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Translational and Rotational Invariance
in Networked Dynamical Systems

Cristian-Ioan Vasile , Mac Schwager , Member, IEEE, and Calin Belta , Fellow, IEEE

Abstract—In this paper, we study the translational and rota-
tional (SE(N )) invariance properties of locally interacting mul-
tiagent systems. We focus on a class of networked dynamical
systems, in which the agents have local pairwise interactions, and
the overall effect of the interaction on each agent is the sum of
the interactions with other agents. We show that such systems are
SE(N )-invariant if and only if they have a special quasilinear
form. The SE(N )-invariance property, sometimes referred to as
left invariance, is central to a large class of kinematic and robotic
systems. When satisfied, it ensures independence to global refer-
ence frames. In an alternate interpretation, it allows for integration
of dynamics and computation of control laws in the agents’ own
reference frames. Such a property is essential in a large spectrum
of applications, for example, navigation in global positioning sys-
tem (GPS)-denied environments. Because of the simplicity of the
quasilinear form, this result can impact ongoing research on the
design of local interaction laws. It also gives a quick test to check
if a given networked system is SE(N )-invariant.

Index Terms—Networked systems, pairwise interaction, trans-
lational and rotational invariance.

I. INTRODUCTION

IN THIS paper, we present necessary and sufficient condi-
tions for a multiagent system with pairwise interactions to

be invariant under translations and rotations of the inertial frame
in which the dynamics are expressed (i.e., SE(N)-invariant).
This kind of invariance allows agents to execute their control
laws in their body reference frame [1]–[3], using information
measured in their body reference frame, without affecting the
global evolution of the system. This is critical for any scenario
where global information about an agent’s reference frame is
not readily available, for example, coordinating agents under-
ground, underwater, inside of buildings, in space, or in any
GPS-denied environment [4]–[6].

We assume that the agents are kinematic in N-dimensional
Euclidean space, and their control laws are computed as sums
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over all pairwise interactions with their neighbors. We prove that
the dynamics are SE(N)-invariant if and only if the pairwise
interactions are quasilinear, meaning linear in the difference
between the states of the two agents, multiplied by a scalar gain
which depends only on the distance between the states of the
two agents. This result can be used as a test (does a given mul-
tiagent controller require global information, that is, a common
reference frame known by all agents?), or as a design specifi-
cation (a multiagent controller is required that uses only local
information represented in the agents’ private reference frames,
hence only quasilinear pairwise interactions can be considered).
It can also be used to test the hypothesis about local interaction
laws in biological (e.g., locally interacting cells) and physical
systems.

We prove the result for agents embedded in Euclidean space
of any dimension, and the result holds for arbitrary graph topolo-
gies, including directed or undirected, switching, time varying,
and connected or unconnected. We show that many exist-
ing multiagent protocols are quasilinear and thus SE(N)-
invariant. Examples include the interactions from the classi-
cal n-body problem [7] and most of the existing multiagent
consensus and formation control algorithms (e.g., [8]–[14]).
In particular, explicit consensus algorithms implemented us-
ing local information in the agents’ body frames [6] satisfy the
SE(N)-invariance property, as expected. We also show that
some multiagent interaction algorithms, such as [15], are not
SE(N)-invariant and, therefore, cannot be implemented lo-
cally in practice. To further illustrate how the main result relates
to the literature, we consider a subclass of SE(N)-invariant
(and, therefore, quasilinear) pairwise interaction systems, and
show that they reach a consensus, using the graph Laplacian
to represent the system dynamics and the typical LaSalle’s in-
variance analysis to show convergence. Finally, we extend the
SE(N)-invariance notion to discrete-time systems, dynamical
systems of higher order, and systems with switching topolo-
gies. Moreover, for a subclass of discrete-time SE(N)-invariant
pairwise interaction systems, we show that they reach consen-
sus by exploiting the quasilinear structure given by the main
result.

With a few exceptions [6],[16]–[18], the problem of invari-
ance to global reference frames was overlooked in the multiagent
control and consensus literature. In [16], the authors discuss in-
variance for the particular cases of SE(2) and SE(3) actions,
and focus on virtual structures. Rotational and translational in-
variance are also discussed in [17] for a class of algorithms
driving a team of agents to a rigid structure. In [19]–[22], the
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Fig. 1. The diagram in (a) shows the world frame {W }, the reference frame
{M}, two agents i and j , and their states in these two frames. The diagram in
(b) shows the agents’ states expressed in the body frame of agent i.

notion of shape coordinates [23] is considered for multiagent
motion planning, where the global rotation and translation of
the group of vehicles are quotient out. Invariance to group ac-
tions in multiagent systems was recently studied in [18], where
the authors present a general framework to find all symmetries
in a given second-order planar system. The authors’ main mo-
tivation is to determine changes of coordinates transformations
that align the system with the symmetry directions and, thus,
aid in stability analysis using LaSalle’s principle. This paper
is complementary to our paper, in the sense that the authors
start from a system and find invariants while, in our case, we
start from an invariance property and find all systems satisfy-
ing it. Our results hold for any (finite) dimensional agent state
space. Finally, our characterization of invariance is algebraic
and, as a result, does not require any smoothness assumptions
on the functions modeling the interactions. As a result, it can
be used for a large class of systems, including discrete-time
systems.

Preliminary results from this paper were presented in a con-
ference version [24]. This paper expands on [24] by including all
proofs of the main results, as well as new results on the stability
of SE(N)-invariant systems, switching network topologies, and
discrete-time systems. We also provide several new examples
with simulations.

II. SIGNIFICANCE OF SE(N)-INVARIANCE

In this section, we present SE(N)-invariance from a geo-
metrical perspective and give two interpretations that prove to
be useful for networked agent systems. Formal definitions are
provided in Section III together with the main result of this
paper.

SE(N) is the Special Euclidean group that acts on RN , that
is, the set of all possible rotations and displacements in RN . As
mentioned before, SE(N)-invariance is a property related to
reference frames. Consider a global inertial (world) reference
frame {W }, and another (mobile) reference frame {M}, which
is related to {W } by the rotation and translation pair (R,w) ∈
SE(N). Also, consider a networked system with n agents whose
states evolve in RN , and which interact with each other in a
pairwise manner, that is, the interaction is point to point and
may be one-way. Interaction is interpreted as agents measuring
the states of their neighbors. Let xW

i and xM
i be the state of agent

i in reference frames {W } and {M}, respectively. [See Fig. 1(a)

for an illustration in the case of N = 3]. The states of agent i in
the two references frames are related by xW

i = RxM
i + w.

The relationship between agent i’s velocities in the two ref-
erence frames is defined by how these are measured and rep-
resented. Let W vW

i and W vM
i be the velocities measured with

respect to the world frame {W } and represented in {W } and
{M}, respectively. Thus, W vW

i = RW vM
i . On the other hand,

agent i’s dynamics is W vW
i = fij (xW

i , xW
j ), assuming for sim-

plicity that agent i interacts only with agent j.
The notion of SE(N)-invariance says that the dynamics

of agent i must be the same in all reference frames, that is
W vM

i = fij (xM
i , xM

j ) must hold for all {M}. A quick substitu-
tion yields RW vM

i = fij (RxM
i + w,RxM

j + w). On the other
hand, we have RW vM

i = Rfij (xM
i , xM

j ), which implies that
SE(N) invariance reduces to Rfij (xM

i , xM
j ) = fij (RxM

i +
w,RxM

j + w) for all values of the states xM
i , xM

j and all trans-
formations (R,w) ∈ SE(N). This is the notion of left invari-
ance that we will define formally in Section III. Notice that
SE(N)-invariance is a basic assumption very common in phys-
ical models (i.e., the laws of physics must be the same in all
inertial reference frames). In the context of differential geome-
try, this intuition is formalized by the notion of left-invariance
of vector fields.

