
 A Decision Tree Approach to Data Classification using
Signal Temporal Logic

Giuseppe Bombara
Boston University
Boston, MA, USA

gbombara@bu.edu

Cristian-Ioan Vasile
Boston University
Boston, MA, USA

cvasile@bu.edu

Francisco Penedo
Boston University
Boston, MA, USA
franp@bu.edu

Hirotoshi Yasuoka
DENSO CORPORATION

Kariya, Aichi, Japan
hirotoshi_yasuoka@denso.co.jp

Calin Belta
Boston University
Boston, MA, USA
cbelta@bu.edu

ABSTRACT
This paper introduces a framework for inference of timed
temporal logic properties from data. The dataset is given as
a finite set of pairs of finite-time system traces and labels,
where the labels indicate whether the traces exhibit some
desired behavior (e.g., a ship traveling along a safe route).
We propose a decision-tree based approach for learning sig-
nal temporal logic classifiers. The method produces binary
decision trees that represent the inferred formulae. Each
node of the tree contains a test associated with the satisfac-
tion of a simple formula, optimally tuned from a predefined
finite set of primitives. Optimality is assessed using heuris-
tic impurity measures, which capture how well the current
primitive splits the data with respect to the traces’ labels.
We propose extensions of the usual impurity measures from
machine learning literature to handle classification of sys-
tem traces by leveraging upon the robustness degree concept.
The proposed incremental construction procedure greatly
improves the execution time and the accuracy compared to
existing algorithms. We present two case studies that il-
lustrate the usefulness and the computational advantages of
the algorithms. The first is an anomaly detection problem
in a maritime environment. The second is a fault detection
problem in an automotive powertrain system.

CCS Concepts
•Computing methodologies→ Logical and relational
learning; Classification and regression trees; •Theory of
computation → Modal and temporal logics;

Keywords
Signal Temporal Logic; Logic Inference; Decision Trees; Im-
purity Measure; Machine Learning; Anomaly Detection; Su-
pervised Learning;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’16, April 12–14, 2016, Vienna, Austria.
c© 2016 ACM. ISBN 978-1-4503-3955-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2883817.2883843

1. INTRODUCTION
Machine learning deals with the construction of algorithms

that can learn from data. Such algorithms operate by build-
ing a classifier from examples, called training data, in order
to make accurate predictions on new data [24]. One of the
main problems in machine learning is the so called two-class
classification problem. In this setting, the goal is to build a
classifier that can distinguish objects belonging to one of two
possible classes. This problem is of fundamental importance
because its solution leads to solving the more general multi-
class problem [24]. Furthermore, it can be directly used in
the context of anomaly detection, where the objective is to
find patterns in data that do not conform to the expected be-
havior. These non-conforming patterns are often referred to
as anomalies or negatives, whereas the normal working con-
ditions are usually referred to as targets or positives. Given
the importance of this problem and its broad applicability,
it has been the topic of several surveys [16, 6].

A specific formulation of the two-class problem is deter-
mined by several factors such as the nature of the input data,
the availability of labels, as well as the constraints and re-
quirements determined by the application domain [6]. In
this paper, we deal with data in form of finite time series,
called signals or traces, and we suppose that the labels of
these traces are available. That is, the true class of each
trace is known, either positive or negative, and this infor-
mation is exploited during the classifier construction phase
(supervised learning). We tackle the two-class classification
problem by bringing together concepts and tools from for-
mal methods and machine learning. Our thesis is that a
formal specification of the normal working conditions can
be gleaned directly from execution traces and expressed in
the form of Signal Temporal Logic (STL) formulae, a specifi-
cation language used in the field of formal methods to define
the behavior of continuous systems [22]. The inferred for-
mulae can then be applied directly as data classifiers for new
traces. In this context, some work has been initially done to
optimize the parameters of a formula for a given, fixed, for-
mula structure [17, 1, 26]. Kong et. al. [20, 18] were the first
to propose an algorithm to learn both the formula structure
and its parameters from data and called this approach tem-
poral logic inference (TLI). This approach, while retaining
many qualities of traditional classifiers, presents several ad-
ditional advantages. First, STL formulae have precise mean-

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2883817.2883843&domain=pdf&date_stamp=2016-04-11

ing and allow for a rich specification of the normal behaviour
that is easily interpretable by humans. Second, anomaly de-
tection methods commonly applied to time series data are
often model-based, i.e., they require a good model of the
system running alongside the physical system [16]. Third,
classical machine learning methods are often over specific to
the task. That is, they focus exclusively on solving the clas-
sification problem but offer no other insight on the system
where they have been applied. On the contrary, TLI fits
naturally as a step in the system’s design workflow and its
analysis and results can be employed in other phases.

