [7], [13]–[15]. Most of these testbeds are
geared towards flight performance evaluation of various low-
level controllers.

This work was partially supported by the ONR under grants MURI
N00014-09-1051 and MURI N00014-10-10952 and by NSF under grant
CNS-1035588.

? Division of Systems Engineering, Boston University, Boston, MA
02215 (alphan@bu.edu, cbelta@bu.edu)

† Dept. of Mechanical Engineering, Boston University, Boston, MA
02215 (marrazzo@bu.edu, kotsos@bu.edu, rghunter@bu.edu,
cbelta@bu.edu)

In this paper, we focus on complex aerial missions ex-
pressed as temporal logic statements over some properties
of interest. We present an experimental setup for automatic
deployment of quadrotors in known environments with non-
deterministically changing properties. The hardware part of
the experimental setup consists of an in-house built quadro-
tor, a motion capture system, projectors, computers, and a
miniature model of the environment. We use the projectors
to emulate the dynamically changing events and use 3-D
objects to mimic static obstacles in the environment. Low-
level controllers utilize the accurate position information
from the motion capture system to guide the quadrotor from
one point to another in the environment.

The computational part takes as input the mission speci-
fication expressed in a fragment of Linear Temporal Logic
(LTL), called syntactically co-safe LTL (scLTL) [16], and the
topology of the environment, and computes a reactive control
strategy guaranteeing the satisfaction of the mission. Our
approach is based on a partition of the environment guided by
regions of interest, followed by control synthesis on a finite
nondeterministic transition system capturing the changing
properties on the quotient of the partition. The control
synthesis procedure, which is performed offline, relies on the
conversion of the specification to a finite state automaton, the
computation of the product between the automaton and the
transition system, and a value iteration algorithm that yields
an optimal satisfying control policy.

As a case-study, we consider a surveillance mission, in
which the quadrotor is deployed from a base and is required
to satisfy a rich temporal logic specification about properties
that can change nondeterministically at the regions while
avoiding obstacles at all times. An overhead view of our
testbed, which shows the four surveillance regions, a base
station, and the two obstacles can be seen in Fig. 1. An
example specification is “Start at the base, collect either
reward 1 or both reward 2 and reward 3 before returning
to the base. Do not incur both damage 1 and damage 2”.

The rest of this paper is organized as follows: In Sec. II
we formally the state the problem of autonomous control
in nondeterministic environments, and provide our approach
in Sec. III. We discuss the details of our implementation
in Sec. IV. The results of our experiments are presented in
Sec. V. We conclude with final remarks in Sec. VI.

II. PROBLEM FORMULATION AND APPROACH

In this section we introduce the control synthesis problem
for a quadrotor operating in a known environment with non-
deterministically changing properties under temporal logic
constraints.

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 331

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

Region r1
{rwd1, rwd2} Region r2

{rwd2, rwd3, dmg1}

Region r3
{rwd3}

Region r4
{rwd2, dmg2}

Region r5
{base}

Obstacle 1

Obstacle 2

Fig. 1. Left figure shows a schematic representation of a city environment with four surveillance regions r1, r2, r3, r4, a base region r5, and two
obstacles. We have Π = {rwd1, rwd2, rwd3, dmg1, dmg2, base}, and the properties that can be satisfied nondeterministically at regions r1, r2, r3, r4,
and r5 are {rwd1, rwd2}, {rwd2, rwd3, dmg1}, {rwd3}, {rwd2, dmg2}, and {base}, respectively. Right figure gives an overhead view of a portion of
the experimental setup with the quadrotor, regions r1, r2, r4, r5, and obstacle 1. The different colors of the regions represent different properties and we
use green, cyan, blue, red, yellow, and gray to denote properties rwd1, rwd2, rwd3, dmg1, dmg2, and base, respectively.

Let E=(b, R,O,Π,∼) be a planar polytopic environment,
where b is a polytope defining the area, R = {r1, ..., rl} is a
finite set of polytopic regions of interest, O = {o1, ...om} is
a finite set of disjoint polytopic obstacles, Π = {π1, ..., πn}
is a finite set of properties that can be satisfied at the regions
of the environment, and ∼⊆ R×Π is a satisfaction relation
between R and Π. In this paper, we consider the case where
the property satisfied at a region changes nondeterministi-
cally, i.e., for a region r ∈ R, any property that belongs to
the set {π|(r, π) ∈∼} can be satisfied there. We assume that
the actual property satisfied at a region can be sensed by the
quadrotor when it flies over that region.