In the context of networked systems, each agent maintains
an individual mobile reference frame. If the reference frames
of all agents coincide, then they achieve global localization
(this may be implemented using GPS, SLAM, etc.). However,
if we desire a truly distributed system, then the agents must
maintain local reference frames, which are not synchronized
with each other, and be able to compute their own individual
control laws in their own local frames. A special choice of
mobile reference frames is the body frames associated with
each agent i {Bi}, [Fig. 1(b)]. The agents measure (using on-
board sensors such as cameras) and express the states of all
their neighbors in their own individual reference frames {Bi}.
Consequently, if the system is SE(N)-invariant, then the agents
can compute their individual control laws (their velocities) in
their own body frames, without the need for a predefined global
reference. Therefore, we consider that, in practice, SE(N)-
invariance is a very important property of distributed networked
systems.

Another interpretation of SE(N)-invariance is related to the
networked system’s behavior, that is, the agents’ trajectories.
The invariance property implies that the system produces the
same trajectories in any two reference frames. The trajectories
of an agent have the same shape and scale (they are isometric)
and are related by the transformation between the two reference
frames. Fig. 2 shows an example of two sets of trajectories
generated by an SE(2)-invariant and a non-SE(2)-invariant
system in two reference frames, respectively.

III. DEFINITIONS AND MAIN RESULT

In this section, we introduce the notions and definitions used
throughout this paper. The main result of this paper is stated at
the end of the section.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:32:38 UTC from IEEE Xplore.  Restrictions apply. 



824 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 3, SEPTEMBER 2018

Fig. 2. Trajectories of two systems in two reference frames {W1} and {W2},
which are related by a rotation R(π/4) in clockwise direction and a translation
w = [1, 1]T . Clearly, the trajectories generated by the SE(2)-invariant system
have the same shape and are related by (R, w), (a) and (b). The shape of the
trajectories generated by the non-SE(2)-invariant system are different in the
two reference frames, (c) and (d). (a) Trajectories of a SE(2)-invariant system
as seen from {W1}. (b) Trajectories of a SE(2)-invariant system as seen from
{W2}. (c) Trajectories of a non-SE(2)-invariant system as seen from {W1}.
(d) Trajectories of a non-SE(2)-invariant system as seen from {W2}.

For a set S, we use |S| to denote its cardinality. The sets
R≥a and Z≥p represent the interval [a,∞) and {p, p + 1, . . .},
where a ∈ R and p ∈ Z, respectively. The notation

Δ= denotes
a definition. The canonical basis for the Euclidean space of
dimension N , denoted by RN , is {e1 , . . . , eN }. We use IN and
1N to denote the N ×N identity matrix and the N × 1 vector
of ones, respectively. The special orthogonal group acting on
RN is denoted by SO(N). Similarly, SE(N) represents the
special Euclidean group of rotations and translations acting on
RN . Throughout this paper, ‖·‖ refers to the Euclidean norm.
The Kronecker product of two matrices is denoted by ⊗.

Given a directed graph G, we use V (G) and E(G) ⊆ V (G)×
V (G) to denote its sets of nodes and edges, respectively. An edge
(i, j) ∈ E(G) is interpreted as starting from i and ending at j.
An edge starting at i is called an outgoing edge of i, while an
edge ending at i is called an incoming edge of i. Given a node
i ∈ V (G),N→i stands for the set of outgoing neighbors of i, that
is, N→i = {j ∈ V (G)|(i, j) ∈ E(G)}. Similarly, N←i = {j ∈
V (G)|(j, i) ∈ E(G)} represents the set of incoming neighbors
of i.

Definition III.1 (SE(N)-Invariant Function): A function
f : RN × · · · ×RN → RN is said to be SE(N)-invariant if
for all R ∈ SO(N) and all x1 , xp , w ∈ RN

Rf(x1 , . . . , xp) = f(Rx1 + w, . . . , Rxp + w). (1)

Definition III.2 (Pairwise Interaction System): A continu-
ous-time pairwise interaction system 1 is a pair (G,F ), where

1 For continuous-time systems, we assume that fij and kij are Lipschitz
continuous for all (i, j) ∈ E(G).

G is a graph and F = {fij | fij : RN ×RN → RN , (i, j) ∈
E(G)} is a set of functions associated with its edges. Each
i ∈ V (G) labels an agent, and a directed edge (i, j) indicates
that node i interacts with (measures the state of) node j. The
dynamics of each agent are described by

ẋi =
∑

j∈N→i
fij (xi, xj ) (2)

where fij defines the influence (interaction) of j on i.
We denote the total interaction on agent i ∈ V (G) by

Si(x1 , . . . , x|V (G)|) =
∑

j∈N→i
fij (xi, xj ). (3)

Definition III.3 (SE(N)-Invariance): A pairwise interac-
tion system (G,F ) is said to be SE(N)-invariant if, for
all i ∈ V (G), the total interaction functions Si are SE(N)-
invariant.

Definition III.4 (Quasilinear Function): A function f : RN

→ RN is said to be quasilinear if there is a function k : R≥0 →
R such that f(x) = k(‖x‖)x, for all x ∈ RN .

Definition III.5 (Quasilinear Interaction System): A pair-
wise interaction system (G,F ) is said to be quasilinear if the
total interaction Si of each agent i is a sum of quasilinear
functions. Formally, for all i ∈ V (G)

Si =
∑

j∈N→i
kij (‖xj − xi‖)(xj − xi) (4)

where kij : R≥0 → R are scalar gain functions 1 for all j ∈ N→i
and N ≥ 3.

Remark III.6: The definition of quasilinearity for pairwise
interaction systems is a statement about the overall dynamics
of agents. Specifically, Def. III.5 does not imply that the local
pairwise interaction functions fij are themselves quasilinear
functions. See Ex. VIII.1.

The main result of this paper can be stated as follows:
Theorem III.7: A pairwise interaction system (G,F ) is

SE(N)-invariant if and only if it is quasilinear.
Remark III.8: The pairwise interaction form of the systems

considered in this paper is a fundamental assumption needed to
obtain the main result, Theor. III.7. To illustrate this, consider
a system with three agents and the total interaction function
S1(x1 , x2 , x3) = ‖x2 − x1‖ (x3 − x2) of agent 1, which cap-
tures a three-way interaction among the agents. By Def. III.1,
S1 is SE(N)-invariant. Indeed, for all (R,w) ∈ SE(N)

RS1(x1 , x2 , x3) = ‖x2 − x1‖R(x3 − x2)

= ‖Rx2 + w − (Rx1 + w)‖ (Rx3 + w − (Rx1 + w))

= S1(Rx1 + w,Rx2 + w,Rx3 + w).