In this paper, we propose a novel, decision-tree based
framework for solving the two-class classification problem
involving signals using STL formulae as data classifiers. We
refer to it as framework because we are not just proposing a
single algorithm but a class of algorithms. Every algorithm
produces a binary decision tree which can be translated to
an STL formula and used for classification purposes. Each
node of a tree is associated with a simple formula, chosen
from a finite set of primitives. Nodes are created by find-
ing the best primitive, along with its optimal parameters,
within a greedy growing procedure. The optimality at each
step is assessed using impurity measures, which capture how
well a primitive splits the signals in the training data. The
impurity measures described in this paper are modified ver-
sions of the usual impurity measures to handle signals, and
were obtained by exploiting the robustness degree concept
[9]. Our novel framework presents several advantages. In
particular, the proposed incremental construction procedure
requires the optimization of a small and fixed number of
primitives at each node. Moreover, the number of objects
to be processed decreases at each iteration. These two fea-
tures greatly improve the execution time and the accuracy
compared to the algorithms proposed in [20, 18].

This paper is organized as follows. In Section 2 we briefly
survey some previous research efforts related to learning
temporal logic formulae. In Section 3, we review the def-
inition of Signal Temporal Logic, and its parameterized ver-
sion PSTL used in the rest of the paper. The classification
problem is formally stated in Section 4, and our decision
tree framework is presented in detail in Section 5. Two case
studies are introduced in Section 6. In Section 7 we report
and discuss the results obtained by applying our temporal
logic inference algorithms. We conclude in Section 8 with a
summary and an outlook to future research directions.

2. RELATED WORK
Most of the recent research on temporal logical inference

has focused on mining only the values of parameters asso-
ciated with a given temporal logic formula structure [1, 26,
17, 2]. That is, a designer provides a formula template such
as “The engine speed settles below v m/s within τ second”
and an optimization procedure finds values for v and τ . The
given structure reflects the (substantial) domain knowledge
of the designer on the system and its properties of interest to
be queried. With this approach, it is not possible to acquire
new knowledge about the system directly from data, since
it requires the designer to be very specific about the form of
system properties that are investigated.

In [18, 20], the authors proposed methods for inferring
both the formula structure and its parameters from data.
They defined a fragment of STL, called inference paramet-
ric signal temporal logic (iPSTL), and showed that this frag-

ment admits a partial order among formulae (1) in the sense
of language inclusion, and (2) with respect to the robust-
ness degree. This implies that iPSTL formulae can be orga-
nized in an infinite directed acyclic graph (DAG) according
to how general they are (for any valuation). This result
enabled them to formulate the classification problem as an
optimization problem, whose objective function involves the
robustness degree, and solve it in two cyclic steps: first, op-
timize the formula structure by exploring the DAG, pruning
and growing it, and then, optimize the formula parameters,
for a fixed structure, using a nonlinear optimization algo-
rithm. This approach presents two major limitations. First,
the parameter optimization routine has high computational
cost. This is mostly due to its nonlinear nature. Finding the
optimal valuation becomes more and more challenging as the
algorithm proceeds, because the dimension of the parameter
space grows at each iteration. This leads to long execution
times. On the contrary, in our algorithm the dimension of
the parameter space is fixed. Second, the DAG is built us-
ing an ordering on the language accepted by PSTL formulae.
This has adverse effects on the performance. In particular,
even though changing the formula structure according to the
DAG offers guarantees in terms of the language, it does not
imply an improvement in terms of the misclassification rate,
which is the metric of interest for a classification problem.
In Sec. 7, we show through a case study that our approach
is able to obtain 20 times better classification performance
with respect to the results in [19].

Recently, [3, 5] also tackled the two-class classification
problem for inferring temporal logic formulae. Their ap-
proach can be divided in two separate steps. First, they
build two generative models, one for each class. The models
have to be in the form of stochastic systems and are used to
compute the probability of satisfaction of a formula. Second,
a discriminative formula is obtained by searching a formula
that maximizes the odds of being true for the first model
and false for the other model. As with other approaches, the
formula structure and parameters are optimized separately.
In particular, the formula structure is constructed through
heuristics [3] or with a genetic algorithm [5], whereas the
parameter space is explored through statistical model check-
ing. This approach present some disadvantages. Primarily,
it needs to build models of the system under analysis. This
requires a domain expert and a certain amount of data. We
do not agree with the authors’ statement that model-based
methods require less data than direct methods. On the con-
trary, we believe that more or the same amount of data is
needed for the model parameter selection and the model val-
idation. Overall, in the case studies reported, a significant
designer intervention was required to guide the procedure to
obtain a satisfactory formula. As opposed, our method does
not need a model of the system nor an expert to guide the
learning process.

To conclude, [12, 11] used a learning procedure for formu-
lae defined in particular spatial superposition logics. These
logics were developed for describing patterns in images with-
out a time component. In particular, every image is repre-
sented with a multi-resolution format using a fixed height
quad-tree data structure (which should not be confused with
a decision tree). In this representation, every node contains
an attribute describing an area of the image. Nodes that
appear at deeper levels provide information about smaller
areas. A pattern in an image corresponds to a path [12]

2

or a combination of several paths [11] in the relative quad-
tree. Therefore, to describe the patterns, the semantics of
these spatial logics are defined over the paths of quad-trees.
In these works, formulae are learned from a labeled set of
paths [12] or a labeled set of quad-trees [11] by applying off-
the-shelf rule-based learning algorithms to the attributes of
the nodes.