Example II.1. Fig. 1 illustrates a planar environment where
surveillance locations r1, r2, r3, and r4 are represented by
squares, the base region r5 is represented by a circle, and the
obstacles are represented by filled polygons. The set of prop-
erties that can be satisfied at the regions of the environment
are given by Π = {rwd1, rwd2, rwd3, dmg1, dmg2, base},
where rwd1, rwd2, and rwd3 stand for rewards of type
1, 2, and 3 that need to be gathered during the surveil-
lance mission, and dmg1, dmg2 are damages that the
quadrotor may incur during the mission. The proper-
ties that the quadrotor can observe at regions r1, r2,
r3, r4, and r5 are given by the sets {rwd1, rwd2},
{rwd2, rwd3, dmg1}, {rwd3}, {rwd2, dmg2}, and {base},
respectively. Thus, the satisfaction relation is defined as ∼ =
{(r1, rwd1), (r1, rwd2), (r2, rwd2), (r2, rwd3), (r2, dmg1),
(r3, rwd3), (r4, rwd2), (r4, dmg2), (r5, base)}.

We consider mission specifications expressed as syntac-
tically co-safe LTL (scLTL) formulas [16]. Informally, an
scLTL formula φ over a set Π of atomic propositions
comprises Boolean operators ¬ (negation), ∨ (disjunction)
and ∧ (conjunction), and temporal operators X (next), U
(until) and F (eventually). The semantics of scLTL formulas
are defined over infinite sequences of symbols called words
ω = ω0, ω1, . . . over 2Π such that ωi ∈ 2Π ∀ i ≥ 0. For
example, Xπ states that proposition π is true at the next
position of the word, Fπ states that π is true at some future
position of the word, and π1 U π2 states that there is a future
position of the word when π2 is true, and π1 is true at least
until π2 is true. A particular property of scLTL is that one can
determine if a given infinite word satisfies an scLTL formula
by considering only a finite prefix of it [16].

Since our experimental setup includes an accurate motion
capture system (see Sec. IV), we assume that the position and
the orientation of the quadrotor are precisely known, and the
quadrotor can be controlled such that its center of mass can
follow an arbitrary desired trajectory (see Sec. IV). As it will
become clear in Sec. III-A, in our case, these trajectories are
made up of straight line segments between the centers of
the regions in the environment. As the quadrotor flies in the
environment, the projection of its center produces a trajectory
on the plane of the environment. This trajectory, in return,
produces a word over Π, which can be checked against a
given scLTL formula φ. We assume that the quadrotor can
perfectly observe which properties are satisfied at a region,
i.e., it can actually keep track of the word that it generates
as it flies. Based on the fact that the quadrotor can travel
between the regions by following the lines connecting their
centers, we define a control policy µ as a time-varying map
from the current region and property to the next region to
be visited. The control policy will be formally defined in
Sec. III-B. As the satisfaction of an scLTL formula φ can be
guaranteed in finite time, the maximum total distance that
the quadrotor must travel until φ is satisfied is also bounded
regardless of the nondeterministic nature of the properties.
This maximum distance, however, depends on the policy
that the quadrotor follows during its flight. Motivated by
this observation, we aim to synthesize control policies that
satisfy φ and minimize the worst-case total distance traveled
by the quadrotor. We can now formulate the problem that
we consider in this paper.

Problem II.2. Given an environment E and a syntactically
co-safe LTL formula φ over Π, generate a quadrotor control
policy µ? such that the produced trajectory satisfies φ and
minimizes the worst-case total traveled distance.

Example II.1 Revisited. We require the quadrotor to
complete the following mission in the environment illustrated
in Fig. 1. Starting at the base, the quadrotor must collect
either rwd1 or both rwd2 and rwd3 before reaching base
again. Throughout the mission, the quadrotor is allowed to
incur either one of dmg1 or dmg2 but not both. This mission
can be expressed as the syntactically co-safe LTL formula:
φ := base ∧X(((¬base U rwd1)∨

((¬base U rwd2) ∧ (¬base U rwd3)))∧
((¬dmg1 U base) ∨ (¬dmg2 U base))).

