Translational and Rotational Invariance in Networked Dynamical Systems

Cristian-Ioan Vasile ${ }^{\bullet}$, Mac Schwager ${ }^{\oplus}$, Member, IEEE, and Calin Belta ${ }^{\oplus}$, Fellow, IEEE

Abstract

In this paper, we study the translational and rotational ($S E(N)$) invariance properties of locally interacting multiagent systems. We focus on a class of networked dynamical systems, in which the agents have local pairwise interactions, and the overall effect of the interaction on each agent is the sum of the interactions with other agents. We show that such systems are $S E(N)$-invariant if and only if they have a special quasilinear form. The $S E(N)$-invariance property, sometimes referred to as left invariance, is central to a large class of kinematic and robotic systems. When satisfied, it ensures independence to global reference frames. In an alternate interpretation, it allows for integration of dynamics and computation of control laws in the agents' own reference frames. Such a property is essential in a large spectrum of applications, for example, navigation in global positioning system (GPS)-denied environments. Because of the simplicity of the quasilinear form, this result can impact ongoing research on the design of local interaction laws. It also gives a quick test to check if a given networked system is $S E(N)$-invariant.

Index Terms-Networked systems, pairwise interaction, translational and rotational invariance.

I. Introduction

IN THIS paper, we present necessary and sufficient conditions for a multiagent system with pairwise interactions to be invariant under translations and rotations of the inertial frame in which the dynamics are expressed (i.e., $S E(N)$-invariant). This kind of invariance allows agents to execute their control laws in their body reference frame [1]-[3], using information measured in their body reference frame, without affecting the global evolution of the system. This is critical for any scenario where global information about an agent's reference frame is not readily available, for example, coordinating agents underground, underwater, inside of buildings, in space, or in any GPS-denied environment [4]-[6].

We assume that the agents are kinematic in N -dimensional Euclidean space, and their control laws are computed as sums

[^0]over all pairwise interactions with their neighbors. We prove that the dynamics are $S E(N)$-invariant if and only if the pairwise interactions are quasilinear, meaning linear in the difference between the states of the two agents, multiplied by a scalar gain which depends only on the distance between the states of the two agents. This result can be used as a test (does a given multiagent controller require global information, that is, a common reference frame known by all agents?), or as a design specification (a multiagent controller is required that uses only local information represented in the agents' private reference frames, hence only quasilinear pairwise interactions can be considered). It can also be used to test the hypothesis about local interaction laws in biological (e.g., locally interacting cells) and physical systems.

We prove the result for agents embedded in Euclidean space of any dimension, and the result holds for arbitrary graph topologies, including directed or undirected, switching, time varying, and connected or unconnected. We show that many existing multiagent protocols are quasilinear and thus $S E(N)$ invariant. Examples include the interactions from the classical n-body problem [7] and most of the existing multiagent consensus and formation control algorithms (e.g., [8]-[14]). In particular, explicit consensus algorithms implemented using local information in the agents' body frames [6] satisfy the $S E(N)$-invariance property, as expected. We also show that some multiagent interaction algorithms, such as [15], are not $S E(N)$-invariant and, therefore, cannot be implemented locally in practice. To further illustrate how the main result relates to the literature, we consider a subclass of $S E(N)$-invariant (and, therefore, quasilinear) pairwise interaction systems, and show that they reach a consensus, using the graph Laplacian to represent the system dynamics and the typical LaSalle's invariance analysis to show convergence. Finally, we extend the $S E(N)$-invariance notion to discrete-time systems, dynamical systems of higher order, and systems with switching topologies. Moreover, for a subclass of discrete-time $S E(N)$-invariant pairwise interaction systems, we show that they reach consensus by exploiting the quasilinear structure given by the main result.

With a few exceptions [6],[16]-[18], the problem of invariance to global reference frames was overlooked in the multiagent control and consensus literature. In [16], the authors discuss invariance for the particular cases of $S E(2)$ and $S E(3)$ actions, and focus on virtual structures. Rotational and translational invariance are also discussed in [17] for a class of algorithms driving a team of agents to a rigid structure. In [19]-[22], the

Fig. 1. The diagram in (a) shows the world frame $\{\mathbb{W}\}$, the reference frame $\{\mathbb{M}\}$, two agents i and j, and their states in these two frames. The diagram in (b) shows the agents' states expressed in the body frame of agent i.
notion of shape coordinates [23] is considered for multiagent motion planning, where the global rotation and translation of the group of vehicles are quotient out. Invariance to group actions in multiagent systems was recently studied in [18], where the authors present a general framework to find all symmetries in a given second-order planar system. The authors' main motivation is to determine changes of coordinates transformations that align the system with the symmetry directions and, thus, aid in stability analysis using LaSalle's principle. This paper is complementary to our paper, in the sense that the authors start from a system and find invariants while, in our case, we start from an invariance property and find all systems satisfying it. Our results hold for any (finite) dimensional agent state space. Finally, our characterization of invariance is algebraic and, as a result, does not require any smoothness assumptions on the functions modeling the interactions. As a result, it can be used for a large class of systems, including discrete-time systems.

Preliminary results from this paper were presented in a conference version [24]. This paper expands on [24] by including all proofs of the main results, as well as new results on the stability of $S E(N)$-invariant systems, switching network topologies, and discrete-time systems. We also provide several new examples with simulations.

II. Significance of $S E(N)$-Invariance

In this section, we present $S E(N)$-invariance from a geometrical perspective and give two interpretations that prove to be useful for networked agent systems. Formal definitions are provided in Section III together with the main result of this paper.
$S E(N)$ is the Special Euclidean group that acts on \mathbb{R}^{N}, that is, the set of all possible rotations and displacements in \mathbb{R}^{N}. As mentioned before, $S E(N)$-invariance is a property related to reference frames. Consider a global inertial (world) reference frame $\{\mathbb{W}\}$, and another (mobile) reference frame $\{\mathbb{M}\}$, which is related to $\{\mathbb{W}\}$ by the rotation and translation pair $(R, w) \in$ $S E(N)$. Also, consider a networked system with n agents whose states evolve in \mathbb{R}^{N}, and which interact with each other in a pairwise manner, that is, the interaction is point to point and may be one-way. Interaction is interpreted as agents measuring the states of their neighbors. Let $x_{i}^{\mathbb{W}}$ and $x_{i}^{\mathbb{M}}$ be the state of agent i in reference frames $\{\mathbb{W}\}$ and $\{\mathbb{M}\}$, respectively. [See Fig. 1(a)
for an illustration in the case of $\mathrm{N}=3]$. The states of agent i in the two references frames are related by $x_{i}^{\mathbb{W}}=R x_{i}^{\mathbb{M}}+w$.

The relationship between agent i 's velocities in the two reference frames is defined by how these are measured and represented. Let ${ }^{\mathbb{W}} v_{i}^{\mathbb{W}}$ and ${ }^{\mathbb{W}} v_{i}^{\mathbb{M}}$ be the velocities measured with respect to the world frame $\{\mathbb{W}\}$ and represented in $\{\mathbb{W}\}$ and $\{\mathbb{M}\}$, respectively. Thus, ${ }^{\mathbb{W}} v_{i}^{\mathbb{W}}=R^{\mathbb{W}} v_{i}^{\mathbb{M}}$. On the other hand, agent i 's dynamics is ${ }^{\mathbb{W}} v_{i}^{\mathbb{W}}=f_{i j}\left(x_{i}^{\mathbb{W}}, x_{j}^{\mathbb{W}}\right)$, assuming for simplicity that agent i interacts only with agent j.

The notion of $S E(N)$-invariance says that the dynamics of agent i must be the same in all reference frames, that is ${ }^{\mathbb{W}} v_{i}^{\mathbb{M}}=f_{i j}\left(x_{i}^{\mathbb{M}}, x_{j}^{\mathbb{M}}\right)$ must hold for all $\{\mathbb{M}\}$. A quick substitution yields $R^{\mathbb{W}} v_{i}^{\mathbb{M}}=f_{i j}\left(R x_{i}^{\mathbb{M}}+w, R x_{j}^{\mathbb{M}}+w\right)$. On the other hand, we have $R^{\mathbb{W}} v_{i}^{\mathbb{M}}=R f_{i j}\left(x_{i}^{\mathbb{M}}, x_{j}^{\mathbb{M}}\right)$, which implies that $S E(N)$ invariance reduces to $R f_{i j}\left(x_{i}^{\mathbb{M}}, x_{j}^{\mathbb{M}}\right)=f_{i j}\left(R x_{i}^{\mathbb{M}}+\right.$ $\left.w, R x_{j}^{\mathbb{M}}+w\right)$ for all values of the states $x_{i}^{\mathbb{M}}, x_{j}^{\mathbb{M}}$ and all transformations $(R, w) \in S E(N)$. This is the notion of left invariance that we will define formally in Section III. Notice that $S E(N)$-invariance is a basic assumption very common in physical models (i.e., the laws of physics must be the same in all inertial reference frames). In the context of differential geometry, this intuition is formalized by the notion of left-invariance of vector fields.

In the context of networked systems, each agent maintains an individual mobile reference frame. If the reference frames of all agents coincide, then they achieve global localization (this may be implemented using GPS, SLAM, etc.). However, if we desire a truly distributed system, then the agents must maintain local reference frames, which are not synchronized with each other, and be able to compute their own individual control laws in their own local frames. A special choice of mobile reference frames is the body frames associated with each agent $i\left\{\mathbb{B}_{i}\right\}$, [Fig. 1(b)]. The agents measure (using onboard sensors such as cameras) and express the states of all their neighbors in their own individual reference frames $\left\{\mathbb{B}_{i}\right\}$. Consequently, if the system is $S E(N)$-invariant, then the agents can compute their individual control laws (their velocities) in their own body frames, without the need for a predefined global reference. Therefore, we consider that, in practice, $S E(N)$ invariance is a very important property of distributed networked systems.

Another interpretation of $S E(N)$-invariance is related to the networked system's behavior, that is, the agents' trajectories. The invariance property implies that the system produces the same trajectories in any two reference frames. The trajectories of an agent have the same shape and scale (they are isometric) and are related by the transformation between the two reference frames. Fig. 2 shows an example of two sets of trajectories generated by an $S E(2)$-invariant and a non- $S E(2)$-invariant system in two reference frames, respectively.

III. Definitions and Main Result

In this section, we introduce the notions and definitions used throughout this paper. The main result of this paper is stated at the end of the section.