3. SIGNAL TEMPORAL LOGIC
Let R be the set of real numbers. For t ∈ R, we denote

the interval [t,∞) by R≥t. We use S = {s : R≥0 → Rn}
with n ∈ N to denote the set of all continuous parameter-
ized curves in the n-dimensional Euclidean space Rn. In this
paper, an element of S is called a signal and its parameter
is interpreted as time. Given a signal s ∈ S, the components
of s are denoted by si, i ∈ {1, . . . , n}. The set F contains
the projection operators from a signal s to one of its com-
ponents si, specifically F = {fi : Rn → R, fi(s) = si, i =
{1, . . . , n}}. The suffix at time t ≥ 0 of a signal is denoted
by s[t] ∈ S and it represents the signal s shifted forward in
time by t time units, i.e., s[t](τ) = s(τ + t) for all τ ∈ R≥0.

The syntax of Signal Temporal Logic (STL) [22] is defined
as follows:

φ ::= > | pf(x)≤µ | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2

where > is the Boolean true constant; pf(x)≤µ is a predicate
over Rn defined by the function f ∈ F and µ ∈ R of the
form pf(x)≤µ(x) = f(x) ≤ µ; ¬ and ∧ are the Boolean op-
erators negation and conjunction; and U[a,b) is the bounded
temporal operator until. We use ⊥ to denote the Boolean
false constant.

The semantics of STL is defined over signals in S recur-
sively as follows [22]:

s[t] |= > ⇔ >
s[t] |= pf(x)≤µ ⇔ (f(s(t)) ≤ µ)

s[t] |= ¬φ ⇔ ¬(s[t] |= φ)

s[t] |= (φ1 ∧ φ2) ⇔ (s[t] |= φ1) ∧ (s[t] |= φ2)

s[t] |= (φ1U[a,b)φ2) ⇔ ∃tu ∈ [t+ a, t+ b) s.t.
(
s[tu] |= φ2

)
∧
(
∀t1 ∈ [t, tu) s[t1] |= φ1

)
A signal s ∈ S is said to satisfy an STL formula φ if and
only if s[0] |= φ. We extend the type of allowed inequality
predicates in STL to s[t] |= pf(x)>µ ≡ s[t] |= ¬pf(x)≤µ.
Thus, predicates are defined in this paper by a function f ∈
F , a real number µ ∈ R and an order relation ∼∈ {≤, >}.
The other Boolean operations (i.e., disjunction, implication,
equivalence) are defined in the usual way. Also, the temporal
operators eventually and globally are defined as F[a,b)φ ≡
>U[a,b)φ and G[a,b)φ ≡ ¬F[a,b)¬φ, respectively.

In addition to Boolean semantics defined above, STL ad-
mits quantitative semantics [9, 10], which is formalized by
the notion of robustness degree. The robustness degree of a
signal s ∈ S with respect to an STL formula φ at time t is

a function r(s, φ, t) and is recursively defined as

r(s,>, t) = r>
r(s, pf(x)≤µ, t) = µ− f(s(t))

r(s,¬φ, t) = − r(s, φ, t)
r(s, φ1 ∧ φ2, t) = min{r(s, φ1, t), r(s, φ2, t)}
r(s, φ1U[a,b)φ2, t) =

sup
tu∈[t+a,t+b)

{
min

{
r(s, φ2, tu), inf

t1∈[t,tu)
{r(s, φ1, t1)}

}}
where b > a > 0 and r> ∈ R≥0∪{∞} is a large constant rep-
resenting the maximum value of the robustness. Note that a
positive robustness degree r(s, φ, 0) of a signal s with respect
to a formula φ implies that s satisfies φ (in Boolean seman-
tics). In the following, we denote by r(s, φ) the robustness
degree r(s, φ, 0) at time 0. Robustness can be extended to
the derived predicates and operators as follows:

r(s, pf(x)>µ, t) = f(s(t))− µ
r(s, φ1 ∨ φ2, t) = max{r(s, φ1, t), r(s, φ2, t)}
r(s,F[a,b)φ, t) = sup

tf∈[t+a,t+b)

{r(s, φ, tf)}

r(s,G[a,b)φ, t) = inf
tg∈[t+a,t+b)

{r(s, φ, tg)}

Moreover, the interpretation of robustness degree as a quan-
titative measure of satisfaction is justified by the following
proposition from [8].

Proposition 3.1. Let s ∈ S be a signal and φ an STL
formula such that r(s, φ) > 0. All signals s′ ∈ S such that
‖s− s′‖∞ < r(s, φ) satisfy the formula φ, i.e., s′ |= φ.