(1)

332

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

Our solution to Prob. II.2 comprises the following steps:
Given the models of the environment and the quadrotor, we
first construct the environment graph E whose edges give
the shortest routes between the regions in the environment
(see Sec. III-A). Next, we use the environment graph E,
the satisfaction relation ∼, and the formula φ to synthesize
a control policy µ? that both satisfies φ and minimizes
the worst-case total distance traveled by the quadrotor (see
Sec. III-B). After computing the high-level control policy µ?
offline as given above, we implement it online using low-
level controllers (see Sec. IV-B).

III. PROBLEM SOLUTION

A. Environment Graph
Given an environment E=(b, R,O,Π,∼) as discussed in

Sec. II, we define E = (QE, δE, wE) to be the corresponding
environment graph where QE is the set of labels of the
regions in R, δE is the set of edges such that (ri, rj) ∈ δE
if and only if the quadrotor can go from region ri to rj
without passing through any obstacles or any other regions in
the environment, and wE(ri, rj) gives the Euclidean length
of the shortest path between ri and rj . To see if there is
an edge between regions ri, rj ∈ QE, where ri 6= rj , and
to determine its weight if it exists, we use the classical
configuration space approach [17] in which the quadrotor
is represented as a single point.

Let Ci,j denote the configuration space that we use to
define the edge between ri and rj . We construct Ci,j as
follows. Starting from the assumption that the quadrotor
can detect a property satisfied at a region if its center is
vertically aligned with the center of the region, we shrink
regions ri and rj to their centroids. Then, we consider the
smallest square that encloses all possible rotations of the
quadrotor, and enlarge it by an experimentally determined
safety margin. We shrink the boundary b of the environment
and enlarge the obstacles in O and the regions in R\{ri, rj}
by sliding this square along their original borders.

Within the defined configuration space, we want to find
the shortest path between regions ri and rj that does not
go through any of the enlarged obstacles in O or any of the
enlarged regions in R\{ri, rj}. As shown in [17], the shortest
path between any two points in a polytopic environment
is a polygonal path whose inner vertices are vertices in a
visibility graph defined on the configuration space. As we
assume that the environment represents a city on a larger
scale, we ignore the dynamics of the vehicle during this
construction and consider only straight line trajectories. We
construct the visibility graph [17] Vi,j , where the set of
nodes consists of the vertices of all enlarged obstacles in
O, the vertices of all enlarged regions in R \ {ri, rj}, and
the centroids of regions ri and rj . The set of edges of Vi,j is
defined such that an edge between two vertices exists if and
only if they are in direct line of sight of each other, i.e., edges
cannot go through any enlarged obstacles or regions, and the
weight of an edge is defined to be the Euclidean distance
between the vertices it connects. Finally, we define δE such
that (ri, rj) ∈ δE if and only if there is a path between ri
and rj in Vi,j and define wE(ri, rj) as the length of the
shortest path between ri and rj in Vi,j .

r5

r1

r2

r3
r4

1.496

2.322
4.258

2.368

1.313

2.796

3.975

2.565
1.941

2.168

Fig. 2. Environment graph of Exp. II.1. Weight of an edge (ri, rj) is the
distance of the shortest path between ri and rj in the visibility graph Vi,j .

Example II.1 Revisited. Fig. 2 shows the environment graph
E that we obtain for Example II.1. The weight wE(ri, rj) of
an edge (ri, rj) ∈ δE is the distance of the shortest path
between regions ri and rj in the visibility graph Vi,j .

B. Control Policy Synthesis

The environment graph E that we obtain in Sec. III-A
shows how the quadrotor can move between the regions in
the environment but does not give any information regarding
the properties satisfied at those regions. We use the environ-
ment graph E = (QE, δE, wE) and the satisfaction relation
∼ to construct the nondeterministic transition system T
(see Def. III.1), which also captures the nondeterministically
changing properties at the regions of the environment.