Fig. 2. Trajectories of two systems in two reference frames $\left\{\mathbb{W}_{1}\right\}$ and $\left\{\mathbb{W}_{2}\right\}$, which are related by a rotation $R(\pi / 4)$ in clockwise direction and a translation $w=[1,1]^{T}$. Clearly, the trajectories generated by the $S E(2)$-invariant system have the same shape and are related by (R, w), (a) and (b). The shape of the trajectories generated by the non- $S E(2)$-invariant system are different in the two reference frames, (c) and (d). (a) Trajectories of a $S E(2)$-invariant system as seen from $\left\{\mathbb{W}_{1}\right\}$. (b) Trajectories of a $S E(2)$-invariant system as seen from $\left\{\mathbb{W}_{2}\right\}$. (c) Trajectories of a non- $S E(2)$-invariant system as seen from $\left\{\mathbb{W}_{1}\right\}$. (d) Trajectories of a non- $S E(2)$-invariant system as seen from $\left\{\mathbb{W}_{2}\right\}$.

For a set S, we use $|S|$ to denote its cardinality. The sets $\mathbb{R}_{\geq a}$ and $\mathbb{Z}_{\geq p}$ represent the interval $[a, \infty)$ and $\{p, p+1, \ldots\}$, where $a \in \mathbb{R}$ and $p \in \mathbb{Z}$, respectively. The notation \triangleq denotes a definition. The canonical basis for the Euclidean space of dimension N, denoted by \mathbb{R}^{N}, is $\left\{e_{1}, \ldots, e_{N}\right\}$. We use I_{N} and $\mathbf{1}_{N}$ to denote the $N \times N$ identity matrix and the $N \times 1$ vector of ones, respectively. The special orthogonal group acting on \mathbb{R}^{N} is denoted by $S O(N)$. Similarly, $S E(N)$ represents the special Euclidean group of rotations and translations acting on \mathbb{R}^{N}. Throughout this paper, $\|\cdot\|$ refers to the Euclidean norm. The Kronecker product of two matrices is denoted by \otimes.

Given a directed graph G, we use $V(G)$ and $E(G) \subseteq V(G) \times$ $V(G)$ to denote its sets of nodes and edges, respectively. An edge $(i, j) \in E(G)$ is interpreted as starting from i and ending at j. An edge starting at i is called an outgoing edge of i, while an edge ending at i is called an incoming edge of i. Given a node $i \in V(G), \mathcal{N}_{i} \rightarrow$ stands for the set of outgoing neighbors of i, that is, $\mathcal{N}_{i} \rightarrow=\{j \in V(G) \mid(i, j) \in E(G)\}$. Similarly, $\mathcal{N}_{i}^{\leftarrow}=\{j \in$ $V(G) \mid(j, i) \in E(G)\}$ represents the set of incoming neighbors of i.

Definition III. 1 ($S E(N)$-Invariant Function): A function $f: \mathbb{R}^{N} \times \cdots \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is said to be $S E(N)$-invariant if for all $R \in S O(N)$ and all $x_{1}, x_{p}, w \in \mathbb{R}^{N}$

$$
\begin{equation*}
R f\left(x_{1}, \ldots, x_{p}\right)=f\left(R x_{1}+w, \ldots, R x_{p}+w\right) \tag{1}
\end{equation*}
$$

Definition III. 2 (Pairwise Interaction System): A continu-ous-time pairwise interaction system ${ }^{1}$ is a pair (G, F), where

[^1]G is a graph and $F=\left\{f_{i j} \mid f_{i j}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},(i, j) \in\right.$ $E(G)\}$ is a set of functions associated with its edges. Each $i \in V(G)$ labels an agent, and a directed edge (i, j) indicates that node i interacts with (measures the state of) node j. The dynamics of each agent are described by
\[

$$
\begin{equation*}
\dot{x}_{i}=\sum_{j \in \mathcal{N}_{i}} f_{i j}\left(x_{i}, x_{j}\right) \tag{2}
\end{equation*}
$$

\]

where $f_{i j}$ defines the influence (interaction) of j on i.
We denote the total interaction on agent $i \in V(G)$ by

$$
\begin{equation*}
S_{i}\left(x_{1}, \ldots, x_{|V(G)|}\right)=\sum_{j \in \mathcal{N}_{i}^{\rightarrow}} f_{i j}\left(x_{i}, x_{j}\right) \tag{3}
\end{equation*}
$$

Definition III. 3 ($S E(N)$-Invariance): A pairwise interaction system (G, F) is said to be $S E(N)$-invariant if, for all $i \in V(G)$, the total interaction functions S_{i} are $S E(N)$ invariant.

Definition III. 4 (Quasilinear Function): A function $f: \mathbb{R}^{N}$ $\rightarrow \mathbb{R}^{N}$ is said to be quasilinear if there is a function $k: \mathbb{R}_{\geq 0} \rightarrow$ \mathbb{R} such that $f(x)=k(\|x\|) x$, for all $x \in \mathbb{R}^{\mathbb{N}}$.

Definition III. 5 (Quasilinear Interaction System): A pairwise interaction system (G, F) is said to be quasilinear if the total interaction S_{i} of each agent i is a sum of quasilinear functions. Formally, for all $i \in V(G)$

$$
\begin{equation*}
S_{i}=\sum_{j \in \mathcal{N}_{i}^{\bullet}} k_{i j}\left(\left\|x_{j}-x_{i}\right\|\right)\left(x_{j}-x_{i}\right) \tag{4}
\end{equation*}
$$

where $k_{i j}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ are scalar gain functions ${ }^{1}$ for all $j \in \mathcal{N}_{i} \rightarrow$ and $N \geq 3$.

Remark III.6: The definition of quasilinearity for pairwise interaction systems is a statement about the overall dynamics of agents. Specifically, Def. III. 5 does not imply that the local pairwise interaction functions $f_{i j}$ are themselves quasilinear functions. See Ex. VIII.1.
The main result of this paper can be stated as follows:
Theorem III.7: A pairwise interaction system (G, F) is $S E(N)$-invariant if and only if it is quasilinear.

Remark III.8: The pairwise interaction form of the systems considered in this paper is a fundamental assumption needed to obtain the main result, Theor. III.7. To illustrate this, consider a system with three agents and the total interaction function $S_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left\|x_{2}-x_{1}\right\|\left(x_{3}-x_{2}\right)$ of agent 1 , which captures a three-way interaction among the agents. By Def. III.1, S_{1} is $S E(N)$-invariant. Indeed, for all $(R, w) \in S E(N)$

$$
\begin{aligned}
& R S_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left\|x_{2}-x_{1}\right\| R\left(x_{3}-x_{2}\right) \\
& =\left\|R x_{2}+w-\left(R x_{1}+w\right)\right\|\left(R x_{3}+w-\left(R x_{1}+w\right)\right) \\
& =S_{1}\left(R x_{1}+w, R x_{2}+w, R x_{3}+w\right)
\end{aligned}
$$

However, S_{1} cannot be written as a sum of quasilinear functions.
Remark III.9: Since $S E(N)$-invariance is a property of reference frames, it does not imply anything about the stability of the system. The converse does not hold either. Therefore, we can have unstable $S E(N)$-invariant systems and stable systems which are not $S E(N)$-invariant. See Section VIII.

Remark III.10: Note that we do not impose any restrictions on the graph G, that is, the results hold even if G is disconnected. Also, the functions in F may not be related to each other, that is, we do not assume any functional constraints between local interactions functions. Symmetry properties, such as $f_{i j}=f_{j i}$ and $\sum_{j \in \mathcal{N}_{i} \rightarrow} f_{i j}+\sum_{j \in \mathcal{N}_{i}} f_{j i}=0$ are not needed.

The main result of this paper (Theor. III.7) can be regarded as a characterization of $S E(N)$-invariant functions arising from pairwise interaction systems. We establish their structure in Section IV, where we show that all local interaction functions are quasilinear functions with additional affine terms, whose sums over each agent's neighbors vanish. Thus, it follows that the total interaction functions are quasilinear. As an intermediate step of the proof, we show that functions commuting with $S O(N)$ are quasilinear. We provide stability results on $S E(N)$-invariant systems in Section VI. Finally, in Section VII, we include extensions of Theo. III. 7 to discrete-time systems, higher order systems, and switching topologies.

IV. Characterizing the Centralizers of $S O(N)$

In this section, we prove that functions which commute with $S O(N)$ are quasilinear, which generalizes the well-known result for linear functions [25]. We establish the general case using induction on $N \geq 3$. The case $N=2$ is treated separately in App. A.

Let $T=\left\{f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}\right\}$ be the set of all transformations (not necessarily bijective) acting on $\mathbb{R}^{N} . T$ is the transformation monoid with respect to function composition.

Definition IV. 1 (Centralizer): Let A be a sub-semigroup of T. The centralizer of A with respect to T is denoted by $C_{T}(A)$ and is the set of all elements of T that commute with all elements of A, that is, $C_{T}(A)=\{f \in T \mid f g=g f, \forall g \in A\}$.

The centralizer $C_{T}(A)$ is a submonoid of T and can be interpreted as the set of transformations invariant with respect to all transformations in A. In other words, the action of $f \in C_{T}(A)$ on \mathbb{R}^{N} and then transformed by $g \in A$ is the same as the action of f on the transformed space $g\left(\mathbb{R}^{N}\right)$.

Note that the set of all quasilinear functions is a submonoid of T, which will be denoted by $Q L(N)$. We implicitly identify the elements of $S O(N)$ with linear maps acting on \mathbb{R}^{N}, and commutativity is defined with respect to function composition.

Before we proceed, we provide two lemmas that are used in subsequent proofs. The following lemma, whose proof is straightforward and omitted, shows the intuitive fact that the only vector invariant under all rotations is the null vector.

Lemma IV.2: Let $x \in \mathbb{R}^{N}$. If $R x=x$ for all $R \in S O(N)$, $N \geq 2$, then $x=0$.

Lemma IV.3: If $f=\left(f_{1}, \ldots, f_{N}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ commutes with all elements of $S O(N)$, then $x^{T} f(x)=\|x\| f_{1}\left(\|x\| e_{1}\right)$, for all $x \in \mathbb{R}^{N}$.

Proof: Let $x \in \mathbb{R}^{N}$ and $R \in S O(N)$ such that $x=R^{T}$ $\|x\| e_{1}$. It follows that: $f(x)=f\left(R^{T}\|x\| e_{1}\right)=R^{T} f\left(\|x\| e_{1}\right)$. Finally, $\quad x^{T} f(x)=x^{T} R^{T} f\left(\|x\| e_{1}\right)=(R x)^{T} f\left(\|x\| e_{1}\right)=$ $\|x\| e_{1}^{T} f\left(\|x\| e_{1}\right)=\|x\| f_{1}\left(\|x\| e_{1}\right)$.

The following three lemmas establish the base case $N=3$ of the induction argument used in the proof of Theor. IV.7.