However, S1 cannot be written as a sum of quasilinear functions.
Remark III.9: Since SE(N)-invariance is a property of ref-

erence frames, it does not imply anything about the stability of
the system. The converse does not hold either. Therefore, we
can have unstable SE(N)-invariant systems and stable systems
which are not SE(N)-invariant. See Section VIII.
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Remark III.10: Note that we do not impose any restrictions
on the graph G, that is, the results hold even if G is disconnected.
Also, the functions in F may not be related to each other, that
is, we do not assume any functional constraints between local
interactions functions. Symmetry properties, such as fij = fji

and
∑

j∈N→i fij +
∑

j∈N←i fj i = 0 are not needed.
The main result of this paper (Theor. III.7) can be regarded

as a characterization of SE(N)-invariant functions arising
from pairwise interaction systems. We establish their struc-
ture in Section IV, where we show that all local interac-
tion functions are quasilinear functions with additional affine
terms, whose sums over each agent’s neighbors vanish. Thus,
it follows that the total interaction functions are quasilinear.
As an intermediate step of the proof, we show that func-
tions commuting with SO(N) are quasilinear. We provide
stability results on SE(N)-invariant systems in Section VI.
Finally, in Section VII, we include extensions of Theo. III.7
to discrete-time systems, higher order systems, and switching
topologies.

IV. CHARACTERIZING THE CENTRALIZERS OF SO(N)

In this section, we prove that functions which commute with
SO(N) are quasilinear, which generalizes the well-known result
for linear functions [25]. We establish the general case using
induction on N ≥ 3. The case N = 2 is treated separately in
App. A.

Let T = {f : RN → RN } be the set of all transformations
(not necessarily bijective) acting on RN . T is the transformation
monoid with respect to function composition.

Definition IV.1 (Centralizer): Let A be a sub-semigroup of
T . The centralizer of A with respect to T is denoted by CT (A)
and is the set of all elements of T that commute with all elements
of A, that is, CT (A) = {f ∈ T |fg = gf,∀g ∈ A}.

The centralizer CT (A) is a submonoid of T and can be inter-
preted as the set of transformations invariant with respect to all
transformations in A. In other words, the action of f ∈ CT (A)
on RN and then transformed by g ∈ A is the same as the action
of f on the transformed space g(RN ).

Note that the set of all quasilinear functions is a submonoid
of T , which will be denoted by QL(N). We implicitly identify
the elements of SO(N) with linear maps acting on RN , and
commutativity is defined with respect to function composition.

Before we proceed, we provide two lemmas that are used
in subsequent proofs. The following lemma, whose proof is
straightforward and omitted, shows the intuitive fact that the
only vector invariant under all rotations is the null vector.

Lemma IV.2: Let x ∈ RN . If Rx = x for all R ∈ SO(N),
N ≥ 2, then x = 0.

Lemma IV.3: If f = (f1 , . . . , fN ) : RN → RN commutes
with all elements of SO(N), then xT f(x) = ‖x‖ f1(‖x‖ e1),
for all x ∈ RN .

Proof: Let x ∈ RN and R ∈ SO(N) such that x = RT

‖x‖ e1 . It follows that: f(x) = f(RT ‖x‖ e1) = RT f(‖x‖ e1).
Finally, xT f(x) = xT RT f(‖x‖ e1) = (Rx)T f(‖x‖ e1) =
‖x‖ eT

1 f(‖x‖ e1) = ‖x‖ f1(‖x‖ e1). �

The following three lemmas establish the base case N = 3 of
the induction argument used in the proof of Theor. IV.7.

Lemma IV.4: If u = (u1 , u2 , u3) ∈ R3 with ‖u‖ = 1 and

u �= ±e1 , then Ru =

⎡

⎢⎢⎣

u1 0 −
√

u2
2 + u2

3

u2
u3√

u2
2 +u2

3

u1 u2√
u2

2 +u2
3

u3 − u2√
u2

2 +u2
3

u1 u3√
u2

2 +u2
3

⎤

⎥⎥⎦∈ SO(3).

Proof: The matrix satisfies RuRT
u = I3 and det(Ru ) = 1

and, thus, it is a rotation matrix in SO(3). �
Lemma IV.5 Let x = (x1 , x2 , x3) ∈ R3 . If f = (f1 , f2 , f3) :

R3 → R3 commutes with all elements of SO(3), then

f1(x) = −f1(−x1 ,−x2 , x3) (5)

f1(x) = −f1(−x1 , x2 ,−x3) (6)

f2(x) = f1(x2 ,−x1 , x3) (7)

f3(x) = f1(x3 , x2 ,−x1) (8)

.
Proof: The aforementioned relationships can be obtained us-

ing 90 ◦ rotation matrices around the axes e1 , e2 , and e3 . �
Proposition IV.6: The centralizer of SO(3) with respect to

T is the monoid of quasilinear functions QL(3).
Proof: Let x = (x1 , x2 , x3) ∈ R3 such that x �= αe1 , α ∈

R, and f = (f1 , f2 , f3) : R3 → R3 . Let u = x
‖x‖ and Ru as

in Lemma IV.4, we have x = Ru ‖x‖ e1 and ui = xi

‖x‖ . Using
the commutation property, we obtain f(x) = f(Ru ‖x‖ e1) =
Ruf(‖x‖ e1) and writing the equation for f1 , it follows that:

f1(x) = u1f1(‖x‖ e1)−
√

u2
2 + u2

3 f3(‖x‖ e1). (9)

Using (8) from Lemma IV.5, we have f3(‖x‖ , 0, 0) =
f1(0, 0,−‖x‖). On the other hand, it follows from (5) that
f1(0, 0, α) = −f1(0, 0, α), which implies f1(0, 0, α) = 0 for
all α ∈ R. It follows that: f3(‖x‖ e1) = 0 for all x ∈ R3 ,
x �= αe1 , and α ∈ R. Thus, (9) can be simplified to

f1(x) = x1f1(‖x‖ e1)‖x‖−1 = x1k(‖x‖) (10)

where k : R≥0 → R is k(α) Δ= f1 (αe1 )
α , α ≥ 0. The general

form of f(x) = k(‖x‖)x is obtained using (7) and (8).
The case x = 0 follows easily from Lemma IV.2, because

it implies f(0) = 0. The remaining case x = αe1 is trivial
f(αe1) = [f1(αe1) f2(αe1) f3(αe1)]T = [αf1 (αe1 )

α 0 0]T =
k(‖x‖)x, where f2(αe1) = 0 and f3(αe1) = 0 follow from (7),
(6), (8), and(5), respectively.

Conversely, if f ∈ QL(N), then Rf(x) = R(k(‖x‖)x) =
k(‖Rx‖)Rx = f(Rx) where R ∈ SO(3). Thus, we have f ∈
CT (SO(3)), which concludes the proof. �

Theorem IV.7: The centralizer of SO(N) with respect to T
is the monoid of quasilinear functions QL(N), for all N ≥ 3.