Definition III.1 (Transition System). A (nondeterminis-
tic, weighted) transition system (TS) is a tuple T :=
(QT,QinitT ,AT, αT, δT,ΠT,LT, wT), where QT is a finite
set of states; QinitT ⊆ QT is the set of initial states; AT is a
finite set of actions; αT : QT → 2AT is a map giving the set
of actions available at a state; δT ⊆ QT ×AT ×QT is the
transition relation; ΠT is a finite set of atomic propositions;
LT : QT → ΠT is a satisfaction map giving the atomic
proposition satisfied at a state; wT : δT → R>0 is a map
that assigns a positive weight to each transition.

The states of T are the pairs in ∼, i.e., QT = ∼, QinitT =
{(rinit, π)|(rinit, π) ∈ QT} where rinit is the initial region
of the quadrotor, ΠT = Π, and LT((r, π)) = π ∀ (r, π) ∈
QT. The set of actions of T are given by AT = δE and
an action (ri, rj) ∈ AT is enabled at all corresponding
states in QT where the first element of the tuple is ri.
These actions are the high-level controls of the from go from
ri to rj which we use to drive the quadrotor between the
regions in the environment. The trajectory that the quadrotor
follows to go from ri to rj is the shortest path between the
corresponding vertices on the visibility graph Vi,j , which
is made up of straight line segments. We discuss how
we translate these high-level controls to quadrotor attitude
commands by the low-level control loop in Sec. IV-B. For
each (ri, πi), (rj , πj) ∈ QT, where (ri, rj) ∈ δE, we define
a transition ((ri, πi), a, (rj , πj)) in T such that a = (ri, rj)
and the weight of the transition is defined as the weight given
by E, i.e., wT((ri, πi), a, (rj , πj)) = wE(ri, rj).

Then, given the scLTL formula φ, we obtain the determin-
istic FSA A that recognizes all and only the finite words that
satisfy φ. For any scLTL formula φ over a set Π, one can
construct a FSA with input alphabet 2Π accepting all and
only the finite words over 2Π that satisfy φ, as defined next.

Definition III.2 (Finite State Automaton). A (deter-
ministic) finite state automaton (FSA) is a tuple A :=

333

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

(QA, q
init
A ,ΣA, δA,FA), where QA is a finite set of states;

qinitA ∈ QA is the initial state; ΣA is an input alphabet;
δA : QA × ΣA → QA is a deterministic transition function;
FA ⊆ QA is a set of accepting (final) states.

A run of A over an input word ω = ω0, ω1, . . . , ωl where
ωi ∈ ΣA ∀ i = 0 . . . l is a sequence q0, q1, . . . , ql, ql+1, such
that δA(qi, ωi) = qi+1 ∀i = 0 . . . l, and q0 = qinitA . An FSA
A accepts a word over ΣA if and only if the corresponding
run ends in some q ∈ FA. Such an FSA can be constructed
using readily available model checking tools [18]. Next, we
define the product automaton P as the product of T and A
as follows.

Definition III.3 (Product Automaton). The product
T ⊗ A of the nondeterministic transition system T and
the deterministic finite state automaton A is a tuple
P := (QP,QinitP ,AP, αP,ΠP,LP, δP, wP,FP), where
QP ⊆ QT × QA such that a state q ∈ QP exists
if and only if it is reachable from the initial states;
QinitP = {(qT, qA)|qT ∈ QinitT , δA(qinitA ,LT(qT)) =
qA}; AP = AT; αP((qT, qA)) = {a|a ∈
αT(qT), ∃ (q′T, q

′
A) ∈ QP s.t. ((qT, qA), a, (q′T, q

′
A)) ∈

δP}; ΠP = ΠT; LP((qT, qA)) = LT(qT);
δP = {((qT, qA), a, (q′T, q

′
A))|(qT, a, q

′
T) ∈ δT,

δA(qA,LT(q′T)) = q′A}; wP((qT, qA), a, (q′T, q
′
A)) =

wT(qT, a, q
′
T) ∀ ((qT, qA), a, (q′T, q

′
A)) ∈ δP;

FP = {(qT, qA)|(qT, qA) ∈ QP, qA ∈ FA}.