Lemma IV.4: If $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$ with $\|u\|=1$ and
$u \neq \pm e_{1}$, then $R_{u}=\left[\begin{array}{ccc}u_{1} & 0 & -\sqrt{u_{2}^{2}+u_{3}^{2}} \\ u_{2} & \frac{u_{3}}{\sqrt{u_{2}^{2}+u_{3}^{2}}} & \frac{u_{1} u_{2}}{\sqrt{u_{2}^{2}+u_{3}^{2}}} \\ u_{3}-\frac{u_{2}}{\sqrt{u_{2}^{2}+u_{3}^{2}}} & \frac{u_{1} u_{3}}{\sqrt{u_{2}^{2}+u_{3}^{2}}}\end{array}\right] \in S O(3)$.
Proof: The matrix satisfies $R_{u} R_{u}^{T}=I_{3}$ and $\operatorname{det}\left(R_{u}\right)=1$ and, thus, it is a rotation matrix in $S O(3)$.

Lemma IV. 5 Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$. If $f=\left(f_{1}, f_{2}, f_{3}\right)$: $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ commutes with all elements of $S O(3)$, then

$$
\begin{align*}
& f_{1}(x)=-f_{1}\left(-x_{1},-x_{2}, x_{3}\right) \tag{5}\\
& f_{1}(x)=-f_{1}\left(-x_{1}, x_{2},-x_{3}\right) \tag{6}\\
& f_{2}(x)=f_{1}\left(x_{2},-x_{1}, x_{3}\right) \tag{7}\\
& f_{3}(x)=f_{1}\left(x_{3}, x_{2},-x_{1}\right) \tag{8}
\end{align*}
$$

Proof: The aforementioned relationships can be obtained using 90° rotation matrices around the axes e_{1}, e_{2}, and e_{3}.

Proposition IV.6: The centralizer of $S O(3)$ with respect to T is the monoid of quasilinear functions $Q L(3)$.

Proof: Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ such that $x \neq \alpha e_{1}, \alpha \in$ \mathbb{R}, and $f=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Let $u=\frac{x}{\|x\|}$ and R_{u} as in Lemma IV.4, we have $x=R_{u}\|x\| e_{1}$ and $u_{i}=\frac{x_{i}}{\|x\|}$. Using the commutation property, we obtain $f(x)=f\left(R_{u}\|x\| e_{1}\right)=$ $R_{u} f\left(\|x\| e_{1}\right)$ and writing the equation for f_{1}, it follows that:

$$
\begin{equation*}
f_{1}(x)=u_{1} f_{1}\left(\|x\| e_{1}\right)-\sqrt{u_{2}^{2}+u_{3}^{2}} f_{3}\left(\|x\| e_{1}\right) \tag{9}
\end{equation*}
$$

Using (8) from Lemma IV.5, we have $f_{3}(\|x\|, 0,0)=$ $f_{1}(0,0,-\|x\|)$. On the other hand, it follows from (5) that $f_{1}(0,0, \alpha)=-f_{1}(0,0, \alpha)$, which implies $f_{1}(0,0, \alpha)=0$ for all $\alpha \in \mathbb{R}$. It follows that: $f_{3}\left(\|x\| e_{1}\right)=0$ for all $x \in \mathbb{R}^{3}$, $x \neq \alpha e_{1}$, and $\alpha \in \mathbb{R}$. Thus, (9) can be simplified to

$$
\begin{equation*}
f_{1}(x)=x_{1} f_{1}\left(\|x\| e_{1}\right)\|x\|^{-1}=x_{1} k(\|x\|) \tag{10}
\end{equation*}
$$

where $k: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ is $k(\alpha) \triangleq \frac{f_{1}\left(\alpha e_{1}\right)}{\alpha}, \alpha \geq 0$. The general form of $f(x)=k(\|x\|) x$ is obtained using (7) and (8).

The case $x=0$ follows easily from Lemma IV.2, because it implies $f(0)=0$. The remaining case $x=\alpha e_{1}$ is trivial $f\left(\alpha e_{1}\right)=\left[\begin{array}{lll}f_{1}\left(\alpha e_{1}\right) & f_{2}\left(\alpha e_{1}\right) f_{3}\left(\alpha e_{1}\right)\end{array}\right]^{T}=\left[\begin{array}{lll}\alpha \frac{f_{1}\left(\alpha e_{1}\right)}{\alpha} & 0 & 0\end{array}\right]^{T}=$ $k(\|x\|) x$, where $f_{2}\left(\alpha e_{1}\right)=0$ and $f_{3}\left(\alpha e_{1}\right)=0$ follow from (7), (6), (8), and(5), respectively.

Conversely, if $f \in Q L(N)$, then $R f(x)=R(k(\|x\|) x)=$ $k(\|R x\|) R x=f(R x)$ where $R \in S O(3)$. Thus, we have $f \in$ $C_{T}(S O(3))$, which concludes the proof.

Theorem IV.7: The centralizer of $S O(N)$ with respect to T is the monoid of quasilinear functions $Q L(N)$, for all $N \geq 3$.

Proof: The proof follows from an induction argument with respect to N. The base case is established by Prop. IV.6. To simplify the notation, given a vector $x=\left(x_{1}, \ldots, x_{N}\right)$ we will denote by $x_{i: j}, i<j$, the sliced vector $\left(x_{i}, \ldots, x_{j}\right) \in \mathbb{R}^{j-i+1}$.

The induction step: Let $x \in \mathbb{R}^{N+1}, x \neq 0$, and $R_{1}=$ $\left[\begin{array}{ll}R & 0 \\ 0 & 1\end{array}\right], R_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & R\end{array}\right]$, where $R \in S O(N)$. Using R_{1}, it follows that: $R f_{1: N}\left(x_{1: N}, x_{N+1}\right)=f_{1: N}\left(R x_{1: N}, x_{N+1}\right)$. Applying the induction hypothesis, we obtain

$$
\begin{equation*}
f_{1: N}\left(x_{1: N}, x_{N+1}\right)=k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right) x_{1: N} \tag{11}
\end{equation*}
$$

Similarly, using R_{2}, we have $R f_{2: N+1}\left(x_{1}, x_{2: N+1}\right)=$ $f_{2: N+1}\left(x_{1}, R x_{2: N+1}\right)$ and obtain

$$
\begin{equation*}
f_{2: N+1}\left(x_{1}, x_{2: N+1}\right)=k_{2}\left(\left\|x_{2: N+1}\right\|, x_{1}\right) x_{2: N+1} \tag{12}
\end{equation*}
$$

Equating (11) and (12) for f_{2} and assuming w.l.o.g. $x_{2} \neq 0$, we obtain a constraint between the two gains

$$
\begin{equation*}
k_{2}\left(\left\|x_{2: N+1}\right\|, x_{1}\right)=k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right) . \tag{13}
\end{equation*}
$$

Thus, we obtain f_{N+1} in terms of the gain k_{1} by using the last equality from (12) and (13) to substitute k_{2} for k_{1}

$$
\begin{equation*}
f_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)=k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right) x_{N+1} \tag{14}
\end{equation*}
$$

Finally, putting all components of f obtained from (11) and (14) together and left multiplying it by x^{T}, we obtain

$$
\begin{aligned}
x^{T} f(x) & =\sum_{i=1}^{N+1} x_{i}^{2} k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right) \\
& =\|x\|^{2} k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right)=\|x\| f_{1}\left(\|x\| e_{1}\right)
\end{aligned}
$$

where the last equality follows from Lemma IV.3. It follows that: $k_{1}\left(\left\|x_{1: N}\right\|, x_{N+1}\right)=\frac{f_{1}\left(\|x\| e_{1}\right)}{\|x\|} \triangleq k(\|x\|)$. Thus $f(x)=$ $k(\|x\|) x$ or, equivalently, $f \in C_{T}(S O(N))$.

Conversely, we have $Q L(N) \subseteq C_{T}(S O(N)$) (see proof of Prop. IV.6).

V. $S E(N)$-Invariant Functions

In this section, we use the result from the previous section $C_{T}(S O(N))=Q L(N)$ in order to characterize $S E(N)$-invariant functions that arise from pairwise interaction systems.

Proposition V.1: A function $h\left(x_{1}, x_{2}\right): \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is $S E(N)$-invariant if and only if h is quasilinear in $x_{2}-x_{1}$.

Proof: Trivially, a quasilinear function $h\left(x_{1}, x_{2}\right)=$ $k\left(\left\|x_{2}-x_{1}\right\|\right)\left(x_{2}-x_{1}\right)$ is $S E(N)$-invariant. Conversely, if $R=I_{N}$ and $w=-x_{2}$, then $h\left(x_{1}, x_{2}\right)=h\left(x_{1}-x_{2}, x_{2}-\right.$ $\left.x_{2}\right)=h\left(x_{1}-x_{2}, 0\right) \triangleq \hat{h}\left(x_{2}-x_{1}\right)$. Let $x \in \mathbb{R}^{N}$ and $R \in$ $S O(N)$, it follows that: $R \hat{h}(x)=R h(-x, 0)=h(-R x, 0)=$ $\hat{h}(R x)$. Since \hat{h} commutes with all elements of $S O(N)$ it follows by Theor. IV. 7 that it is quasilinear. Thus, we have $h\left(x_{1}, x_{2}\right)=\hat{h}\left(x_{2}-x_{1}\right)=k\left(\left\|x_{2}-x_{1}\right\|\right)\left(x_{2}-x_{1}\right)$.

Lemma V.2: Let $h_{1}, h_{2}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$. Then, $S\left(x_{0}\right.$, $\left.x_{1}, x_{2}\right)=h_{1}\left(x_{0}, x_{1}\right)+h_{2}\left(x_{0}, x_{2}\right)$ is an $S E(N)$-invariant function if and only if there exists $k_{1}(\cdot)$ and $k_{2}(\cdot)$ such that for all $x_{0}, x_{1}, x_{2} \in \mathbb{R}^{N}$, we have

$$
\begin{align*}
& h_{1}\left(x_{0}, x_{1}\right)=h_{1}\left(x_{0}, x_{0}\right)+k_{1}\left(\left\|x_{1}-x_{0}\right\|\right)\left(x_{1}-x_{0}\right) \tag{15}\\
& h_{2}\left(x_{0}, x_{2}\right)=h_{2}\left(x_{0}, x_{0}\right)+k_{2}\left(\left\|x_{2}-x_{0}\right\|\right)\left(x_{2}-x_{0}\right) \tag{16}
\end{align*}
$$

and $h_{1}\left(x_{0}, x_{0}\right)+h_{2}\left(x_{0}, x_{0}\right)=0$.