Proof: The proof follows from an induction argument with
respect to N . The base case is established by Prop. IV.6. To
simplify the notation, given a vector x = (x1 , . . . , xN ) we will
denote by xi:j , i < j, the sliced vector (xi, . . . , xj ) ∈ Rj−i+1 .
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The induction step: Let x ∈ RN +1 , x �= 0, and R1 =
[R

0
0
1 ], R2 = [ 1

0
0
R ], where R ∈ SO(N). Using R1 , it follows

that: Rf1:N (x1:N , xN +1) = f1:N (Rx1:N , xN +1). Applying the
induction hypothesis, we obtain

f1:N (x1:N , xN +1) = k1(‖x1:N ‖ , xN +1)x1:N . (11)

Similarly, using R2 , we have Rf2:N +1(x1 , x2:N +1) =
f2:N +1(x1 , Rx2:N +1) and obtain

f2:N +1(x1 , x2:N +1) = k2(‖x2:N +1‖ , x1)x2:N +1 . (12)

Equating (11) and (12) for f2 and assuming w.l.o.g. x2 �= 0, we
obtain a constraint between the two gains

k2(‖x2:N +1‖ , x1) = k1(‖x1:N ‖ , xN +1) . (13)

Thus, we obtain fN +1 in terms of the gain k1 by using the last
equality from (12) and (13) to substitute k2 for k1

fN +1(x1 , . . . , xN +1) = k1(‖x1:N ‖ , xN +1)xN +1 . (14)

Finally, putting all components of f obtained from (11) and (14)
together and left multiplying it by xT , we obtain

xT f(x) =
N +1∑

i=1

x2
i k1(‖x1:N ‖ , xN +1)

= ‖x‖2 k1(‖x1:N ‖ , xN +1) = ‖x‖ f1(‖x‖ e1)

where the last equality follows from Lemma IV.3. It follows

that: k1(‖x1:N ‖ , xN +1) = f1 (‖x‖e1 )
‖x‖

Δ= k(‖x‖). Thus f(x) =
k(‖x‖)x or, equivalently, f ∈ CT (SO(N)).

Conversely, we have QL(N) ⊆ CT (SO(N)) (see proof of
Prop. IV.6). �

V. SE(N)-INVARIANT FUNCTIONS

In this section, we use the result from the previous section
CT (SO(N)) = QL(N) in order to characterize SE(N)-in-
variant functions that arise from pairwise interaction systems.

Proposition V.1: A function h(x1 , x2) : RN ×RN → RN

is SE(N)-invariant if and only if h is quasilinear in x2 − x1 .
Proof: Trivially, a quasilinear function h(x1 , x2) =

k(‖x2 − x1‖)(x2 − x1) is SE(N)-invariant. Conversely, if
R = IN and w = −x2 , then h(x1 , x2) = h(x1 − x2 , x2 −
x2) = h(x1 − x2 , 0) Δ= ĥ(x2 − x1). Let x ∈ RN and R ∈
SO(N), it follows that: Rĥ(x) = Rh(−x, 0) = h(−Rx, 0) =
ĥ(Rx). Since ĥ commutes with all elements of SO(N) it
follows by Theor. IV.7 that it is quasilinear. Thus, we have
h(x1 , x2) = ĥ(x2 − x1) = k(‖x2 − x1‖)(x2 − x1). �

Lemma V.2: Let h1 , h2 : RN ×RN → RN . Then, S(x0 ,
x1 , x2) = h1(x0 , x1) + h2(x0 , x2) is an SE(N)-invariant
function if and only if there exists k1(·) and k2(·) such that
for all x0 , x1 , x2 ∈ RN , we have

h1(x0 , x1) = h1(x0 , x0) + k1(‖x1 − x0‖)(x1 − x0) (15)

h2(x0 , x2) = h2(x0 , x0) + k2(‖x2 − x0‖)(x2 − x0) (16)

and h1(x0 , x0) + h2(x0 , x0) = 0.

Proof: It is easy to show that if S is the sum of functions
satisfying (15)and (16), and the zero-sum constraint, then
S is SE(N)-invariant. Conversely, let f1(a, b) = h1(a, b) +
h2(a, a) and f2(a, b) = h1(a, a) + h2(a, b), where f1 , f2 :
RN ×RN → RN and a, b ∈ RN . It follows immediately
that f1 and f2 are SE(N)-invariant, because h1(x0 , x1) +
h2(x0 , x2) is SE(N)-invariant. Therefore, we have by Prop. V.1
that f1(a, b) = k1(‖b − a‖)(b− a) and f2(a, b) =
k2(‖b− a‖)(b− a). Choosing a = b in any of the previous two
equations, we obtain h1(a, a) + h2(a, a) = 0. Finally, h1(a, b)
= −h2(a, a) + f1(a, b) = h1(a, a) + k1(‖b− a‖)(b− a) and
h2(a, b) = −h1(a, a) + f2(a, b) = h2(a, a) + k2(‖b − a‖)
(b− a). �

Lemma V.3: Let h1 , . . . , hp : RN ×RN → RN , p ∈ Z≥2 .
Then, S(x0 , . . . , xp) =

∑p
i=1 hi(x0 , xi) is an SE(N)-invariant

function if and only if for all i ∈ {1, . . . , p} there exists ki(·)
such that for all x0 , x1 , . . . , xp ∈ RN , we have

hi(x0 , xi) = hi(x0 , x0) + ki(‖xi − x0‖)(xi − x0) (17)

p∑

i=1

hi(x0 , x0) = 0 . (18)

Proof: As before, the quasilinearity of S, which follows from
(17) and (18), trivially implies its SE(N)-invariance. We will
prove the converse by induction with respect to p. The base step
p = 2 is established by Lemma V.2. For the induction step, we
assume that Lemma V.3 holds for p and we must show that it
also holds for p + 1.

Let xp+1 = x1 and define h′1(x0 , x1) = h1(x0 , x1) +
hp+1(x0 , x1). Clearly, h′1(x0 , x1) +

∑p
i=2 hi(x0 , xi) is an

SE(N)-invariant function and by the induction hypothesis we
have for all i ∈ {2, . . . , p}
hi(x0 , xi) = hi(x0 , x0) + ki(‖xi − x0‖)(xi − x0)

h′1(x0 , x1) = h′1(x0 , x0) + k′1(‖x1 − x0‖)(x1 − x0)

= h1(x0 , x0) + hp+1(x0 , x0) + k′1(‖x1 − x0‖)(x1 − x0)

and h′1(x0 , x0) +
∑p

i=2 hi(x0 , x0) =
∑p+1

i=1 hi(x0 , x0) = 0.
Similarly, let xp+1 = x2 and define h′2(x0 , x2) = h2(x0 , x2)

+ hp+1(x0 , x2). Using the same argument as before, we
obtain h1(x0 , x1) = h1(x0 , x0) + k1(‖x1 − x0‖)(x1 − x0).
Substituting h1 in the expression of h′1 and solving for hp+1 ,
we have hp+1(x0 , xp+1) = h′1(x0 , xp+1)− h1(x0 , xp+1) =
hp+1(x0 , x0) + kp+1(‖xp+1 − x0‖)(xp+1 − x0), where
kp+1 = k′1 − k1 . This concludes the proof. �

We conclude this section with a characterization theo-
rem of the total interaction functions of pairwise interaction
systems.

Theorem V.4: Let S(x0 , x1 , . . . , xp) =
∑p

j=1 hj (x0 , xj ),
where hj : RN ×RN → RN and p ≥ 1. Then, S is SE(N)-
invariant if and only if it is the sum of quasilinear functions
in xj − x0 , j ∈ {1, . . . , p}, that is, S =

∑p
j=1 kj (‖xj − x0‖)

(xj − x0), where kj : R≥0 → R.
Proof: Letting S(x0 , . . . , xp) =

∑p
j=1 hj (x0 , xj ) be an

SE(N)-invariant function, it follows from Lemma V.3 that there
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exists kj (·) for all j ∈ {1, . . . , p}, such that

S =
p∑

j = 1

hj (x0 , x0) +
p∑

j=1

kj (‖xj − x0‖)(xj − x0)

=
p∑

j=1

kj (‖xj − x0‖)(xj − x0)

where the last equality follows from (18) of Lemma V.3, which
says that the sum of all affine terms must vanish.