Note that P is actually a nondeterministic weighted tran-
sition system (Def. III.1) with the addition of the set FP

of final states, and captures both the requirements of the
mission and the behavior of the quadrotor in the environment.
Thus, Prob. II.2 can be reduced to the problem of computing
an optimal control policy µ?P for P which minimizes the
maximum cost of reaching a state in FP fromQinitP by taking
the optimal action at each state. We solve this problem using
value iteration [17] as we explain next.

Value iteration is a numerical method that iteratively con-
verges to an optimal policy given the cost of taking an action
at a state [17]. Let Jk(q, a) and µkP denote the cost of taking
action a ∈ αP(q) at state q ∈ QP and the policy, respectively,
at the kth iteration. First, we set J0(q, a) = 0 for all q ∈ FP

and J0(q, a) =∞ for all q ∈ QP \FP. We also set µ0
P(q) to

some a ∈ αP(q) for all q ∈ QP. Then, at each iteration k,
k > 0, we update the cost of taking action a ∈ αP(q) at each
state q ∈ QP such that Jk(q, a) = 0 for q ∈ FP, Jk(q, a) =
maxq′∈Post(q,a){wP(q, a, q′) + Jk−1(q′, µk−1

P (q′))} for q 6∈
FP, where Post(q, a) = {q′|(q, a, q′) ∈ δP} is the set
of states that we can reach after taking action a at state
q. Then, we update the policy for each state such that
µkP(q) = arg mina∈αP(q) J

k(q, a).
Notice that, at the kth iteration, Jk(q, a) gives our es-

timate of the maximum distance that the quadrotor has to
travel if we take action a at state q. Next, we define an
arbitrarily small threshold thr ≥ 0 such that we terminate
when maxq∈QP

|Jk(q, µkP(q)) − Jk−1(q, µk−1
P (q))| ≤ thr,

and define the cost of a control policy µP for a product
automaton P as J(µP) = maxq∈Qinit

P
J(q, µP(q)). Upon

termination at the end of some iteration k, the policy µkP
is the optimal policy µ?P which satisfies J(q, µ?P(q)) =

mina∈αP(q) J(q, a) ∀ q ∈ QP, and J(µ?P) = minµ∈M J(µ),
where we used M to denote the set of all admissible policies.
Thus, if there exists a control policy with finite cost, we are
guaranteed to find it, and if J(µ?P) is finite, then µ?P also
satisfies φ.

Given a control policy µ?P for P, the corresponding control
policy µ?T for T takes the form of a control automaton, which
we define next.

Definition III.4 (Control Automaton). Given the control
policy µ?P for P, the corresponding control policy µ?T for T
is a control automaton C = (QC, q

init
C ,ΣC, δC, ψC), where

• QC = QP ∪ {qinitC } is the set of states;
• qinitC = (∅, qinitA) is the initial state;
• ΣC = QT is the input alphabet;
• δC : QC × ΣC → QC is the next state function
δC(qC, q

′
T) = q′C, with q′C = (q′T, q

′
A), such that

– if qC = qinitC , then q′T ∈ QinitT , q′A =
δA(qinitA ,LT(q′T)), q′C ∈ QinitP , and

– if qC 6= qinitC , then qC = (qT, qA), q′A =
δA(qA,LT(q′T)), (qC, µ

?
P(qC), q′C) ∈ δP.

• ψC : QC → AT is the output function, such that
ψC(qC) = µ?P(qC) if qC 6= qinitC , ψC(qC) is undefined
otherwise.

Note that the control automaton defined above takes as
input the current region and observation of the quadrotor,
and uses this information to keep track of the progress of
the quadrotor on P. Once C leaves its initial state qinitC ,
its current state qC is the state of the quadrotor on P,
and its output ψC(qC) gives the optimal action to take at
each state. Thus, for any sequence of region-property pairs
corresponding to some trajectory of the quadrotor, the actions
given by µ?P and µ?T are identical. Consequently, if µ?P
satisfies φ, then the corresponding optimal policy µ?T for T
also satisfies φ, and therefore is a solution to Prob. II.2.