Proof: It is easy to show that if S is the sum of functions satisfying (15)and (16), and the zero-sum constraint, then S is $S E(N)$-invariant. Conversely, let $f_{1}(a, b)=h_{1}(a, b)+$ $h_{2}(a, a)$ and $f_{2}(a, b)=h_{1}(a, a)+h_{2}(a, b)$, where f_{1}, f_{2} : $\mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $a, b \in \mathbb{R}^{N}$. It follows immediately that f_{1} and f_{2} are $S E(N)$-invariant, because $h_{1}\left(x_{0}, x_{1}\right)+$ $h_{2}\left(x_{0}, x_{2}\right)$ is $S E(N)$-invariant. Therefore, we have by Prop. V. 1 that $\quad f_{1}(a, b)=k_{1}(\|b-a\|)(b-a) \quad$ and $\quad f_{2}(a, b)=$ $k_{2}(\|b-a\|)(b-a)$. Choosing $a=b$ in any of the previous two equations, we obtain $h_{1}(a, a)+h_{2}(a, a)=0$. Finally, $h_{1}(a, b)$ $=-h_{2}(a, a)+f_{1}(a, b)=h_{1}(a, a)+k_{1}(\|b-a\|)(b-a)$ and $h_{2}(a, b)=-h_{1}(a, a)+f_{2}(a, b)=h_{2}(a, a)+k_{2}(\|b-a\|)$ $(b-a)$.

Lemma V.3: Let $h_{1}, \ldots, h_{p}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, p \in \mathbb{Z}_{\geq 2}$. Then, $S\left(x_{0}, \ldots, x_{p}\right)=\sum_{i=1}^{p} h_{i}\left(x_{0}, x_{i}\right)$ is an $S E(N)$-invariant function if and only if for all $i \in\{1, \ldots, p\}$ there exists $k_{i}(\cdot)$ such that for all $x_{0}, x_{1}, \ldots, x_{p} \in \mathbb{R}^{N}$, we have

$$
\begin{align*}
& h_{i}\left(x_{0}, x_{i}\right)=h_{i}\left(x_{0}, x_{0}\right)+k_{i}\left(\left\|x_{i}-x_{0}\right\|\right)\left(x_{i}-x_{0}\right) \tag{17}\\
& \sum_{i=1}^{p} h_{i}\left(x_{0}, x_{0}\right)=0 . \tag{18}
\end{align*}
$$

Proof: As before, the quasilinearity of S, which follows from (17) and (18), trivially implies its $S E(N)$-invariance. We will prove the converse by induction with respect to p. The base step $p=2$ is established by Lemma V.2. For the induction step, we assume that Lemma V. 3 holds for p and we must show that it also holds for $p+1$.

Let $\quad x_{p+1}=x_{1} \quad$ and \quad define $\quad h_{1}^{\prime}\left(x_{0}, x_{1}\right)=h_{1}\left(x_{0}, x_{1}\right)+$ $h_{p+1}\left(x_{0}, x_{1}\right)$. Clearly, $h_{1}^{\prime}\left(x_{0}, x_{1}\right)+\sum_{i=2}^{p} h_{i}\left(x_{0}, x_{i}\right)$ is an $S E(N)$-invariant function and by the induction hypothesis we have for all $i \in\{2, \ldots, p\}$

$$
\begin{aligned}
& h_{i}\left(x_{0}, x_{i}\right)=h_{i}\left(x_{0}, x_{0}\right)+k_{i}\left(\left\|x_{i}-x_{0}\right\|\right)\left(x_{i}-x_{0}\right) \\
& h_{1}^{\prime}\left(x_{0}, x_{1}\right)=h_{1}^{\prime}\left(x_{0}, x_{0}\right)+k_{1}^{\prime}\left(\left\|x_{1}-x_{0}\right\|\right)\left(x_{1}-x_{0}\right) \\
& \quad=h_{1}\left(x_{0}, x_{0}\right)+h_{p+1}\left(x_{0}, x_{0}\right)+k_{1}^{\prime}\left(\left\|x_{1}-x_{0}\right\|\right)\left(x_{1}-x_{0}\right)
\end{aligned}
$$

and $h_{1}^{\prime}\left(x_{0}, x_{0}\right)+\sum_{i=2}^{p} h_{i}\left(x_{0}, x_{0}\right)=\sum_{i=1}^{p+1} h_{i}\left(x_{0}, x_{0}\right)=0$.
Similarly, let $x_{p+1}=x_{2}$ and define $h_{2}^{\prime}\left(x_{0}, x_{2}\right)=h_{2}\left(x_{0}, x_{2}\right)$ $+h_{p+1}\left(x_{0}, x_{2}\right)$. Using the same argument as before, we obtain $\quad h_{1}\left(x_{0}, x_{1}\right)=h_{1}\left(x_{0}, x_{0}\right)+k_{1}\left(\left\|x_{1}-x_{0}\right\|\right)\left(x_{1}-x_{0}\right)$. Substituting h_{1} in the expression of h_{1}^{\prime} and solving for h_{p+1}, we have $h_{p+1}\left(x_{0}, x_{p+1}\right)=h_{1}^{\prime}\left(x_{0}, x_{p+1}\right)-h_{1}\left(x_{0}, x_{p+1}\right)=$ $h_{p+1}\left(x_{0}, x_{0}\right)+k_{p+1}\left(\left\|x_{p+1}-x_{0}\right\|\right)\left(x_{p+1}-x_{0}\right)$, where $k_{p+1}=k_{1}^{\prime}-k_{1}$. This concludes the proof.

We conclude this section with a characterization theorem of the total interaction functions of pairwise interaction systems.

Theorem V.4: Let $\quad S\left(x_{0}, x_{1}, \ldots, x_{p}\right)=\sum_{j=1}^{p} h_{j}\left(x_{0}, x_{j}\right)$, where $h_{j}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $p \geq 1$. Then, S is $S E(N)$ invariant if and only if it is the sum of quasilinear functions in $x_{j}-x_{0}, j \in\{1, \ldots, p\}$, that is, $S=\sum_{j=1}^{p} k_{j}\left(\left\|x_{j}-x_{0}\right\|\right)$ $\left(x_{j}-x_{0}\right)$, where $k_{j}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$.

Proof: Letting $S\left(x_{0}, \ldots, x_{p}\right)=\sum_{j=1}^{p} h_{j}\left(x_{0}, x_{j}\right)$ be an $S E(N)$-invariant function, it follows from Lemma V. 3 that there
exists $k_{j}(\cdot)$ for all $j \in\{1, \ldots, p\}$, such that

$$
\begin{aligned}
S & =\sum_{j=1}^{p} h_{j}\left(x_{0}, x_{0}\right)+\sum_{j=1}^{p} k_{j}\left(\left\|x_{j}-x_{0}\right\|\right)\left(x_{j}-x_{0}\right) \\
& =\sum_{j=1}^{p} k_{j}\left(\left\|x_{j}-x_{0}\right\|\right)\left(x_{j}-x_{0}\right)
\end{aligned}
$$

where the last equality follows from (18) of Lemma V.3, which says that the sum of all affine terms must vanish.

Conversely, let $S=\sum_{j=1}^{p} k_{j}\left(\left\|x_{j}-x_{0}\right\|\right)\left(x_{j}-x_{0}\right)$, then S is $S E(N)$-invariant, that is, for all $(R, w) \in S E(N)$

$$
\begin{aligned}
R S= & \sum_{j=1}^{p} k_{j}\left(\left\|x_{j}-x_{0}\right\|\right) R\left(x_{j}-x_{0}\right) \\
= & \sum_{j=1}^{p} k_{j}\left(\left\|R x_{j}+w-\left(R x_{0}+w\right)\right\|\right) \\
& \times\left(R x_{j}+w-\left(R x_{0}+w\right)\right) \\
= & S\left(R x_{0}+w, R x_{1}+w, \ldots, R x_{p}+w\right)
\end{aligned}
$$

where we used the fact that $\|R x\|=\|x\|$ for all $R \in S O(N)$ and $x \in \mathbb{R}^{N}$. The proof is now complete.

Theorem III. 7 follows immediately from Theor. V.4, since we can apply Theor. V. 4 on the total interaction function S_{i} of any agents i, where p, x_{0}, and $h_{j}\left(x_{0}, x_{j}\right), j \in\{1, \ldots, p\}$, correspond to $\left|\mathcal{N}_{i} \rightarrow\right|, x_{i}$ and $f_{i j}\left(x_{i}, x_{j}\right), j \in \mathcal{N}_{i} \rightarrow$, respectively.

Remark V.5: Theorem III. 7 is stated in terms of total interaction functions, independent of a notion of dynamics, which has two benefits: 1) it greatly expands the applicability of the result to other cases (Section VII) and 2) we do not need to assume any smoothness conditions on the functions, such as continuity or differentiability.

VI. Stability of $S E(N)$-Invariant Systems

In this section, we explore the stability of $S E(N)$-invariant pairwise interaction systems, showing that a subclass of such systems converges to a consensus state (one in which all agents' states are equal). The stability result exploits the structure of $S E(N)$-invariant systems imposed by Theor. III. 7 and some additional constraints on the connectivity of the interaction graph and local interaction functions.

Before we state the stability theorem, we prove a lemma connecting the Laplacian matrix of a graph with the convergence rate of the systems toward the equilibria set.

Lemma VI.1: Let \mathcal{L} be a $n \times n$ real symmetric positive semidefinite matrix with eigenvalues $\lambda_{n} \geq \ldots \geq \lambda_{2}>\lambda_{1}=0$ and 1_{n} be the right eigenvector corresponding to the eigenvalue $\lambda_{1}=0$. For all $x \in \mathbb{R}^{N n}, N>2$, such that $\left(\mathbf{1}_{n}^{T} \otimes I_{N}\right) x=0$, we have $x^{T}\left(\mathcal{L} \otimes I_{N}\right) x \geq \lambda_{2}(\mathcal{L})\|x\|^{2}$.

Proof: The spectrum of the Kronecker product of two matrices is composed of the pairwise products of their eigenvalues. Thus, $\mathcal{L} \otimes I_{N}$ has the same eigenvalues as \mathcal{L}. The inequality follows from the Courant-Fisher theorem [8], [26].

Theorem VI.2: Let (G, F) be a continuous-time pairwiseinteraction system that satisfies the following properties:

1) (G, F) is $S E(N)$-invariant;
2) G is strongly connected;
3) (G, F) is balanced, that is, for all agents i and $x_{i}, x_{j} \in \mathbb{R}^{N}$

$$
\begin{equation*}
\sum_{j \in \mathcal{N}_{i}^{\rightarrow}} f_{i j}\left(x_{i}, x_{j}\right)+\sum_{j \in \mathcal{N}_{i}^{-}} f_{j i}\left(x_{j}, x_{i}\right)=0 \tag{19}
\end{equation*}
$$

4) positivity—for all $(i, j) \in E(G)$ and $x_{i} \neq x_{j} \in \mathbb{R}^{N}$

$$
\begin{equation*}
\left(x_{j}-x_{i}\right)^{T}\left(f_{i j}\left(x_{i}, x_{j}\right)-f_{i j}\left(x_{i}, x_{i}\right)\right)>0 \tag{20}
\end{equation*}
$$

The consensus set $\Omega(\bar{x}(0))=\left\{x \mid x_{i}=\bar{x}(0), \forall i \in V(G)\right\}$ is globally asymptotically stable, where $x=\left[x_{1}^{T}, \ldots, x_{n}^{T}\right]^{T}$ is the stacked state vector and $\bar{x}(0)=\frac{1}{n} \sum_{i=1}^{n} x_{i}(0), n=|V(G)|$.