Conversely, let S =
∑p

j=1 kj (‖xj − x0‖)(xj − x0), then S
is SE(N)-invariant, that is, for all (R,w) ∈ SE(N)

RS =
p∑

j=1

kj (‖xj − x0‖) R (xj − x0)

=
p∑

j=1

kj (‖Rxj + w − (Rx0 + w)‖)

× (Rxj + w − (Rx0 + w))

= S(Rx0 + w,Rx1 + w, . . . , Rxp + w)

where we used the fact that ‖Rx‖ = ‖x‖ for all R ∈ SO(N)
and x ∈ RN . The proof is now complete. �

Theorem III.7 follows immediately from Theor. V.4, since
we can apply Theor. V.4 on the total interaction function Si

of any agents i, where p, x0 , and hj (x0 , xj ), j ∈ {1, . . . , p},
correspond to |N→i |, xi and fij (xi, xj ), j ∈ N→i , respectively.

Remark V.5: Theorem III.7 is stated in terms of total interac-
tion functions, independent of a notion of dynamics, which has
two benefits: 1) it greatly expands the applicability of the result
to other cases (Section VII) and 2) we do not need to assume
any smoothness conditions on the functions, such as continuity
or differentiability.

VI. STABILITY OF SE(N)-INVARIANT SYSTEMS

In this section, we explore the stability of SE(N)-invariant
pairwise interaction systems, showing that a subclass of such
systems converges to a consensus state (one in which all agents’
states are equal). The stability result exploits the structure of
SE(N)-invariant systems imposed by Theor. III.7 and some ad-
ditional constraints on the connectivity of the interaction graph
and local interaction functions.

Before we state the stability theorem, we prove a lemma
connecting the Laplacian matrix of a graph with the convergence
rate of the systems toward the equilibria set.

Lemma VI.1: Let L be a n× n real symmetric positive
semidefinite matrix with eigenvalues λn ≥ . . . ≥ λ2 > λ1 = 0
and 1n be the right eigenvector corresponding to the eigenvalue
λ1 = 0. For all x ∈ RN n , N > 2, such that (1T

n ⊗ IN )x = 0,
we have xT (L ⊗ IN )x ≥ λ2(L) ‖x‖2 .

Proof: The spectrum of the Kronecker product of two matri-
ces is composed of the pairwise products of their eigenvalues.
Thus, L ⊗ IN has the same eigenvalues as L. The inequality
follows from the Courant-Fisher theorem [8], [26]. �

Theorem VI.2: Let (G,F ) be a continuous-time pairwise-
interaction system that satisfies the following properties:

1) (G,F ) is SE(N)-invariant;
2) G is strongly connected;
3) (G,F ) is balanced, that is, for all agents i and xi, xj ∈ RN

∑

j∈N→i
fij (xi, xj ) +

∑

j∈N←i
fj i(xj , xi) = 0 (19)

4) positivity—for all (i, j) ∈ E(G) and xi �= xj ∈ RN

(xj − xi)T (fij (xi, xj )− fij (xi, xi)) > 0. (20)

The consensus set Ω(x̄(0)) = {x|xi = x̄(0),∀i ∈ V (G)} is
globally asymptotically stable, where x = [xT

1 , . . . , xT
n ]T is the

stacked state vector and x̄(0) = 1
n

∑n
i=1 xi(0), n = |V (G)|.

Moreover, σij = limxi→xj

(xj −xi )T (fi j (xi ,xj )−fi j (xi ,xi ))
‖xj −xi ‖2 ex-

ists for each (i, j) ∈ E(G), and if σij > 0 for all (i, j) ∈ E(G),
then Ω(x̄(0)) is globally exponentially stable.

Proof: The proof uses a Lyapunov function-based argument
similar to [8, Theor. 3]. We use Theor. III.7 to rewrite the dy-
namics of the system in quasilinear form. We proceed to define a
weighted Laplacian matrix, where the weights are dependent on
the agents’ states, which is the main difference from the proof in
[8]. Finally, we define a quadratic Lyapunov function and show
that the total derivative is upper bounded by the Fiedler value
of the Laplacian matrix, thus guaranteeing global asymptotic
stability. The details are presented below.

First, we show that the average state x̄(t) = 1
n

∑
i∈V (G) xi(t)

is time invariant. The derivative of x̄(t) is

˙̄x =
1
n

∑

i∈V (G)

∑

j∈N→i
fij (xi, xj ) =

1
n

∑

(i,j )∈E (G)

fij (xi, xj )

=
1
2n

∑

i∈V (G)

⎛

⎝
∑

j∈N→i
fij (xi, xj ) +

∑

j∈N←i
fj i(xj , xi)

⎞

⎠ = 0,

where the third equality follows from writing the sum of all
local interaction functions in two ways, using the incoming and
outgoing edges. The last equality follows from the assumption
that (G,F ) is balanced.

Let δ(t) = x(t)− 1n ⊗ x̄(0) be the disagreement vector. The
next step is to show that the disagreement space spanned by δ
is orthogonal to the consensus space

(1T
n ⊗Dα )δ(t) = (1T

n ⊗Dα )x(t)− (1T
n ⊗Dα )(1n ⊗ x̄(0))

= Dα (nx̄(t)− nx̄(0)) = 0

where α ∈ Rn and Dα = diag(α). The last equality above
holds due to the conservation of the average state.

Next, we use SE(N)-invariance to rewrite the system’s dy-
namics in the quasilinear form given by Theor. V.4. Let L(x)
denote the n× n weighted Laplacian matrix of (G,F )

Lij =

⎧
⎪⎨

⎪⎩

∑
p∈N→i kip(‖xi − xp‖) for i = j

−kij (‖xi − xj‖) for i �= j and (i, j) ∈ E(G)
0 otherwise

where
∑

j∈N→i fij (xi, xj ) =
∑

j∈N→i kij (‖xj − xi‖)(xj − xi),
for all i, j ∈ V (G). The positivity assumption in (20) implies
that kij (a) > 0 for all (i, j) ∈ E(G) and a > 0.
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Using the Laplacian, the system dynamics may be writ-
ten in the compact form ẋ = −(L(x)⊗ IN )x. Also, be-
cause kij (‖xi − xj‖) = kij (‖xi + α− (xj + α)‖), we have
that L(x) = L(x + (1n ⊗ α)), for all α ∈ RN , and L(x) =
L(δ). Moreover, the dynamics of the disagreement vector is

δ̇ = ẋ = −(L(x)⊗ IN )x (21)

= −(L(δ)⊗ IN )δ + (L(δ)⊗ IN )(1n ⊗ x̄(0)) (22)

= −(L(δ)⊗ IN )δ (23)

where the second term in (22) vanishes, because 1n is a right
eigenvector of L(δ).

Let L̂(x) = 1
2 (L(x) + LT (x)) be the Laplacian matrix of the

mirror graph of G, that is, the graph with both edges of G and
the reversed edges of G. Notice that L̂(x) is symmetric and
xT L̂(x)x = 1

2 (xT L(x)x + xT LT (x)x) = xT L(x)x.
Consider the Lyapunov function V (δ) = 1

2 ‖δ‖2 , which is
trivially positive definite and radially unbounded. The total
derivative of V (·) is

V̇ (δ) = δT δ̇ = −δT (L(δ)⊗ IN )δ = −δT (L̂(δ)⊗ IN )δ
(24)

≤ −λ2(L̂(δ)) ‖δ‖2 (25)

where λ2(L̂(δ)) is the Fiedler value (second smallest eigen-
value) of L̂(δ). The inequality in (25) follows from Lemma
VI.1, because G is balanced and thus L̂(x)1n = 1

2 (L(x)1n +
L(x)T 1n ) = 0.