Parametric Signal Temporal Logic (PSTL) was introduced
in [1] as an extension of STL, where formulae are param-
eterized. A PSTL formula is similar to an STL formula,
however all the time bounds in the time intervals associ-
ated with temporal operators and all the constants in the
inequality predicates are replaced by free parameters. The
two types of parameters are called time and space param-
eters, respectively. Specifically, let ψ be a PSTL formula
and np and nTL be the number of predicates and temporal
operators contained in ψ, respectively. The parameter space
of ψ is Θ = Π×T , where Π ⊆ Rnp is set of all possible space
parameters and T = T1 × . . . TnTL is the set of all time
parameters, where Ti = {(ai, bi) ∈ R2

≥0 | ai ≤ bi} for all
i ∈ {1, . . . , nTL}. Conversely, if ψ is a PSTL formula, then
every parameter assignment θ ∈ Θ induces a corresponding
STL formula φθ, where all the space and time parameters
of ψ have been fixed according to θ. This assignment is
also referred to as a valuation θ of ψ. For example, given
ψ = G[a,b)(s1 ≤ c) and θ = [2.5, 0, 1], we obtain the STL
formula φθ = G[0,1)(s1 ≤ 2.5).

4. PROBLEM FORMULATION
We wish to find an STL formula that separates traces

produced by a system that exhibit some desired property,
such as behaving normally, from other traces of the same
system. Formally, let C = {Cp, Cn} be the set of classes,
with Cp for the positive class and Cn for the negative class.
Let si be an n-dimensional signal, si : R≥0 → Rn, and let
li ∈ C be its label. We consider the following problem:

3

Problem 4.1 (Two-Class Classification). Given a
set of labeled signals {(si, li)}Ni=1, where li = Cp if si exhibits
a desired behavior, and li = Cn if si does not, find an STL
formula φ such that the misclassification rate MCR(φ) is
minimized, where the misclassification rate is defined as:

MCR(φ) :=

∣∣{si | (si |= φ ∧ li = Cn) ∨ (si 6|= φ ∧ li = Cp)
}∣∣

N

In the above formula, |·| denotes the cardinality of a set,
and (si |= φ ∧ li = Cn) represents a false positive, while
(si 6|= φ ∧ li = Cp) represents a false negative.

5. LEARNING DECISION TREES
In our approach, the key insight to tackle Problem 4.1 is

that it is possible to build a map between a fragment of STL
and decision trees. Therefore, we can exploit the decision
trees learning literature [24, 23, 4] to build a decision tree
that classifies signals and then map the constructed tree to
an STL formula.

A decision tree is a tree-structured sequence of questions
about the data used to make predictions about the data’s
labels. In a tree, we define: the root as the initial node; the
depth of a node as the length of the path from the root to
that node; the parent of a node as the neighbor whose depth
is one less; the children of a node as the neighbors whose
depths are one more. A node with no children is called a
leaf, all other nodes are called non-terminal nodes. In this
paper, we focus on binary decision trees, where every non-
terminal node splits the data into two children nodes and
every leaf node predicts a label.

Unfortunately, the space of all possible decision trees for
a given classification problem is very large, and it is known
that the problem of learning the optimal decision tree is
NP-complete, for various optimality criteria [14]. Therefore,
most decision-tree learning algorithms are based on greedy
approaches, where locally optimal decisions are taken at
each node. These greedy growing algorithms can be stated
in a simple recursive fashion, starting from the root node,
and require three meta-parameters: the first is a list of pos-
sible ways to split the data; the second is a criterion to select
the best split; and the third is a set of rules for stopping the
algorithm.

Several learning algorithms can be created by selecting dif-
ferent meta-parameters. That is, once the meta-parameters
have been fixed, a specific learning algorithm is instanti-
ated. Since we are not just proposing a single algorithm but
a class of algorithms, we refer to this approach as “decision
tree learning framework for temporal logic inference”. In the
next sections, we explain in detail the parameterized algo-
rithm and the choices we propose for the meta-parameters.

5.1 Parameterized learning algorithm
In Alg. 1 we present the parameterized procedure for infer-

ring temporal logic formulae from data. The meta-parameters
of Alg. 1 are: (1) a set of PSTL primitives P; (2) an impu-
rity measure J ; and (3) a set of stopping criteria stop. The
algorithm is recursive and takes as input arguments the for-
mula to reach the current node φpath, the set of data that
reached that node S, and the current depth level h.