Moreover, $\sigma_{i j}=\lim _{x_{i} \rightarrow x_{j}} \frac{\left(x_{j}-x_{i}\right)^{T}\left(f_{i j}\left(x_{i}, x_{j}\right)-f_{i j}\left(x_{i}, x_{i}\right)\right)}{\left\|x_{j}-x_{i}\right\|^{2}}$ exists for each $(i, j) \in E(G)$, and if $\sigma_{i j}>0$ for all $(i, j) \in E(G)$, then $\Omega(\bar{x}(0))$ is globally exponentially stable.

Proof: The proof uses a Lyapunov function-based argument similar to [8, Theor. 3]. We use Theor. III. 7 to rewrite the dynamics of the system in quasilinear form. We proceed to define a weighted Laplacian matrix, where the weights are dependent on the agents' states, which is the main difference from the proof in [8]. Finally, we define a quadratic Lyapunov function and show that the total derivative is upper bounded by the Fiedler value of the Laplacian matrix, thus guaranteeing global asymptotic stability. The details are presented below.

First, we show that the average state $\bar{x}(t)=\frac{1}{n} \sum_{i \in V(G)} x_{i}(t)$ is time invariant. The derivative of $\bar{x}(t)$ is

$$
\begin{aligned}
\dot{\bar{x}} & =\frac{1}{n} \sum_{i \in V(G)} \sum_{j \in \mathcal{N}_{i}^{\rightarrow}} f_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{n} \sum_{(i, j) \in E(G)} f_{i j}\left(x_{i}, x_{j}\right) \\
& =\frac{1}{2 n} \sum_{i \in V(G)}\left(\sum_{j \in \mathcal{N}_{i}} f_{i j}\left(x_{i}, x_{j}\right)+\sum_{j \in \mathcal{N}_{i}^{-}} f_{j i}\left(x_{j}, x_{i}\right)\right)=0,
\end{aligned}
$$

where the third equality follows from writing the sum of all local interaction functions in two ways, using the incoming and outgoing edges. The last equality follows from the assumption that (G, F) is balanced.

Let $\delta(t)=x(t)-\mathbf{1}_{n} \otimes \bar{x}(0)$ be the disagreement vector. The next step is to show that the disagreement space spanned by δ is orthogonal to the consensus space

$$
\begin{aligned}
\left(\mathbf{1}_{n}^{T} \otimes D_{\alpha}\right) \delta(t) & =\left(\mathbf{1}_{n}^{T} \otimes D_{\alpha}\right) x(t)-\left(\mathbf{1}_{n}^{T} \otimes D_{\alpha}\right)\left(\mathbf{1}_{n} \otimes \bar{x}(0)\right) \\
& =D_{\alpha}(n \bar{x}(t)-n \bar{x}(0))=0
\end{aligned}
$$

where $\alpha \in \mathbb{R}^{n}$ and $D_{\alpha}=\operatorname{diag}(\alpha)$. The last equality above holds due to the conservation of the average state.

Next, we use $S E(N)$-invariance to rewrite the system's dynamics in the quasilinear form given by Theor. V.4. Let $L(x)$ denote the $n \times n$ weighted Laplacian matrix of (G, F)
$L_{i j}= \begin{cases}\sum_{p \in \mathcal{N}_{i}} k_{i p}\left(\left\|x_{i}-x_{p}\right\|\right) & \text { for } i=j \\ -k_{i j}\left(\left\|x_{i}-x_{j}\right\|\right) & \text { for } i \neq j \text { and }(i, j) \in E(G) \\ 0 & \text { otherwise }\end{cases}$
where $\sum_{j \in \mathcal{N}_{i}^{\rightarrow}} f_{i j}\left(x_{i}, x_{j}\right)=\sum_{j \in \mathcal{N}_{i} \rightarrow} k_{i j}\left(\left\|x_{j}-x_{i}\right\|\right)\left(x_{j}-x_{i}\right)$, for all $i, j \in V(G)$. The positivity assumption in (20) implies that $k_{i j}(a)>0$ for all $(i, j) \in E(G)$ and $a>0$.

Using the Laplacian, the system dynamics may be written in the compact form $\dot{x}=-\left(L(x) \otimes I_{N}\right) x$. Also, because $k_{i j}\left(\left\|x_{i}-x_{j}\right\|\right)=k_{i j}\left(\left\|x_{i}+\alpha-\left(x_{j}+\alpha\right)\right\|\right)$, we have that $L(x)=L\left(x+\left(\mathbf{1}_{n} \otimes \alpha\right)\right)$, for all $\alpha \in \mathbb{R}^{N}$, and $L(x)=$ $L(\delta)$. Moreover, the dynamics of the disagreement vector is

$$
\begin{align*}
\dot{\delta} & =\dot{x}=-\left(L(x) \otimes I_{N}\right) x \tag{21}\\
& =-\left(L(\delta) \otimes I_{N}\right) \delta+\left(L(\delta) \otimes I_{N}\right)\left(\mathbf{1}_{n} \otimes \bar{x}(0)\right) \tag{22}\\
& =-\left(L(\delta) \otimes I_{N}\right) \delta \tag{23}
\end{align*}
$$

where the second term in (22) vanishes, because 1_{n} is a right eigenvector of $L(\delta)$.

Let $\hat{L}(x)=\frac{1}{2}\left(L(x)+L^{T}(x)\right)$ be the Laplacian matrix of the mirror graph of G, that is, the graph with both edges of G and the reversed edges of G. Notice that $\hat{L}(x)$ is symmetric and $x^{T} \hat{L}(x) x=\frac{1}{2}\left(x^{T} L(x) x+x^{T} L^{T}(x) x\right)=x^{T} L(x) x$.

Consider the Lyapunov function $V(\delta)=\frac{1}{2}\|\delta\|^{2}$, which is trivially positive definite and radially unbounded. The total derivative of $V(\cdot)$ is

$$
\begin{align*}
\dot{V}(\delta) & =\delta^{T} \dot{\delta}=-\delta^{T}\left(L(\delta) \otimes I_{N}\right) \delta=-\delta^{T}\left(\hat{L}(\delta) \otimes I_{N}\right) \delta \tag{24}\\
& \leq-\lambda_{2}(\hat{L}(\delta))\|\delta\|^{2} \tag{25}
\end{align*}
$$

where $\lambda_{2}(\hat{L}(\delta))$ is the Fiedler value (second smallest eigenvalue) of $\hat{L}(\delta)$. The inequality in (25) follows from Lemma VI.1, because G is balanced and thus $\hat{L}(x) \mathbf{1}_{n}=\frac{1}{2}\left(L(x) \mathbf{1}_{n}+\right.$ $\left.L(x)^{T} \mathbf{1}_{n}\right)=0$.

The total derivative of the Lyapunov function $\dot{V}(\delta)$ is zero if and only if either: 1) δ is zero, or 2) G is not strongly connected. However, the positivity condition (20) implies that G is strongly connected for all $\delta \neq 0$. Since $\delta=0$ implies $\dot{\delta}=0$ it follows from LaSalle's invariance principle that $\delta^{*}=0$ is globally asymptotically stable. It follows that: $x^{*}=\mathbf{1}_{n} \otimes \bar{x}(0)$ and $\Omega(\bar{x}(0))$ is globally asymptotically stable.

Finally, we have that $\sigma_{i j}=\lim _{a \rightarrow 0} k_{i j}(a)=k_{i j}(0)$ exists for all $(i, j) \in E(G)$ due to the continuity of $k_{i j}$, where $a=\left\|x_{j}-x_{i}\right\|$. Since $\delta(t)$ is differentially continuous in t and a convergent trajectory, and $k_{i j}$ are also continuous, it follows that: $\lambda_{2}(L(\delta(t)))$ is also continuous in t [27] on $\mathbb{R} \cup\{\infty\}$ and its image is a compact set Λ_{2}. The compactness of $\Lambda_{2} \mathrm{im}$ plies that it admits a minimum value. If $\sigma_{i j}>0$, then all values in Λ_{2} are positive due to (20). In particular, it follows that: $\min \Lambda_{2}>0$. We can then upper bound the quantity in (25) by $\dot{V} \leq-\min \Lambda_{2}\|\delta\|^{2}$, that implies $\frac{\mathrm{d}}{\mathrm{d} t}\|\delta\| \leq-\min \Lambda_{2}\|\delta\|$. Therefore, $\Omega(\bar{x}(0))$ is globally exponentially stable.

VII. Extensions

The main result in Section III is stated for first-order (kinematic) continuous-time dynamics. Here, we discuss extensions to discrete-time and higher order dynamics, and a system with switching and time-varying graph topologies.

A. Discrete-Time Systems

A discrete-time pairwise interaction system can be defined by replacing differentiation $\left(\dot{x}_{i}\right)$ with one-step difference
($\left.\Delta x_{i}(t)=x_{i}(t+1)-x_{i}(t)\right)$ in (2) of Def. III.2. The definitions of the total interaction function and $S E(N)$-invariance remain unchanged, [see (3) in Def. III. 2 and Def. III.3, respectively].

The main result, Theorem. III.7, holds for discrete-time systems as well. However, the stability results need to be adjusted.

Lemma VII.1: Let (X, d) be a complete metric space and $\left(T_{n}\right)_{n \geq 0}$ be a sequence of Lipschitz continuous functions such that all admit a Lipschitz constants $q<1$. Define the sequence $x_{n+1}=T_{n}\left(x_{n}\right)$. If all maps T_{n} have the same fixed point $x^{*} \in$ X, then for all $x_{0} \in X$, we have $x_{n} \rightarrow x^{*}$.

Proof: First note that all maps T_{n} are contractions, because $q<1$. Thus, by the contraction mapping theorem, all T_{n} have a unique fixed point x^{*}. Moreover, the Lipschitz inequality $d\left(T_{n}(x), x^{*}\right)=d\left(T_{n}(x), T_{n}\left(x^{*}\right)\right) \leq q d\left(x, x^{*}\right)$ holds for all $n \geq 0$ and $x \in X$. It follows by induction that $d\left(x_{n}, x^{*}\right) \leq$ $q^{n} d\left(x_{0}, x^{*}\right)$, for all $n \geq 1$. The base case $n=1$ follows from the contraction inequality. For the induction step, we again use Lipschitz property $d\left(x_{n+1}, x^{*}\right)=d\left(T_{n}\left(x_{n}\right), x^{*}\right) \leq q d\left(x_{n}, x^{*}\right) \leq$ $q^{n+1} d\left(x_{0}, x^{*}\right)$, where in the last inequality we used the induction hypothesis.