The total derivative of the Lyapunov function V̇ (δ) is zero
if and only if either: 1) δ is zero, or 2) G is not strongly con-
nected. However, the positivity condition (20) implies that G is
strongly connected for all δ �= 0. Since δ = 0 implies δ̇ = 0 it
follows from LaSalle’s invariance principle that δ∗ = 0 is glob-
ally asymptotically stable. It follows that: x∗ = 1n ⊗ x̄(0) and
Ω(x̄(0)) is globally asymptotically stable.

Finally, we have that σij = lima→0 kij (a) = kij (0) exists
for all (i, j) ∈ E(G) due to the continuity of kij , where
a = ‖xj − xi‖. Since δ(t) is differentially continuous in t and
a convergent trajectory, and kij are also continuous, it follows
that: λ2(L(δ(t))) is also continuous in t [27] on R ∪ {∞} and
its image is a compact set Λ2 . The compactness of Λ2 im-
plies that it admits a minimum value. If σij > 0, then all values
in Λ2 are positive due to (20). In particular, it follows that:
min Λ2 > 0. We can then upper bound the quantity in (25)
by V̇ ≤ −min Λ2 ‖δ‖2 , that implies d

dt ‖δ‖ ≤ −min Λ2 ‖δ‖.
Therefore, Ω(x̄(0)) is globally exponentially stable. �

VII. EXTENSIONS

The main result in Section III is stated for first-order (kine-
matic) continuous-time dynamics. Here, we discuss extensions
to discrete-time and higher order dynamics, and a system with
switching and time-varying graph topologies.

A. Discrete-Time Systems

A discrete-time pairwise interaction system can be de-
fined by replacing differentiation (ẋi) with one-step difference

(Δxi(t) = xi(t + 1)− xi(t)) in (2) of Def. III.2. The defini-
tions of the total interaction function and SE(N)-invariance
remain unchanged, [see (3) in Def. III.2 and Def. III.3, respec-
tively].

The main result, Theorem. III.7, holds for discrete-time sys-
tems as well. However, the stability results need to be adjusted.

Lemma VII.1: Let (X, d) be a complete metric space and
(Tn )n≥0 be a sequence of Lipschitz continuous functions such
that all admit a Lipschitz constants q < 1. Define the sequence
xn+1 = Tn (xn ). If all maps Tn have the same fixed point x∗ ∈
X , then for all x0 ∈ X , we have xn → x∗.

Proof: First note that all maps Tn are contractions, be-
cause q < 1. Thus, by the contraction mapping theorem, all Tn

have a unique fixed point x∗. Moreover, the Lipschitz inequal-
ity d(Tn (x), x∗) = d(Tn (x), Tn (x∗)) ≤ qd(x, x∗) holds for all
n ≥ 0 and x ∈ X . It follows by induction that d(xn , x∗) ≤
qnd(x0 , x

∗), for all n ≥ 1. The base case n = 1 follows from the
contraction inequality. For the induction step, we again use Lip-
schitz property d(xn+1 , x

∗) = d(Tn (xn ), x∗) ≤ qd(xn , x∗) ≤
qn+1d(x0 , x

∗), where in the last inequality we used the
induction hypothesis.

Finally, xn is a Cauchy sequence, because for all m,n ≥ 0
d(xm , xn ) ≤ d(xm , x∗) + d(x∗, xn ) ≤ (qm + qn )d(x0 , x

∗),
where we used the triangle inequality in the first inequality.
Therefore, xn has the unique limit x∗, because X is complete
and the distance map d is continuous. �

Definition VII.2: Let (G,F ) be a discrete-time pairwise in-
teraction system and GT be the transpose graph of G, that is,
the graph with all edges reversed. Denote by SG and SGT

the
vectors of stacked total interaction functions for all agents with
interaction graphs G and GT , respectively. System (G,F ) is
said to be forward-backward consistent if

(
id + SGT

)
◦ (id + SG

)
=
(
id + SG

) ◦
(
id + SGT

)

(26)
where id is the identity function and ◦ is function composition.

Remark VII.3: The identity function in the terms of (26)
arises, because the equations of the forward (G) and backward
(reversed, GT ) evolution of the system are x(t + 1) = x(t) +
SG (x(t)) and x(t + 1) = x(t) + SGT

(x(t)), respectively.
Remarks VII.4: Def. VII.2 describes a property about the

evolution of a system in two time units, where the edges of
the interaction graph are reversed in one of the two time units.
Property (26) captures the idea that the state the system ends up
in is independent of when the edges’ reversal occurred.

The property can also be interpreted in the following way.
Consider a network with half-duplex interaction (communica-
tion) links and a global switch which changes the direction of
all links at the same time. The forward-backward consistency
property implies that the state of the network at time t depends
only on the initial state and the number of network switches
until time t and not the sequence of switches itself.

Yet, another way to interpret the property is as a relax-
ation of time reversibility. If the two terms in (26) were equal
to the identity function, then the pairwise interaction system
(G,F ) would be time reversible and, moreover, the system
could be brought back to the initial state using (GT , F ) with the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:32:38 UTC from IEEE Xplore.  Restrictions apply. 



VASILE et al.: TRANSLATIONAL AND ROTATIONAL INVARIANCE IN NETWORKED DYNAMICAL SYSTEMS 829

interaction graph reversed. Therefore, Def. VII.2 can be though
of as a relaxation of time reversibility.

Theorem VII.5: Let (G,F ) be a discrete-time pairwise inter-
action system that satisfies the following properties:

1) (G,F ) is SE(N)-invariant;
2) G is strongly connected;
3) (G,F ) is forward-backward consistent, see Def. VII.2;
4) strong positivity—for all (i, j) ∈ E(G)

inf
xi �=xj

{
(xj − xi)T (fij (xi, xj )− fij (xi, xi))

‖xj − xi‖2
}
≥ ε > 0

(27)
(5) the maximum flow is less than one, i.e.

sup
i, xi

⎧
⎨

⎩
∑

j∈N→i

‖fij (xi, xj )− fij (xi, xi)‖
‖xj − xi‖

⎫
⎬

⎭ < 1. (28)

The consensus set Ω(x̄(0)) = {x|xi = x̄(0),∀i ∈ V (G)} is
globally exponentially stable, where x = [xT

1 , . . . , xT
n ]T is the

stacked state vector and x̄(0) = 1
n

∑n
i=1 xi(0), n = |V (G)|.

Proof: In the following text, we use the notation introduced
in the proof of Theorem VI.2. Thus, the dynamics can be written
as

x(t + 1) = (P (x(t))⊗ IN )x(t) (29)

δ(t + 1) = (P (δ(t))⊗ IN )δ(t) (30)

where P (x) = In − L is the Perron matrix, and P (x) = P (δ).
For any fixed δ ∈ Rn×N such that (1T

n ⊗ IN )δ = 0, we have
that P (δ) is a non-negative doubly stochastic matrix. The strong
positivity assumption (27) is equivalent to kij (a) ≥ ε for all a ≥
0 and (i, j) ∈ E(G), which trivially implies that all off-diagonal
elements of P (δ) are non-negative. Moreover, the maximum
flow assumption can be restated as

∑
j∈Ni

kij (‖δi − δj‖) < 1
which is equivalent to Pii(δ) > 0. The forward-backward con-
sistency property implies that P (δ) is a normal matrix, for
all δ. The Perron matrix P (δ) is double stochastic, that is,
G is balanced, because 1n is a right eigenvector of L(δ)
and P (δ)PT (δ)1n = PT (δ)P (δ)1n = PT (δ)1n which im-
plies that PT (δ)1n = a1n , a �= 0, is an eigenvector of P (δ)
corresponding to the eigenvalue 1. Since PT (δ) has the same
spectrum as P (δ), it follows that a must be 1.