At the beginning, the stopping conditions are checked
(line 1). If they are met, the algorithm returns a single
leaf node marked with the label c ∈ C. The label c is cho-
sen according to the best classification quality (line 2), using

Algorithm 1: Parameterized Decision Tree Construc-
tion – buildTree(·)
Parameter: P – set of PSTL primitives
Parameter: J – impurity measure
Parameter: stop – set of stopping criteria
Input: φpath – formula associated with current path
Input: S = {(si, li)Ni=1} – set of labeled signals
Input: h – the current depth level
Output: a (sub)-tree

1 if stop(φpath, h, S) then
2 t← leaf(arg maxc∈C{p(S, c;φpath)})
3 return t

4 φ∗ = arg maxψ∈P,θ∈Θ J(S, partition(S, φθ ∧ φpath))

5 t← non terminal(φ∗)

6 S∗>, S
∗
⊥ ← partition(S, φpath ∧ φ∗)

7 t.left← buildTree(φpath ∧ φ∗, S∗>, h+ 1)

8 t.right← buildTree(φpath ∧ ¬φ∗, S∗⊥, h+ 1)
9 return t

p(S, c;φpath) defined in Def. 5.4. If the stopping conditions
are not met (line 4), the algorithm proceeds to find the opti-
mal STL formula among all the valuations of PSTL formulae
from the set of primitives P (details in Sec. 5.3). The cost
function used in the optimization is the impurity measure J ,
which assesses the quality of the partition induced by PSTL
primitives valuations. See Sec. 5.4 for details. At line 5,
a new non-terminal node is created and associated with the
optimal STL formula φ∗. Next, the partition induced by the
formula φpath∧φ∗ is computed (line 6). For each outcome of
the split, the buildTree() procedure is called recursively to
construct the left and right subtrees (lines 7-8). The corre-
sponding formula to reach a subtree and the corresponding
data partition are passed. The depth level is increased by
one.

The parameterized family of algorithms uses three pro-
cedures: (a) leaf(c) creates a leaf node marked with the
label c ∈ C, (b) non terminal(φ) creates a non-terminal
node associated with the valuation of a PSTL primitive from
P, and (c) partition(S, φ) splits the set of signals S into
satisfying and non-satisfying signals with respect to φ, i.e.,
S>, S⊥ = partition(S, φ), where S> = {(si, li) ∈ S | si |= φ}
and S⊥ = {(si, li) ∈ S | si 6|= φ}.

By fixing the meta-parameters (P, J , stop), a particular
algorithm is instantiated. For each possible instance, a deci-
sion tree is obtained by executing buildTree(>, Sroot, 0) on
the set of labeled signals Sroot. Clearly, the returned tree
depends on both the input data Sroot and the particular
instance chosen.

5.2 Tree to STL formula
A decision tree obtained by an instantiation of Alg. 1 can

be used directly for classification or converted to an equiv-
alent STL formula using Alg. 2. The algorithm recursively
traverses the subtree t given as input. At each node, the
formula is obtained by (1) conjunction of the nodes’s for-
mula with its left subtree’s formula, (2) conjunction of the
negation of the node’s formula with its right subtree’s for-
mula, (3) disjunction of (1) and (2). During the recursion
process, Alg. 2 only keeps track of the paths reaching leaves
associated with the positive class Cp. To produce the final

4

φ1

φ2

φ4

Cp Cn

φ5

Cp Cn

φ3

Cp φ6

Cp Cn

Figure 1: The formula associated with the tree is

φtree =
(
φ1 ∧

(
(φ2 ∧ φ4) ∨ (¬φ2 ∧ φ5)

))
∨
(
¬φ1 ∧

(
φ3 ∨

(¬φ3 ∧ φ6)
))

and can be obtained algorithmically us-

ing Alg. 2, where φi, i ∈ {1, . . . , 6} are valuations of
primitive formulae from a set of PSTL formulae P.

formula, the algorithm is executed starting from the root
node, i.e., Tree2STL(root). Fig. 1 shows a decision tree
and its corresponding formula obtained by applying Alg. 2.

Algorithm 2: Tree to formula – Tree2STL(·)
Input: t – node of a tree
Output: STL Formula

1 if t is a leaf and class associated with t is Cp then
2 return >
3 if t is a leaf and class associated with t is Cn then
4 return ⊥
5 φl = (t.φ ∧ Tree2STL(t.left))
6 φr = (¬t.φ ∧ Tree2STL(t.right))
7 return φl ∨ φr

5.3 PSTL primitives
To partition the data at each node, a finite list of possible

splitting rules is usually considered [24]. We propose to use
simple PSTL formulae, called primitives, to split the data.
In particular, we define two types of primitives:

Definition 5.1 (First-Level Primitives). Let S be
the set of signals with values in Rn, n ≥ 1. We define the
set of first-level primitives as follows:

P1 =
{
F[τ1,τ2)(xi ∼ µ) or G[τ1,τ2)(xi ∼ µ)

| i ∈ {1, . . . , n}, ∼∈ {≤, >}
}

The parameters of P1 are (µ, τ1, τ2) and the space of param-
eters is Θ1 = R× {(a, b) | a < b, a, b ∈ R≥0}.

Definition 5.2 (Second-Level Primitives). Let S be
the set of signals with values in Rn, n ≥ 1. We define the
set of second-level primitives as follows:

P2 =
{
G[τ1,τ2)F[0,τ3)(xi ∼ µ) or F[τ1,τ2)G[0,τ3)(xi ∼ µ)

| i ∈ {1, . . . , n}, ∼∈ {≤, >}
}

The parameters of P2 are (µ, τ1, τ2, τ3) and the space of pa-
rameters is Θ2 = R× {(a, b) | a < b, a, b ∈ R≥0} × R≥0.