Finally, x_{n} is a Cauchy sequence, because for all $m, n \geq 0$ $d\left(x_{m}, x_{n}\right) \leq d\left(x_{m}, x^{*}\right)+d\left(x^{*}, x_{n}\right) \leq\left(q^{m}+q^{n}\right) d\left(x_{0}, x^{*}\right)$, where we used the triangle inequality in the first inequality. Therefore, x_{n} has the unique limit x^{*}, because X is complete and the distance map d is continuous.

Definition VII.2: Let (G, F) be a discrete-time pairwise interaction system and G^{T} be the transpose graph of G, that is, the graph with all edges reversed. Denote by S^{G} and $S^{G^{T}}$ the vectors of stacked total interaction functions for all agents with interaction graphs G and G^{T}, respectively. System (G, F) is said to be forward-backward consistent if

$$
\begin{equation*}
\left(\mathbf{i d}+S^{G^{T}}\right) \circ\left(\mathbf{i d}+S^{G}\right)=\left(\mathbf{i d}+S^{G}\right) \circ\left(\mathbf{i d}+S^{G^{T}}\right) \tag{26}
\end{equation*}
$$

where id is the identity function and \circ is function composition.
Remark VII.3: The identity function in the terms of (26) arises, because the equations of the forward (G) and backward (reversed, G^{T}) evolution of the system are $x(t+1)=x(t)+$ $S^{G}(x(t))$ and $x(t+1)=x(t)+S^{G^{T}}(x(t))$, respectively.

Remarks VII.4: Def. VII. 2 describes a property about the evolution of a system in two time units, where the edges of the interaction graph are reversed in one of the two time units. Property (26) captures the idea that the state the system ends up in is independent of when the edges' reversal occurred.

The property can also be interpreted in the following way. Consider a network with half-duplex interaction (communication) links and a global switch which changes the direction of all links at the same time. The forward-backward consistency property implies that the state of the network at time t depends only on the initial state and the number of network switches until time t and not the sequence of switches itself.

Yet, another way to interpret the property is as a relaxation of time reversibility. If the two terms in (26) were equal to the identity function, then the pairwise interaction system (G, F) would be time reversible and, moreover, the system could be brought back to the initial state using $\left(G^{T}, F\right)$ with the
interaction graph reversed. Therefore, Def. VII. 2 can be though of as a relaxation of time reversibility.

Theorem VII.5: Let (G, F) be a discrete-time pairwise interaction system that satisfies the following properties:

1) (G, F) is $S E(N)$-invariant;
2) G is strongly connected;
3) (G, F) is forward-backward consistent, see Def. VII.2;
4) strong positivity-for all $(i, j) \in E(G)$

$$
\begin{equation*}
\inf _{x_{i} \neq x_{j}}\left\{\frac{\left(x_{j}-x_{i}\right)^{T}\left(f_{i j}\left(x_{i}, x_{j}\right)-f_{i j}\left(x_{i}, x_{i}\right)\right)}{\left\|x_{j}-x_{i}\right\|^{2}}\right\} \geq \epsilon>0 \tag{27}
\end{equation*}
$$

(5) the maximum flow is less than one, i.e.

$$
\begin{equation*}
\sup _{i, x_{i}}\left\{\sum_{j \in \mathcal{N}_{i}} \frac{\left\|f_{i j}\left(x_{i}, x_{j}\right)-f_{i j}\left(x_{i}, x_{i}\right)\right\|}{\left\|x_{j}-x_{i}\right\|}\right\}<1 \tag{28}
\end{equation*}
$$

The consensus set $\Omega(\bar{x}(0))=\left\{x \mid x_{i}=\bar{x}(0), \forall i \in V(G)\right\}$ is globally exponentially stable, where $x=\left[x_{1}^{T}, \ldots, x_{n}^{T}\right]^{T}$ is the stacked state vector and $\bar{x}(0)=\frac{1}{n} \sum_{i=1}^{n} x_{i}(0), n=|V(G)|$.

Proof: In the following text, we use the notation introduced in the proof of Theorem VI.2. Thus, the dynamics can be written as

$$
\begin{align*}
x(t+1) & =\left(P(x(t)) \otimes I_{N}\right) x(t) \tag{29}\\
\delta(t+1) & =\left(P(\delta(t)) \otimes I_{N}\right) \delta(t) \tag{30}
\end{align*}
$$

where $P(x)=I_{n}-L$ is the Perron matrix, and $P(x)=P(\delta)$.
For any fixed $\delta \in \mathbb{R}^{n \times N}$ such that $\left(\mathbf{1}_{n}^{T} \otimes I_{N}\right) \delta=0$, we have that $P(\delta)$ is a non-negative doubly stochastic matrix. The strong positivity assumption (27) is equivalent to $k_{i j}(a) \geq \epsilon$ for all $a \geq$ 0 and $(i, j) \in E(G)$, which trivially implies that all off-diagonal elements of $P(\delta)$ are non-negative. Moreover, the maximum flow assumption can be restated as $\sum_{j \in N_{i}} k_{i j}\left(\left\|\delta_{i}-\delta_{j}\right\|\right)<1$ which is equivalent to $P_{i i}(\delta)>0$. The forward-backward consistency property implies that $P(\delta)$ is a normal matrix, for all δ. The Perron matrix $P(\delta)$ is double stochastic, that is, G is balanced, because $\mathbf{1}_{n}$ is a right eigenvector of $L(\delta)$ and $P(\delta) P^{T}(\delta) \mathbf{1}_{n}=P^{T}(\delta) P(\delta) \mathbf{1}_{n}=P^{T}(\delta) \mathbf{1}_{n}$ which implies that $P^{T}(\delta) \mathbf{1}_{n}=a \mathbf{1}_{n}, a \neq 0$, is an eigenvector of $P(\delta)$ corresponding to the eigenvalue 1 . Since $P^{T}(\delta)$ has the same spectrum as $P(\delta)$, it follows that a must be 1 .

The Perron matrix is a contraction on the linear space defined by $\left(\mathbf{1}_{n}^{T} \otimes I_{N}\right) \delta=0$, because

$$
\begin{align*}
& \left\|\left(P(\delta) \otimes I_{N}\right) \alpha\right\|^{2}=\alpha^{T}\left(P(\delta) \otimes I_{N}\right)^{T}\left(P(\delta) \otimes I_{N}\right) \alpha \\
& =\alpha^{T}\left(\left(P(\delta)^{T} P(\delta)\right) \otimes I_{N}\right) \alpha=\alpha^{T}\left(\left(U D^{*} D U^{*}\right) \otimes I_{N}\right) \alpha \tag{32}
\end{align*}
$$

$$
\begin{equation*}
\leq\left|\mu_{2}(P(\delta))\right|^{2} \cdot\|\alpha\|^{2} \tag{33}
\end{equation*}
$$

where $\mu_{2}(P(\delta))$ is the second largest eigenvalue in the absolute value of $P(\delta), P(\delta)=U D U^{*}, U$ is a unitary matrix, D is the diagonal matrix corresponding to the spectrum of $P(\delta)$, and * is the conjugate transpose operator. The inequality in (33) follows from the Courant-Fisher Theorem [26].

Finally, it follows that $P(\delta(t)) \otimes I_{N}$ is a sequence of contraction maps. All of them admit 0 as a fixed point. The Lipschitz constant for all of them is $q=\sup _{t \geq 0}\left|\mu_{2}(P(\delta(t)))\right|$
<1, because the strong positivity assumption guarantees that the entries of $P(\delta(t))$ cannot become arbitrarily small as t goes to infinity. By Lemma VII.1, it follows that $\delta(t)$ converges to 0 , where $X \subset \mathbb{R}^{N}$ is the space defined by $\left(I_{N} \otimes D_{\alpha}\right) \delta=0$ with the distance function induced by the Euclidean norm $\|\cdot\|$.

B. Higher Order Dynamics

In this section, we extend the notion of $S E(N)$-invariance to higher-order pairwise interaction systems, that is, each agent's dynamics has order $m \geq 2$. If the dynamics of these systems depend only the agents' states, then the definitions and results from Section III all hold. However, we are interested in systems whose dynamics depend on the agents' (generalized) velocities as well. For this class of systems, we show a similar result to Theorem III.7. As in Section V, all (generalized) velocities are measured with respect to a global inertial frame, but are represented in a reference frame of the agents' choice.

Definition VII. 6 ($S E(N)$-Invariant Function): A function $f: \mathbb{R}^{N p \times m} \rightarrow \mathbb{R}^{N}$ is said to be $S E(N)$-invariant if for all $R \in S O(N)$ and all $w \in \mathbb{R}^{N}$ the following condition holds:

$$
\begin{equation*}
R f\left(x, v^{1}, \ldots, v^{m-1}\right)=f\left(\mathbf{R} x+\mathbf{w}, \mathbf{R} v^{1}, \ldots, \mathbf{R} v^{m-1}\right) \tag{34}
\end{equation*}
$$

where $x, v^{1}, \ldots, v^{m-1} \in \mathbb{R}^{N p}, \mathbf{R}=R \otimes I_{p}$, and $\mathbf{w}=w \otimes \mathbf{1}_{p}$.
Definition VII. 7 (Pairwise Interaction System): A
continuous-time pairwise interaction system is a pair (G, F), where G is a graph and $F=\left\{\left(f_{i j}^{0}, \ldots, f_{i j}^{m-1}\right) \mid f_{i j}^{r}\right.$: $\left.\mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},(i, j) \in E(G)\right\}$ is a set of tuple of functions associated with its edges. Each $i \in V(G)$ labels an agent, and a directed edge (i, j) indicates that node i interacts with (measures the state and velocities of) node j. The dynamics of each agent are described by

$$
\begin{equation*}
x_{i}^{(m)}=\sum_{r=0}^{m-1} \sum_{j \in \mathcal{N}_{i}^{\rightarrow}} f_{i j}^{r}\left(x_{i}^{(r)}, x_{j}^{(r)}\right) \tag{35}
\end{equation*}
$$

where $x_{i}^{(0)}=x_{i}$ and $f_{i j}^{r}, 0 \leq r<m$, define the influence (interaction) of j on i.