The Perron matrix is a contraction on the linear space defined
by (1T

n ⊗ IN )δ = 0, because

‖(P (δ)⊗ IN )α‖2 = αT (P (δ)⊗ IN )T (P (δ)⊗ IN )α (31)

= αT ((P (δ)T P (δ))⊗ IN )α = αT ((UD∗DU ∗)⊗ IN )α
(32)

≤ |μ2(P (δ))|2 · ‖α‖2 (33)

where μ2(P (δ)) is the second largest eigenvalue in the absolute
value of P (δ), P (δ) = UDU ∗, U is a unitary matrix, D is the
diagonal matrix corresponding to the spectrum of P (δ), and ∗ is
the conjugate transpose operator. The inequality in (33) follows
from the Courant-Fisher Theorem [26].

Finally, it follows that P (δ(t))⊗ IN is a sequence of con-
traction maps. All of them admit 0 as a fixed point. The
Lipschitz constant for all of them is q = supt≥0 |μ2(P (δ(t)))|

< 1, because the strong positivity assumption guarantees that
the entries of P (δ(t)) cannot become arbitrarily small as t goes
to infinity. By Lemma VII.1, it follows that δ(t) converges to 0,
where X ⊂ RN is the space defined by (IN ⊗Dα )δ = 0 with
the distance function induced by the Euclidean norm ‖·‖. �

B. Higher Order Dynamics

In this section, we extend the notion of SE(N)-invariance to
higher-order pairwise interaction systems, that is, each agent’s
dynamics has order m ≥ 2. If the dynamics of these sys-
tems depend only the agents’ states, then the definitions and
results from Section III all hold. However, we are interested in
systems whose dynamics depend on the agents’ (generalized)
velocities as well. For this class of systems, we show a similar
result to Theorem III.7. As in Section V, all (generalized) ve-
locities are measured with respect to a global inertial frame, but
are represented in a reference frame of the agents’ choice.

Definition VII.6 (SE(N)-Invariant Function): A function
f : RN p×m → RN is said to be SE(N)-invariant if for all
R ∈ SO(N) and all w ∈ RN the following condition holds:

Rf(x, v1 , . . . , vm−1) = f
(
Rx + w,Rv1 , . . . ,Rvm−1)

(34)
where x, v1 , . . . , vm−1 ∈ RN p , R = R⊗ Ip , and w = w ⊗ 1p .

Definition VII.7 (Pairwise Interaction System): A
continuous-time pairwise interaction system is a pair
(G,F ), where G is a graph and F = {(f 0

ij , . . . , f
m−1
ij ) | fr

ij :
RN ×RN → RN , (i, j) ∈ E(G)} is a set of tuple of functions
associated with its edges. Each i ∈ V (G) labels an agent,
and a directed edge (i, j) indicates that node i interacts with
(measures the state and velocities of) node j. The dynamics of
each agent are described by

x
(m )
i =

m−1∑

r=0

∑

j∈N→i
f r

ij (x
(r)
i , x

(r)
j ) (35)

where x
(0)
i = xi and fr

ij , 0 ≤ r < m, define the influence
(interaction) of j on i.

We denote the total interaction on agent i ∈ V (G) by

Si(v0 = x, v1 , . . . , vm−1) =
m−1∑

r=0

∑

j∈N→i
f r

ij (v
r
i , vr

j ).

The definitions of SE(N)-invariant systems and quasilinear
systems remain unchanged, but are interpreted using the ex-
tended notions. The main theorem can be extended as follows:

Theorem VII.8: Let (G,F ) be a continuous-time pairwise
interaction system such that fr

ij (v
r
i , vr

j ) = gr
ij (v

r
i − vr

j ), where
gr

ij : RN → RN and r ∈ {1, . . . , m− 1}. Then, (G,F ) is
SE(N)-invariant if and only if it is quasilinear.

Proof: Let Si be the total interaction function of agent
i ∈ V (G). Let vr = 0 for all 1 ≤ r ≤ m− 1. Since RSi(x, 0,
. . . , 0) = Si(Rx + w, 0, . . . , 0) for all (R,w) ∈ SE(N), we
have by Lemma V.3 that Si(x, 0, . . . , 0) =

∑
j∈N→i k0

ij (‖xi

− xj‖)(xj − xi). Similarly, let x = 0 and vr = 0 for r �= s,
1 ≤ r, s ≤ m− 1. For all (R,w) ∈ SE(N), we
have RSi (0, 0, . . . , vs , . . . , 0) = R

∑
j∈N→i f s

ij (v
s
i , v

s
j ) =
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TABLE I
THE TABLE CONTAINS EXAMPLES OF NETWORKED SYSTEMS THAT

ARE QUASILINEAR, EXCEPT FOR THE SECOND EXAMPLE AND POSSIBLY THE

FOURTH.

System dynamics Ref. QL?

1 ẋi =
n∑

j=1
g(xi − xj ) [12] Yes

g(y) = −y
(
a − b exp

(
−‖y‖2 c−1

))

2 ẋi = −α∇xi

(
γ i (x )

(γ i (x )k +β i (x ))1 / k

)
[15] No

3 ẍi = −
n∑

j �= i

∇xi VI (‖xi − xj ‖) [10] Yes or No.

−
m−1∑
k=0
∇xi Vh (

∥∥xi − x̃k

∥∥)

¨̃xp = f̃p (xj , x̃k , ẋj , ˙̃xk ), 1 ≤ p ≤ m

4 ẍi = −
∑

j∈N→
i

(
∇xi Vij (‖xi − xj ‖) + (ẋi − ẋj )

)
[11] Yes.

5 ẋi = ui or xi (k + 1) = xi (k) + ui [8], [9], [13] Yes

ui =
∑

j∈N→
i

aij (xi − xj ) or

ui =
∑

j∈N→
i

(‖xi − xj ‖2 − dij )(xi − xj )

6 ẍi = 1
m i

n∑
j=1 ,j �= i

G m i m j

‖xi −xj ‖3 (xj − xi ) [7] Yes

It Follows That the Quasilinear Systems Below Are Also SE (N )-Invariant by Theorem.
III.7. All Systems Have n Agents and the State of Agent i ∈ {1, . . . , n} Is Denote by
xi . In the Third Example, x̃p Represents the State of a Virtual Leader p . The Maps
VI , Vh , Vi j : R≥0 → R Represent Potential Functions. The Gradient of V With Respect
to xi Is Denoted By∇x i

V .

∑
j∈N→i f s

ij (Rvs
i , Rvs

j ) =
∑

j∈N→i gs
ij (Rvs

i +w − (Rvs
j + w))=

Si(0, . . . ,Rvs + w, . . . , 0). Again, by Lemma V.3 it follows
that: Si(0, 0, . . . , vs , . . . , 0)=

∑
j∈N→i ks

ij (
∥∥vs

j−vs
i

∥∥)(vs
j−vs

i ).
Overall, it follows that: Si(v0 = x, v1 , . . . , vm−1) =∑m−1

r=0
∑

j∈N→i kr
ij (
∥∥vr

i − vr
j

∥∥)(vr
j − vr

i ). Conversely, if all
total interaction functions are quasilinear, then it follows that
the system is SE(N) invariant. �

C. Switching Topologies

The paper’s main result, Theorem III.7, and the extensions
to discrete-time and higher order systems also hold when the
interaction topology G switches due to time-dependent signals.
Intuitively, the time-varying topology is not related to the agents’
reference frames. Thus, SE(N)-invariance implies the quasi-
linear structure regardless of the topology of the system.