The meaning of first-level primitives is straightforward. The
two primitives F[τ1,τ2)(xi ∼ µ) and G[τ1,τ2)(xi ∼ µ) are
used to express that the predicate xi ∼ µ must be true
for at least one time instance or for all time instances in
the interval [τ1, τ2), respectively. Similarly, the second-level
primitives can be interpreted in natural language as: (a)
F[τ1,τ2)G[0,τ3)(xi ∼ µ) specifies that “the predicate (xi ∼ µ)
of duration τ3 must be performed and its start time must be
in the interval [τ1, τ2)”; and (b) G[τ1,τ2)F[0,τ3)(xi ∼ µ) spec-
ifies that “at each time instance in the interval [τ1, τ2), the
predicate (xi ∼ µ) must be true within τ3 time units”. Both
first- and second-level primitives may be thought as spec-
ifications for bounded reachability and safety with varying
degrees of flexibility.

Given a set of primitives P, we denote by STLP the STL
fragment obtained by Boolean closure from P.

Definition 5.3 (Boolean Closure). Let P be a fi-
nite set of PSTL formulae. The fragment of STL formulae
induced by P using Boolean closure is defined as:

φ ::= > | ϕ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

where ϕ is a valuation of a PSTL formula from P.

STLP is the fragment of STL that is mapped with decision
trees. In other terms, each decision tree constructed with the
set of primitives P is mapped to an STL formula belonging
to the STLP fragment.

Remark 1. Note that STLP1 ⊂ STLP2 , because F[τ1,τ2)l ≡
F[τ1,τ2)G[0,0+)l and similarly G[τ1,τ2)l ≡ G[τ1,τ2)F[0,0+)l,

where l ≡ (xi ∼ µ) is a linear inequality predicate and 0+

represents the upper limit towards 0.

Remark 2. It is important to stress that the proposed
PSTL primitives are not the only possible ones. A user may
define other primitives, either generic ones, like the first-
and second- level primitives, or specific ones, guided by the
particular nature of the learning problem at hand.

5.4 Impurity measures
In the previous section, we defined a list of possible ways

to split the data using a set of primitives P. Now, it is
necessary to define a criterion to select which primitive best
splits the data at each node. Intuitively, a good split leads to
children that are homogeneous, that is, they contain mostly
objects belonging to the same class. This concept has been
formalized in literature with impurity measures, and the goal
of the optimization algorithm is to obtain children purer
that their parents. In this section, we first state the canon-
ical impurity measures and then we propose three modified
measures, which are more suited to handle signals, using the
robustness degree.

Definition 5.4 (Impurity Measures). Let S be a fi-
nite set of signals, φ an STL formula and
S>, S⊥ = partition(S, φ). The following partition weights
are introduced to describe how the signals si are distributed
according to their labels li and the formula φ:

p> =
|S>|
|S| , p⊥ =

|S⊥|
|S| , p(S, c;φ) =

∣∣{(si, li) | li = c}
∣∣

|S|
(1)

Particularly, p> and p⊥ represent the fraction of signals from
S present in S> and S⊥, respectively, and p(S, c;φ) repre-
sents the fraction of signals in S that belong to class c ∈ C.

5

The (canonical) impurity measures are defined as [4, 23]:
- Information gain (IG)

IG(S, {S>, S⊥}) = H(S)−
∑

⊗∈{>,⊥}

p⊗ ·H(S⊗)

H(S) = −
∑
c∈C

p(S, c;φ) log p(S, c;φ) (2)

- Gini gain (GG)

GG(S, {S>, S⊥}) = Gini(S)−
∑

⊗∈{>,⊥}

p⊗ ·Gini(S⊗)

Gini(S) =
∑
c∈C

p(S, c;φ)
(
1− p(S, c;φ)

)
(3)

- Misclassification gain (MG)

MG(S, {S>, S⊥}) = MR(S)−
∑

⊗∈{>,⊥}

p⊗ ·MR(S⊗)

MR(S) = min(p(S,Cp;φ), p(S,Cn;φ)) (4)

We extend the impurity measures to account for the ro-
bustness degrees of the signals to be classified. These exten-
sions are based on the intuition that, according to Prop. 3.1,
the robustness degree can be used in the context of learning
as a measure of the classification quality of a signal with
respect to an STL formula.

Definition 5.5 (Extended Impurity Measures).
Consider the same setup as in Def. 5.4, and the same impu-
rity measures, we redefine the partition weights as follows:

p> =

∑
si∈S>

r(si, φ)∑
si∈S |r(si, φ)| p⊥ = −

∑
si∈S⊥

r(si, φ)∑
si∈S |r(si, φ)|

p(S, c;φ) =

∑
si∈Sc

∣∣r(si, φ)
∣∣∑

si∈S |r(si, φ)|

(5)

where Sc = {si ∈ S | li = c}.