IV. IMPLEMENTATION

A. Hardware
The hardware used in our experimental setup consists of

four Viewsonic short-throw projectors, an Optitrack motion
capture system, and a quadrotor. A network of three Lenovo
ThinkStation computers is used to integrate the components
and serves as a ground station for computation and com-
munication with the quadrotor. The quadrotor used in the
experiments, shown in Fig. 3, is manufactured in-house at
Boston University. It is equipped with a Caspa VL camera,
a Gumstix Overo Fire computer, an Xbee Pro 900 radio
module, and an OpenPilot CopterControl board [19].

Our testbed emulates a dynamically changing, city-like
environment using both 3-D obstacles and 2-D images pro-
jected onto the ground. The four short-throw projectors are
capable of projecting a single large image onto a white
background on the ground with limited obstruction from the
quadrotor or the physical obstacles in the environment. We
represent dynamically changing properties by changing the
colors of the regions. In the experiments, colors green, cyan,
blue, red, yellow, and gray represent the respective properties
rwd1, rwd2, rwd3, dmg1, dmg2, and base. Measurements
of the positions of the quadrotor and the regions in the

334

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

1 2

34

5

Fig. 3. The quadrotor, built around a carbon fiber frame, has the following
components: (1) OpenPilot CopterControl board, (2) Xbee Pro 900 radio
module, (3) Turnigy 6a ESC’s, (4) Caspa VL camera with Gumstix Overo
Fire board, and (5) 2580 Kv motors.

environment are obtained using an Optitrack motion capture
system. The cameras track reflections of infrared light off
the markers placed on the quadrotor and in the environment
to provide position data with sub-millimeter precision.

B. Software

1) Construction of the Environment Graph: In the prob-
lem formulation, we assume prior knowledge of the positions
of the environment boundary, regions of interest, and the
obstacles. To obtain this information, we first physically
construct the environment. Then, images representing the
regions in the environment are projected onto the ground
and physical obstacles are laid out in the workspace. Markers
are placed on the vertices of all of the elements that make
up environment. The motion capture system then provides
the necessary information for the polytopic definitions of
the environment boundary, regions of interest, and obstacles
which are used to construct the environment graph.

2) Low-level Quadrotor Controllers: To execute the ac-
tions given by the control policy, the quadrotor must travel
from region to region while safely avoiding obstacles. As
shown in Sec. III-A, the trajectories between regions are
given as a sequence of straight line segments corresponding
to the edges of a visibility graph. Here we briefly describe
how we map the position of the quadrotor with respect to a
trajectory to the appropriate actuation of the rotors to drive
the vehicle along a desired trajectory.

We first define a coordinate frame W fixed to the envi-
ronment, with the XW−YW plane coplanar with the envi-
ronment E , and with the ZW -axis defining the altitude. A
body frame B is fixed to the quadrotor, with its origin at the
center of mass of the quadrotor. The attitude of the vehicle
is represented using Z-X-Y Euler Angles, describing its roll,
pitch, and yaw with respect to XW , YW , and ZW axes.

For a given trajectory, we use an approach similar to [9]
to create desired position and velocity setpoints at locations
along the path. Using position measurements from the mo-
tion capture system, we use a linear Kalman Filter [20] to
estimate the true position and velocity of the center of mass
of the quadrotor relative to the setpoint. We use PID feedback
control to determine a desired translational acceleration to
drive the center of mass precisely along the path.

An accurate kinematics model of the quadrotor, defined
by classical Euler-Lagrange equations, is described in [14].
Using this model to define the relationship between transla-
tional acceleration, total thrust, and attitude, we can express
the desired attitude and total thrust as a function of the

desired translational accelerations. The computation for tra-
jectory generation, state estimation, and mapping the position
measurements to desired attitude and thrust commands is
performed off-board at the ground station. The resulting
reference commands are sent to the quadrotor via zigbee
radio communication.

The board on the quadrotor is equipped with the sensing
equipment necessary to accurately measure the orientation.
The reference commands from the ground station are used
in a second feedback control loop, mapping the desired
attitude and thrust to appropriate actuation of the rotors.
Details of this mapping can be found in [19]. The low-
level control design, a nested loop of position and attitude
control, effectively maps the measurement data from the
motion capture system to the actuation of the rotors that
drives the quadrotor along prescribed trajectories.