VIII. EXAMPLES

This section provides examples to clarify and illustrate the
notions of SE(N)-invariance and quasilinearity for pairwise
interaction systems. We also consider existing pairwise multi-
agent systems that have been studied in the literature, Table I.

Fig. 3. Trajectories of the SE(2)-invariant system presented in Ex. VIII.1.
The three agents are shown in red, blue and green, respectively. Their states at
time t = 0 s and t = 1 s are marked by diamonds and dots, respectively. (a)

xT
1 (0) = [1, 1], xT

2 (0) = [ 3
2 , 1 +

√
3

2 ], xT
3 (0) = [2, 1], (b) xT

1 (0) = [1, 1],
xT

2 (0) = [ 3
2 , 3

2 ], xT
3 (0) = [2, 1]

Many of these are SE(N)-invariant, one an example is not, and
one is SE(N)-invariant only under certain conditions.

The following example shows an SE(N)-invariant system
with local interaction functions which are not quasilinear. How-
ever, as shown by Theorem. V.4, the total interaction functions
associated with the system’s agents can be rewritten as sums of
quasilinear functions. Moreover, Ex. VIII.1 provides an exam-
ple of a weakly stable system where the agents follow elliptical
periodic orbits (see Fig. 3). The shape of the elliptical orbits
depends on the agents’ initial states: (1) equidistant initial states
generate circular periodic trajectories (see Fig. 3(a)); (2) other-
wise periodic elliptical trajectories are obtained (see Fig. 3(b)).
This example, together with the systems considered in [12] and
[13], show that SE(N)-invariant pairwise interaction systems
have rich asymptotic behaviors aside from consensus.

Example VIII.1: Let (G,F ) be a pairwise interaction system
where G = K3 is the complete graph with 3 vertices and

fij (xi, xj ) =

{
xj (i, j) ∈ {(1, 2), (2, 3), (3, 1)}
−xj otherwise

The pairwise interaction functions of this system are not quasi-
linear in xj − xi , (i, j) ∈ E(G). However, the system can easily
be checked to be SE(N)-invariant. For agent 1 we have

S1(x1 , x2 , x3) = f12(x1 , x2) + f13(x1 , x3) = x2 − x3

RS1 = Rx2 + w − (Rx3 + w)

= f12(Rx1 + w,Rx2 + w) + f13

× (Rx1 + w,Rx3 + w)

= S1(Rx1 + w,Rx2 + w,Rx3 + w)

where R ∈ SO(N) and w ∈ RN . However, by Theorem. V.4
the total interaction function S1 must be a sum of quasilinear
functions. Indeed, we can rewrite S1 = x2 − x1 + (−1)(x3 −
x1). Similarly, the SE(N)-property holds for the total interac-
tion functions of the other two agents and these functions can
be rewritten as sums of quasilinear functions.

Example 1 in Tab. I was proposed in [12] to model swarm ag-
gregation and is a quasilinear system because g(·) is a quasilin-
ear function. The system exhibits an asymptotic behavior where
the agents aggregate (in finite time) within a hyper-ball and stay
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inside it forever [12]. The second [15], third [10] and fourth [11]
examples define the agents’ dynamics based on potential func-
tions. Example 2 from [15] drives the agents towards some goal
states which are encoded in the γi() functions, while ensuring
that the agents avoid each other and fixed and known obstacles
using the βi() functions. The system is not quasilinear, because
the potential function whose gradient is used for navigation de-
pends explicitly on the agents’ states, as opposed to distances
between agents’ states, and thus its gradient cannot be a quasi-
linear function. Therefore, the multiagent system in example 2
is not SE(N)-invariant. On the other hand, example 4 [11] is
quasilinear, because the gradients of ∇xi

Vij (·) are quasilinear
functions. We conclude that the system is SE(N)-invariant in
the sense of Def. VII.7 by Th. VII.8 for higher order systems
with generalized velocities. The system in example 3 is quasilin-
ear if and only if the dynamics of the virtual leaders f̃p are sums
of quasilinear functions, 1 ≤ p ≤ m. Example 5 corresponds
to systems implementing consensus and formation control [8],
[9], [13]. It is easy to see that these systems are quasilinear and,
therefore, SE(N)-invariant. The last example shows a system
of n point masses which interact due to gravity. This system
is also quasilinear and thus exhibits SE(N)-invariance, a well
known fact in Hamiltonian mechanics [7].

IX. CONCLUSIONS

In this paper, we studied the SE(N)-invariance property of
multiagent, locally interacting systems. This property, which
guarantees the independence of a system of global reference
frames, implies that control laws can be computed and executed
locally (i.e., in each agent’s frame) using only local information
available to the agent. This property is critical in applications
in which information about a global reference frame cannot be
obtained (e.g., in GPS-denied environments).

The main contribution of the paper is to fully character-
ize pairwise interaction systems that are SE(N)-invariant. We
showed that pairwise interaction systems are SE(N)-invariant
if and only if they have a special quasilinear form. Because
of the simplicity of this form, this result can impact ongoing
research on design of local interaction laws. The result can
also be used as quick test of SE(N)-invariance for networked
systems. We also described a subset of SE(N)-invariant pair-
wise interaction systems that reach consensus by exploiting their
quasilinear structure. Finally, we extended the results to discrete-
time and high-order systems and systems with time-dependent
switching topologies. As in the continuous case, we proved
the convergence to consensus for a subclass of discrete-time
SE(N)-invariant pairwise interaction systems.

APPENDIX THE CASE N = 2

The difference between the cases N = 2 and N ≥ 3 is due
to commutativity of rotations. SO(2) is Abelian, while SO(N)
for N ≥ 3 is not.

All results in the paper carry over to the case N = 2, because
SO(2) and its centralizer are Abelian. In all theorems quasi-
linear functions are replaced with similar functions from the

centralizer of SO(2). In the following, we provide the charac-
terization of CT (SO(2)), which supports our claim.

Proposition A.1: The centralizer of SO(2) with respect to T
is the submonoid {(k1(‖x‖)I2 + k2(‖x‖)J2) x}, where k1 , k2 :
R≥0 → R and J2 = [ 0

1
−1
0 ].

Proof: Let x ∈ R2 , x �= 0, and u = x
‖x‖ . It follows that Ru =

u1I2 + u2J2 ∈ SO(2), x = Ru ‖x‖ e1 , and

f(x) = Ruf(‖x‖ e1) =
1
‖x‖

[
x1f1(‖x‖ e1)− x2f2(‖x‖ e1)

x2f1(‖x‖ e1) + x1f2(‖x‖ e1)

]

Δ=
[

k1(‖x‖) −k2(‖x‖)
k2(‖x‖) k1(‖x‖)

][
x1

x2

]

where k1(‖x‖) Δ= f1 (‖x‖e1 )
‖x‖ and k2(‖x‖) Δ= f2 (‖x‖e1 )

‖x‖ . The
case x = 0 follows from Lemma IV.2. �
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