We will distinguish between the usual impurity measures
and the extended ones by using the subscript r (e.g., IGr)
for the extended impurity measures. The following proposi-
tion ensures that the extended impurity measures are well
defined.

Proposition 5.1. The intra-partition weights are bounded
within 0 and 1 and sum to 1, i.e., 0 ≤ p>, p⊥ ≤ 1 and p> +
p⊥ = 1, in both definitions Def. 5.4 and Def. 5.5. The same
invariant property is true for the inter-partition weights, i.e.,
0 ≤ p(S,Cn;φ), p(S,Cp;φ) ≤ 1 and

∑
c∈C p(S, c;φ) = 1.

Remark 3. The advantages of using the extended versions
of the impurity measures over the canonical ones are most
pertinent in the context of optimizing these over PSTL for-
mulae. The robustness-based impurity functions are better
behaved cost functions, because these are less flat over the
space parameter than their frequency-based counterparts,
i.e., the canonical measures are piecewise constant func-
tions. Also, we argue that the use of robustness makes the
computed classifiers better at generalizing, i.e., performance
on unseen (test) data. The intuition is that the separation
boundaries tend to be as far as possible from signals of the
two classes in the sense of robustness. In this sense, the
canonical measures are unable to distinguish between for-
mulae which are barely satisfied by some signals from more

robust ones. As future work, an empirical comparison of
the robustness-based measures against the canonical ones
will be performed.

Local optimization
The cost function used in the local node optimization (line
4 of Alg. 1) is one of the impurity measures defined in the
previous section. The optimization is performed over the
chosen set of PSTL primitives P and their valuations Θ.
Therefore, the optimization problem is decomposed into |P|
optimization problems over a fixed and small number of real-
valued parameters. Consider signals of dimension n. In
the case of P1, we have 4n optimization problems with 3
parameters each. On the other hand, for P2 we have 4n
optimization problems with 4 parameters each.

The local optimization approach presents several advan-
tages. In particular, the computation of the robustness
values in the definition of the extended impurity measures
(Def. 5.5) can be performed incrementally with respect to
the tree data structure according to the following preposi-
tion.

Proposition 5.2. (Incremental Computation of Ro-
bustness) At each step of the recursion of Alg. 1, the ro-
bustness of a signal si reaching the current node nc can be
computed as follows

r(si, φtree) = r(si, φpath∧ φ) = min{r(si, φpath), r(si, φ)} (6)

where φtree corresponds to the currently computed tree, φpath

corresponds to the branch of the tree from the root to the par-
ent of nc, and φ is a candidate valuation of a PSTL primitive
for nc.

The first equality in Eq. (6) follows from the construction
of the tree, because the robustness of a signal si reaching
nc is negative for any other branch of the tree not ending in
nc. The incremental computation can be achieved by taking
advantage of the recursion in the second equality in Eq. (6).

Another very important advantage of the proposed ap-
proach is that at each iteration of Alg. 1, the data is parti-
tioned between the children of the currently processed node.
Thus, the local optimization problems become easier as the
depth of the nodes increases.

The local optimization problems may be solved using any
global non-linear optimization algorithm, such as Simulated
Annealing [15] or Differential Evolution [25]. However, in or-
der to use these numerical optimization algorithms, we need
to define finite bounds for the parameters of the primitive
formulae. These bounds may easily be inferred from data,
but may also be application specific, if expert knowledge is
available.

5.5 Stop conditions
Several stopping criteria can be set for Alg. 1. The most

common strategy is to just split until the current node con-
tains only signals from a single class or no signals. This
strategy is very permissive, that is, it allows the algorithm
to run for many iterations. However, it represents the suffi-
cient conditions that guarantee the termination of the algo-
rithm. Other more restrictive conditions are possible. For
instance, stop if the vast majority of the signals belong to
the same class, either positive or negative, e.g., stop if 99%
of signals belong to the same class. Another common strat-
egy is to stop if the algorithm has reached a certain, fixed,

6

depth. These conditions usually provide a faster termina-
tion of the algorithm. In general, a set of stopping criteria
can be assembled by picking several stopping conditions, as
long as the sufficient conditions for the termination of the
algorithm are included.

5.6 Complexity
In this section, we provide a worst-case and average-case

complexity analysis of Alg. 1 in terms of the complexity
of the local optimization procedure (Alg. 1, line 4). This
complexity analysis assumes that just the sufficient stopping
conditions are set. Let C(N) and g(N) be the complexity of
Alg. 1 and of the local optimization algorithm, respectively,
where N is the number of signals to be processed by the
algorithms. Trivially, we have g(N) = Ω(N), where Ω(·)
is the asymptotic notation for lower bound [7], because the
algorithm must at least check the labels of all signals. The
worst-case complexity of Alg. 1 is attained when at each
node the optimal partition has size (1, N − 1). In this case,
the complexity satisfies the recurrence C(N) = C(N − 1) +

C(1) + g(N), which implies C(N) = Θ(N +
∑N
k=2 g(k)),

where Θ(·) is the two-sided asymptotic notation for com-
plexity bound [7]. However, the worst case scenario is not
likely to occur in large datasets. Therefore, we consider the
average case where at least a fraction γ ∈ (0, 1) of the signals
are in one set of the partition. The recurrence relation be-
comes C(N) = C(γN) +C((1−γ)N) + g(N), which implies
the following complexity bound

C(N) = Θ

(
N ·

(
1 +

∫ x

1

g(u)

u2
du

))
obtained using the Akra-Bazzi method [7]. Finally, note
that the hidden constants in the complexity bounds above
depend on the cardinality of the set of primitives considered
and the size of their parameterization.