We denote the total interaction on agent $i \in V(G)$ by

$$
S_{i}\left(v^{0}=x, v^{1}, \ldots, v^{m-1}\right)=\sum_{r=0}^{m-1} \sum_{j \in \mathcal{N}_{i}} f_{i j}^{r}\left(v_{i}^{r}, v_{j}^{r}\right) .
$$

The definitions of $S E(N)$-invariant systems and quasilinear systems remain unchanged, but are interpreted using the extended notions. The main theorem can be extended as follows:

Theorem VII.8: Let (G, F) be a continuous-time pairwise interaction system such that $f_{i j}^{r}\left(v_{i}^{r}, v_{j}^{r}\right)=g_{i j}^{r}\left(v_{i}^{r}-v_{j}^{r}\right)$, where $g_{i j}^{r}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $r \in\{1, \ldots, m-1\}$. Then, (G, F) is $S E(N)$-invariant if and only if it is quasilinear.

Proof: Let S_{i} be the total interaction function of agent $i \in V(G)$. Let $v^{r}=0$ for all $1 \leq r \leq m-1$. Since $R S_{i}(x, 0$, $\ldots, 0)=S_{i}(\mathbf{R} x+\mathbf{w}, 0, \ldots, 0)$ for all $(R, w) \in S E(N)$, we have by Lemma V. 3 that $S_{i}(x, 0, \ldots, 0)=\sum_{j \in \mathcal{N}_{i}} k_{i j}^{0}\left(\| x_{i}\right.$ $\left.-x_{j} \|\right)\left(x_{j}-x_{i}\right)$. Similarly, let $x=0$ and $v^{r}=0$ for $r \neq s$, $1 \leq r, s \leq m-1$. For all $\quad(R, w) \in S E(N)$, we have $R S_{i}\left(0,0, \ldots, v^{s}, \ldots, 0\right)=R \sum_{j \in \mathcal{N}_{i} \rightarrow} f_{i j}^{s}\left(v_{i}^{s}, v_{j}^{s}\right)=$

TABLE I
The Table Contains Examples of Networked Systems That are Quasilinear, Except for the Second Example and Possibly the FOURTH.

System dynamics	Ref.	$Q L$?				
1 $\begin{aligned} \dot{x}_{i} & =\sum_{j=1}^{n} g\left(x_{i}-x_{j}\right) \\ g(y) & =-y\left(a-b \exp \left(-\\|y\\|^{2} c^{-1}\right)\right) \end{aligned}$	[12]	Yes				
$2 \quad \dot{x}_{i}=-\alpha \nabla_{x_{i}}\left(\frac{\gamma_{i}(x)}{\left(\gamma_{i}(x)^{k}+\beta_{i}(x)\right)^{1 / k}}\right)$	[15]	No				
$\begin{aligned} \ddot{x}_{i}= & -\sum_{j \neq i}^{n} \nabla_{x_{i}} V_{I}\left(\left\\|x_{i}-x_{j}\right\\|\right) \\ & -\sum_{k=0}^{m-1} \nabla_{x_{i}} V_{h}\left(\left\\|x_{i}-\widetilde{x}_{k}\right\\|\right) \\ \ddot{\tilde{x}}_{p} & =\widetilde{f}_{p}\left(x_{j}, \widetilde{x}_{k}, \dot{x}_{j}, \dot{\widetilde{x}}_{k}\right), 1 \leq p \leq m \end{aligned}$	[10]	Yes or No.				
$4 \ddot{x}_{i}=-\sum_{j \in \mathcal{N}_{i}}\left(\nabla_{x_{i}} V_{i j}\left(\left\\|x_{i}-x_{j}\right\\|\right)+\left(\dot{x}_{i}-\dot{x}_{j}\right)\right)$	[11]	Yes.				
	$[8],[9],[13]$	Yes				
$6 \quad \ddot{x}_{i}=\frac{1}{m_{i}} \sum_{j=1, j \neq i}^{n} \frac{G m_{i} m_{j}}{\left\\|x_{i}-x_{j}\right\\|^{3}}\left(x_{j}-x_{i}\right)$	[7]	Yes				

It Follows That the Quasilinear Systems Below Are Also $S E(N)$-Invariant by Theorem. III.7. All Systems Have n Agents and the State of Agent $i \in\{1, \ldots, n\}$ Is Denote by x_{i}. In the Third Example, \widetilde{x}_{p} Represents the State of a Virtual Leader p. The Maps $V_{I}, V_{h}, V_{i j}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ Represent Potential Functions. The Gradient of V With Respect to x_{i} Is Denoted By $\nabla_{x_{i}} V$.
$\sum_{j \in \mathcal{N}_{i} \rightarrow} f_{i j}^{s}\left(R v_{i}^{s}, R v_{j}^{s}\right)=\sum_{j \in \mathcal{N}_{i} \rightarrow} g_{i j}^{s}\left(R v_{i}^{s}+w-\left(R v_{j}^{s}+w\right)\right)=$ $S_{i}\left(0, \ldots, \mathbf{R} v^{s}+\mathbf{w}, \ldots, 0\right)$. Again, by Lemma V. 3 it follows that: $S_{i}\left(0,0, \ldots, v^{s}, \ldots, 0\right)=\sum_{j \in \mathcal{N}_{i}^{\rightarrow}} k_{i j}^{s}\left(\left\|v_{j}^{s}-v_{i}^{s}\right\|\right)\left(v_{j}^{s}-v_{i}^{s}\right)$. Overall, it follows that: $S_{i}\left(v^{0}=x, v^{1}, \ldots, v^{m-1}\right)=$ $\sum_{r=0}^{m-1} \sum_{j \in \mathcal{N}_{i} \rightarrow} k_{i j}^{r}\left(\left\|v_{i}^{r}-v_{j}^{r}\right\|\right)\left(v_{j}^{r}-v_{i}^{r}\right)$. Conversely, if all total interaction functions are quasilinear, then it follows that the system is $S E(N)$ invariant.

C. Switching Topologies

The paper's main result, Theorem III.7, and the extensions to discrete-time and higher order systems also hold when the interaction topology G switches due to time-dependent signals. Intuitively, the time-varying topology is not related to the agents' reference frames. Thus, $S E(N)$-invariance implies the quasilinear structure regardless of the topology of the system.

VIII. EXAMPLES

This section provides examples to clarify and illustrate the notions of $S E(N)$-invariance and quasilinearity for pairwise interaction systems. We also consider existing pairwise multiagent systems that have been studied in the literature, Table I.

Fig. 3. Trajectories of the $S E(2)$-invariant system presented in Ex. VIII.1. The three agents are shown in red, blue and green, respectively. Their states at time $t=0 \mathrm{~s}$ and $t=1 \mathrm{~s}$ are marked by diamonds and dots, respectively. (a) $x_{1}^{T}(0)=[1,1], x_{2}^{T}(0)=\left[\frac{3}{2}, 1+\frac{\sqrt{3}}{2}\right], x_{3}^{T}(0)=[2,1]$, (b) $x_{1}^{T}(0)=[1,1]$, $x_{2}^{T}(0)=\left[\frac{3}{2}, \frac{3}{2}\right], x_{3}^{T}(0)=[2,1]$

Many of these are $S E(N)$-invariant, one an example is not, and one is $S E(N)$-invariant only under certain conditions.

The following example shows an $S E(N)$-invariant system with local interaction functions which are not quasilinear. However, as shown by Theorem. V.4, the total interaction functions associated with the system's agents can be rewritten as sums of quasilinear functions. Moreover, Ex. VIII. 1 provides an example of a weakly stable system where the agents follow elliptical periodic orbits (see Fig. 3). The shape of the elliptical orbits depends on the agents' initial states: (1) equidistant initial states generate circular periodic trajectories (see Fig. 3(a)); (2) otherwise periodic elliptical trajectories are obtained (see Fig. 3(b)). This example, together with the systems considered in [12] and [13], show that $S E(N)$-invariant pairwise interaction systems have rich asymptotic behaviors aside from consensus.

Example VIII.1: Let (G, F) be a pairwise interaction system where $G=K_{3}$ is the complete graph with 3 vertices and

$$
f_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}x_{j} & (i, j) \in\{(1,2),(2,3),(3,1)\} \\ -x_{j} & \text { otherwise }\end{cases}
$$

The pairwise interaction functions of this system are not quasilinear in $x_{j}-x_{i},(i, j) \in E(G)$. However, the system can easily be checked to be $S E(N)$-invariant. For agent 1 we have

$$
\begin{aligned}
S_{1}\left(x_{1}, x_{2}, x_{3}\right)= & f_{12}\left(x_{1}, x_{2}\right)+f_{13}\left(x_{1}, x_{3}\right)=x_{2}-x_{3} \\
R S_{1}= & R x_{2}+w-\left(R x_{3}+w\right) \\
= & f_{12}\left(R x_{1}+w, R x_{2}+w\right)+f_{13} \\
& \times\left(R x_{1}+w, R x_{3}+w\right) \\
= & S_{1}\left(R x_{1}+w, R x_{2}+w, R x_{3}+w\right)
\end{aligned}
$$

where $R \in S O(N)$ and $w \in \mathbb{R}^{N}$. However, by Theorem. V. 4 the total interaction function S_{1} must be a sum of quasilinear functions. Indeed, we can rewrite $S_{1}=x_{2}-x_{1}+(-1)\left(x_{3}-\right.$ $\left.x_{1}\right)$. Similarly, the $S E(N)$-property holds for the total interaction functions of the other two agents and these functions can be rewritten as sums of quasilinear functions.

Example 1 in Tab. I was proposed in [12] to model swarm aggregation and is a quasilinear system because $g(\cdot)$ is a quasilinear function. The system exhibits an asymptotic behavior where the agents aggregate (in finite time) within a hyper-ball and stay
inside it forever [12]. The second [15], third [10] and fourth [11] examples define the agents' dynamics based on potential functions. Example 2 from [15] drives the agents towards some goal states which are encoded in the $\gamma_{i}()$ functions, while ensuring that the agents avoid each other and fixed and known obstacles using the $\beta_{i}()$ functions. The system is not quasilinear, because the potential function whose gradient is used for navigation depends explicitly on the agents' states, as opposed to distances between agents' states, and thus its gradient cannot be a quasilinear function. Therefore, the multiagent system in example 2 is not $S E(N)$-invariant. On the other hand, example 4 [11] is quasilinear, because the gradients of $\nabla_{x_{i}} V_{i j}(\cdot)$ are quasilinear functions. We conclude that the system is $S E(N)$-invariant in the sense of Def. VII. 7 by Th. VII. 8 for higher order systems with generalized velocities. The system in example 3 is quasilinear if and only if the dynamics of the virtual leaders \widetilde{f}_{p} are sums of quasilinear functions, $1 \leq p \leq m$. Example 5 corresponds to systems implementing consensus and formation control [8], [9], [13]. It is easy to see that these systems are quasilinear and, therefore, $S E(N)$-invariant. The last example shows a system of n point masses which interact due to gravity. This system is also quasilinear and thus exhibits $S E(N)$-invariance, a well known fact in Hamiltonian mechanics [7].