3) Control Policy Synthesis: The formal control synthesis
part of our approach detailed in Sec. III-B is implemented
in Python. Our implementation uses the NetworkX graph
package [21] to represent the various models that we use in
our solution, and the scheck2 tool [18] to obtain the FSA A
corresponding to an scLTL formula φ. Our implementation
is available online1 as part of the LTL Optimal Multi-Agent
Planner (LOMAP) Python package. Given an environment
graph E (see Sec. III-A) and an scLTL formula φ, our
implementation follows the steps detailed in Sec. III-B to
obtain the optimal satisfying control policy µ?. Then, since
the low-level quadrotor control is implemented in Matlab,
our implementation exports µ? in the form of a Matlab
function that returns the next region to be visited based on
the current region and observation of the quadrotor.

V. EXPERIMENTAL RESULTS

In this section, we return to the surveillance mission given
in Example II.1 and present the results of our experiments
where the quadrotor shown in Fig. 3 satisfies the specification
φ given in Eq. (1). Following the steps detailed in Sec. III,
we obtain the optimal satisfying control policy µ? and deploy
the quadrotor in our testbed accordingly. The worst-case
total distance that the quadrotor has to travel when it moves
according to µ? is 9.632 m. For the sake of conciseness, we
do not list the optimal action to take at each and every state
of the control automaton corresponding to µ?. Instead, we
discuss two different executions of µ? by the quadrotor as
illustrated in Fig. 4. Here, each subfigure shows the trajectory
followed by the quadrotor for a particular set of properties
observed at the regions. These subfigures are obtained by
plotting the actual position data from the motion capture
system over a schematic representation of the environment.
The video accompanying the paper shows the actual corre-
sponding flights of the quadrotor in the environment.

Run 1 (Fig. 4 top): In this run the quadrotor starts at the
base (r5) and proceeds to r1 as per µ?. At r1, the quadrotor
observes the property rwd1, and now has to return to the
base to complete the mission. As given by µ?, the quadrotor
takes the optimal action and goes directly to the base (r5)
without visiting any other regions. The total distance that the
quadrotor travels in this run is approximately 3 m.

1LTL Optimal Multi-Agent Planner (LOMAP) Python package is avail-
able at http://hyness.bu.edu/lomap/.

335

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

r1

r2

r3

r4

r5

r1

r2

r3

r4

r5

Fig. 4. Two different executions of the optimal satisfying control policy µ?
by the quadrotor plotted over a schematic representation of the environment.
Green, cyan, blue, red, yellow, and gray stand for rwd1, rwd2, rwd3,
dmg1, dmg2, and base, respectively. The dark shades of gray around the
environment boundary and the obstacles correspond to the construction of
the configuration space (see Sec. III-A). The blue lines show the trajectories
of the quadrotor as provided by the motion capture system.

Run 2 (Fig. 4 bottom): In this run, the quadrotor observes
rwd2 at r1. Thus, the quadrotor needs to collect either rwd3
or rwd1 before going back to base, and it proceeds to r2 as
given by µ?. At r2, the quadrotor observes dmg1. From r2

the quadrotor can possibly go to any one of the regions in the
environment as given in Fig. 2. However, if we look closer,
we realize that the quadrotor can only go to r3, which can
be explained as follows: Returning to r5 is not an option, as
the quadrotor has not collected the required rewards yet, and
it cannot go to r4 either, as doing so would risk violation
of φ as dmg2 can be observed there. Finally, the quadrotor
cannot go back to r1 either, as doing so could potentially
result in an infinite loop where it keeps going back and forth
between r1 and r2, observing rwd2 and dmg1 all the time,
failing to complete the mission. Thus, as given by µ?, the
quadrotor takes the optimal action and goes to r3, where it
observes rwd3. Then, it returns back to base to satisfy φ.
The total distance covered by the quadrotor in this run is
approximately 10 m, which also corresponds to the worst-
case total distance that the quadrotor can travel under µ?.

Notice that, all the runs that satisfy φ are cyclic, i.e., they
all start at the base and end at the base, which is in agreement
with the limited flight time of a quadrotor. Thus, in order
to achieve persistent surveillance, it suffices to execute the
optimal policy µ? repeatedly after each satisfaction of φ.