IX. Conclusions

In this paper, we studied the $S E(N)$-invariance property of multiagent, locally interacting systems. This property, which guarantees the independence of a system of global reference frames, implies that control laws can be computed and executed locally (i.e., in each agent's frame) using only local information available to the agent. This property is critical in applications in which information about a global reference frame cannot be obtained (e.g., in GPS-denied environments).

The main contribution of the paper is to fully characterize pairwise interaction systems that are $S E(N)$-invariant. We showed that pairwise interaction systems are $S E(N)$-invariant if and only if they have a special quasilinear form. Because of the simplicity of this form, this result can impact ongoing research on design of local interaction laws. The result can also be used as quick test of $S E(N)$-invariance for networked systems. We also described a subset of $S E(N)$-invariant pairwise interaction systems that reach consensus by exploiting their quasilinear structure. Finally, we extended the results to discretetime and high-order systems and systems with time-dependent switching topologies. As in the continuous case, we proved the convergence to consensus for a subclass of discrete-time $S E(N)$-invariant pairwise interaction systems.

Appendix The Case $N=2$

The difference between the cases $N=2$ and $N \geq 3$ is due to commutativity of rotations. $S O(2)$ is Abelian, while $S O(N)$ for $N \geq 3$ is not.

All results in the paper carry over to the case $N=2$, because $S O(2)$ and its centralizer are Abelian. In all theorems quasilinear functions are replaced with similar functions from the
centralizer of $S O(2)$. In the following, we provide the characterization of $C_{T}(S O(2))$, which supports our claim.

Proposition A.1: The centralizer of $S O(2)$ with respect to T is the submonoid $\left\{\left(k_{1}(\|x\|) I_{2}+k_{2}(\|x\|) J_{2}\right) x\right\}$, where k_{1}, k_{2} : $\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ and $J_{2}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

Proof: Let $x \in \mathbb{R}^{2}, x \neq 0$, and $u=\frac{x}{\|x\|}$. It follows that $R_{u}=$ $u_{1} I_{2}+u_{2} J_{2} \in S O(2), x=R_{u}\|x\| e_{1}$, and

$$
\begin{aligned}
f(x) & =R_{u} f\left(\|x\| e_{1}\right)=\frac{1}{\|x\|}\left[\begin{array}{l}
x_{1} f_{1}\left(\|x\| e_{1}\right)-x_{2} f_{2}\left(\|x\| e_{1}\right) \\
x_{2} f_{1}\left(\|x\| e_{1}\right)+x_{1} f_{2}\left(\|x\| e_{1}\right)
\end{array}\right] \\
& \triangleq\left[\begin{array}{cc}
k_{1}(\|x\|) & -k_{2}(\|x\|) \\
k_{2}(\|x\|) & k_{1}(\|x\|)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

where $k_{1}(\|x\|) \triangleq \frac{f_{1}\left(\|x\| e_{1}\right)}{\|x\|}$ and $k_{2}(\|x\|) \triangleq \frac{f_{2}\left(\|x\| e_{1}\right)}{\|x\|}$. The case $x=0$ follows from Lemma IV.2.

References

[1] F. Bullo and A. Lewis, Geometric Control of Mechanical Systems. New York, USA: Springer, 2005.
[2] F. Bullo, N. Leonard, and A. Lewis, "Controllability and motion algorithms for underactuated Lagrangian systems on lie groups," IEEE Trans. Autom. Control, vol. 45, no. 8, pp. 1437-1454, 2000.
[3] F. Bullo and R. Murray, "Tracking for fully actuated mechanical systems: A geometric framework," Automatica, vol. 35, no. 1, pp. 17-34, 1999.
[4] E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer, and D. Fratantoni, "Multi-AUV control and adaptive sampling in Monterey Bay," IEEE J. Ocean. Eng., vol. 31, no. 4, pp. 935-948, 2006.
[5] R. W. Beard, J. Lawton, and F. Y. Hadaegh, "A coordination architecture for spacecraft formation control," IEEE Trans. Control Syst. Technol., vol. 9, no. 6, pp. 777-790, 2001.
[6] E. Montijano, D. Zhou, M. Schwager, and C. Sagues, "Distributed formation control without a global reference frame," in Proc. Amer. Control Conf., Jun. 2014, pp. 3862-3867.
[7] K. Meyer and G. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, USA: Springer, 2009.
[8] R. Olfati-Saber, J. Fax, and R. Murray, "Consensus and cooperation in networked multi-agent systems," Proc. IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007.
[9] A. Jadbabaie, J. Lin, and A. Morse, "Coordination of groups of mobile autonomous agents using nearest neighbor rules," IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 988-1001, Jun. 2003.
[10] N. Leonard and E. Fiorelli, "Virtual leaders, artificial potentials and coordinated control of groups," in Proc. IEEE Conf. Dec. Control, vol. 3, 2001, pp. 2968-2973.
[11] H. Tanner, A. Jadbabaie, and G. Pappas, "Stable flocking of mobile agents part I: Dynamic topology," in Proc. IEEE Conf. Dec. Control, vol. 2, Dec. 2003, pp. 2016-2021.
[12] V. Gazi and K. Passino, "Stability analysis of swarms," IEEE Trans. Autom. Control, vol. 48, no. 4, pp. 692-697, Apr. 2003.
[13] J. Cortés, "Global and robust formation-shape stabilization of relative sensing networks," Automatica, vol. 45, no. 12, pp. 2754-2762, 2009.
[14] M. Egerstedt and X. Hu, "Formation constrained multi-agent control," IEEE Trans. Robot. Autom., vol. 17, no. 6, pp. 947-951, 2001.
[15] M. De Gennaro and A. Jadbabaie, "Formation control for a cooperative multi-agent system using decentralized navigation functions," in Proc. Amer. Control Conf., Minneapolis, MN, USA, Jun. 2006, pp. 1346-1351.
[16] P. Ogren, E. Fiorelli, and N. Leonard, "Formations with a mission: Stable coordination of vehicle group maneuvers," in Proc. Symp. Math. Theory Netw. Syst., Jul. 2002, p. 15.
[17] R. Olfati-Saber and R. Murray, "Distributed cooperative control of multiple vehicle formations using structural potential functions," in Proc. IFAC World Congr., vol. 15, no. 1, Barcelona, Spain, 2002, pp. 242-248.
[18] A. Nettleman and B. Goodwine, "Symmetries and reduction for multiagent control," in Proc. IEEE Int. Conf. Robot. Autom., May 2015, pp. 5390-5396.
[19] E. Justh and P. Krishnaprasad, "Equilibria and steering laws for planar formations," Syst. Control Lett., vol. 52, no. 1, pp. 25-38, 2004.
[20] F. Zhang, M. Goldgeier, and P. S. Krishnaprasad, "Control of small formations using shape coordinates," in Proc. IEEE Int. Conf. Robot. Autom., Taipei, Taiwan, 2003, pp. 2510-2515.
[21] K. S. Galloway, E. W. Justh, and P. S. Krishnaprasad, "Symmetry and reduction in collectives: Cyclic pursuit strategies," Proc. Roy. Soc. London A: Math., Phys. Eng. Sci., vol. 469, no. 2158, 2013.
[22] U. Halder and B. Dey, "Biomimetic algorithms for coordinated motion: Theory and implementation," in Proc. IEEE Int. Conf. Robot. Autom., May 2015, pp. 5426-5432.
[23] D. G. Kendall, "Shape manifolds, procrustean metrics, and complex projective spaces," Bull. London Math. Soc., vol. 16, no. 2, pp. 81-121, 1984.
[24] C.-I. Vasile, M. Schwager, and C. Belta, " $S E(N)$ Invariance in Networked Systems," in Proc. Eur. Control Conf., Linz, Austria, 2015.
[25] M. Artin, Algebra. Pearson Education, 2014.
[26] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.
[27] E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis. Springer, 2012.

Cristian-Ioan Vasile received the B.S. and M.Eng. degrees from the Politechnica University of Bucharest, Bucharest, Romania, in 2009 and 2011, respectively, and the Ph.D. degree from Boston University, Boston, MA, USA, in 2016, where he worked in the Hybrid and Networked Systems (HyNeSs) Laboratory and a second Ph.D. degree from the Politechnica University of Bucharest in 2015.

Currently, he is a Postdoctoral Associate with the Laboratory for Information and Decision Systems (LIDS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology, Cambridge, MA, USA. His research interests include formal methods, motion and path planning, and distributed and decentralized control with applications to robotics, networked systems, and systems biology.

Mac Schwager (M'09) received the B.S. degree from Stanford University, Stanford, CA, USA, in 2000, and the M.S. and Ph.D. degrees from the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 2005 and 2009, respectively.

Currently, he is an Assistant Professor of Aeronautics and Astronautics at Stanford University. He was a Postdoctoral Researcher working jointly with the GRASP Lab at the University of Pennsylvania, Philadelphia, PA, USA, and CSAIL at MIT from 2010 to 2012. His research interests are distributed algorithms for control, perception, and learning in groups of robots and animals. Prof. Schwager received the National Science Foundation CAREER award in 2014.

Calin Belta ($F^{\prime} 17$) is a Professor in the Department of Mechanical Engineering, Department of Electrical and Computer Engineering, and the Division of Systems Engineering at Boston University, Boston, MA, USA. His research focuses on dynamics and control theory, with a particular emphasis on hybrid and cyber-physical systems, formal synthesis and verification, and applications in robotics and systems biology.

Prof. Belta received the Air Force Office of Scientific Research Young Investigator Award and the National Science Foundation CAREER Award. He is the Tegan Family Distinguished Faculty Fellow at Boston University.

[^0]: Manuscript received June 6, 2016; revised November 10, 2016; accepted December 11, 2016. Date of publication January 4, 2017; date of current version September 17, 2018. This work was supported in part by ONR MURI N00014-09-1051 and in part by the National Science Foundation under Grant IIS-1350904 at Boston University. Recommended by Associate Editor Sonia Martinez.
 C. I. Vasile is with the Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139 USA (e-mail: cvasile @ mit.edu).
 M. Schwager is with the Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 USA (e-mail: schwager@stanford.edu).
 C. Belta is with the Department of Mechanical Engineering, Boston University, Boston, MA 02215 USA (e-mail: cbelta@bu.edu).

 Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org

 Digital Object Identifier 10.1109/TCNS.2017.2648499

[^1]: ${ }^{1}$ For continuous-time systems, we assume that $f_{i j}$ and $k_{i j}$ are Lipschitz continuous for all $(i, j) \in E(G)$.