VI. CONCLUSION

We described a computational and experimental setup for
automatic deployment of a quadrotor in an environment with
known topology and nondeterministically changing prop-
erties. We considered mission specifications expressed as
syntactically co-safe LTL formulas over the set of properties
that can be satisfied in the environment. The computational
framework is based on a two-level hierarchy, in which a

finite abstraction of the quadrotor motion constructed at
the lower level is controlled at the higher using tools from
model checking and dynamic programming. The experimen-
tal setup is based on an in-house manufactured medium-
size quadrotor moving in an environment equipped with a
precise motion capture system and short-throw projectors
that create dynamically changing events. For future work, we
plan to consider probabilistic environments, richer mission
specifications, more onboard sensors, and quadrotor teams.

REFERENCES

[1] D. J. Pines and F. Bohorquez, “Challenges facing future micro-air-
vehicle development,” Journal of Aircraft, vol. 43, no. 2, pp. 3–24,
2006.

[2] V. Kumar and N. Michael, “Opportunities and challenges with au-
tonomous micro aerial vehicles,” Intl. Journal of Robotics Research,
vol. 31, no. 11, pp. 1279–1291, 2012.

[3] P. Rounds, R. Maloy, P. Hynes, and J. Roberts, “Design of a four-rotor
aerial robot,” in Australian Conference on Robotics and Automation,
2002.

[4] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and
D. Rus, “Energy-efficient autonomous four-rotor flying robot con-
trolled at 1 khz,” in IEEE Intl. Conf. Robotics and Automation, 2007,
pp. 361–366.

[5] S. Bouabdallah, “Design and control of quadrotors with application to
autonomous flying,” Ph.D. dissertation, EPFL, 2007.

[6] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor UAV,” in
European Control Conference, 2007.

[7] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in IEEE
Intl. Conf. Robotics and Automation, 2010, pp. 1642–1648.

[8] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive manuevers with quadrotors,” Intl.
Journal of Robotics Research, 2012.

[9] G. M. Hoffmann, S. L. Waslander, and C. J. Tomlin, “Quadrotor
helicopter trajectory tracking controls,” in AIAA Guidance, Navigation
and Control Conference and Exhibit, 2008.

[10] A. Richards, J. Bellingham, M. Tillerson, and J. How, “Co-ordination
and control of multiple UAVs,” in AIAA Guidance, Navigation and
Control Conference and Exhibit, 2002.

[11] R. He, S. Prentice, and N. Roy, “Planning in information space for
a quadrotor helicopter in a GPS-denied environment,” in IEEE Intl.
Conf. Robotics and Automation, 2008, pp. 1814–1820.

[12] M. Achtelika, A. Bachrachb, R. Heb, S. Prenticeb, and N. Roy,
“Autonomous navigation and exploration of a quadrotor helicopter
in GPS-denied indoor environments,” in First Symposium on Indoor
Flight Issues, 2009.

[13] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor
autonomous vehicle test environment,” Control Systems, IEEE, vol. 28,
no. 2, pp. 51 –64, 2008.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-UAV testbed,” Robotics Automation Magazine, IEEE,
vol. 17, no. 3, pp. 56–65, 2010.

[15] P. Twu, R. Chipalkatty, J. de la Croix, A. Rahmani, M. Egerstedt, and
R. Young, “A hardware testbed for multi-UAV collaborative ground
convoy protection in dynamic environments,” in AIAA Modeling and
Simulation Technologies Conference, 2011.

[16] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291–314, October
2001.

[17] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[18] T. Latvala, “Efficient model checking of safety properties,” in Model
Checking Software. 10th International SPIN Workshop. Springer,
2003, pp. 74–88.

[19] “OpenPilot,” http://www.openpilot.org.
[20] G. Welch and G. Bishop, “An introduction to the Kalman filter,” 1995,

university of North Carolina at Chapel Hill, TR95-041.
[21] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network

structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy2008), Pasadena, CA,
2008, pp. 11–15.

336

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:57:50 UTC from IEEE Xplore. Restrictions apply.