6. CASE STUDIES
In this section, we present two case studies that illustrate

the usefulness and the computational advantages of the al-
gorithms. The first is an anomalous trajectory detection
problem in a maritime environment. The second is a fault
detection problem in an automotive powertrain system. The
automotive application is particularly appealing because the
systems involved are getting more and more sophisticated.
In a modern vehicle, several highly complex dynamical sys-
tems are interconnected and the methods present in litera-
ture may fail to cope with this complexity.

6.1 Maritime surveillance
This synthetic dataset emulates a maritime surveillance

problem, where the goal is to detect suspicious vessels ap-
proaching the harbor from sea by looking at their trajecto-
ries. It was developed in [19], based on the scenarios de-
scribed in [21], for evaluating their inference algorithms.

The trajectories are represented with planar coordinates
x(t) and y(t) and were generated using a Dubins’ vehicle
model with additive Gaussian noise. Three types of sce-
narios, one normal and two anomalous, were considered. In
the normal scenario, a vessel approaching from sea heads di-
rectly towards the harbor. In the first anomalous scenario, a
ship veers to the island and heads to the harbor next. This
scenario is compatible with human trafficking. In the second

Island

Land

Peninsula

Open
Sea

H
ar

b
o

r

Figure 2: Naval surveillance dataset [19]. The ves-
sels behaving normally are shown in green. The ma-
genta and blue trajectories represent two types of
anomalous paths.

anomalous scenario, a boat tries to approach other vessels in
the passage between the peninsula and the island and then
veers back to the open sea. This scenario is compatible with
terrorist activity. Some sample traces are shown in Fig. 2.
The dataset is composed of 2000 total traces, with 61 sam-
ple points per trace. There are 1000 normal traces and 1000
anomalous.

6.2 Fuel control system
We investigate a fuel control system for a gasoline engine.

A model for this system is provided as built-in example in
Simulink and we modified it for our purposes. This model
was initially used for Bayesian statistical model checking [27]
and has been recently proposed as benchmark for the hybrid
systems community [13]. We selected this model because it
includes all the complexities of real world industrial models,
but is still quick to simulate, i.e., it is easy to obtain a large
number of traces.

The key quantity in the model is the air-to-fuel ratio, that
is, the ratio between the mass of air and the mass of fuel in
the combustion process. The goal of the control system is
to keep it close to the “ideal” stoichiometric value for the
combustion process. For this system, the target air-fuel ra-
tio is 14.6, as it provides a good compromise between power,
fuel economy, and emissions. The system has one main out-
put, the air-to-fuel ratio, one control variable, the fuel rate,
and two inputs, the engine speed and the throttle command.
The system estimates the correct fuel rate to achieve the tar-
get stoichiometric ratio by taking into account four sensor
readings. Two are related directly to the inputs, the engine
speed and the throttle angle. The remaining two sensors
provide crucial feedback information: the EGO sensor re-
ports the amount of residual oxygen present in the exhaust
gas, and the MAP sensor reports the (intake) manifold ab-
solute pressure. The EGO value is related to the air-to-fuel
ratio, whereas the MAP value is related to the air mass
rate. The Simulink diagram is made of several subsystems
with different kinds of blocks, both continuous and discrete,

7

Instance Primitives Impurity Stopping
I1 P1 MGr Majority class rate

>0.975, Depth >4
I2 P2 IGr Depth >3

Table 1: Algorithm meta-parameters. Refer to
Sec. 5 for details.

among which there are look-up tables and a hybrid automa-
ton. Due to these characteristics, this model can exhibit a
rich and diverse number of output traces, thus making it an
interesting candidate for our investigation.

The base model, that is, the one included in Simulink, in-
cludes a very basic fault detection scheme and fault injection
mechanism. The fault detection scheme is a simple thresh-
old crossing test (within a Stateflow chart), and is only able
to detect single off range values. For avoiding the overlap of
two anomaly detection schemes, the built-in one has been re-
moved. In the base model, the faults are injected by simply
reporting an incorrect and fixed value for a sensor’s reading.
Moreover, these faults are always present from the beginning
of the simulation. We replaced this simple fault injection
mechanism with a more sophisticated unit. The new sub-
system is capable of inducing faults in both the EGO and
MAP sensors with a random arrival time and with a random
value. Specifically, the faults can manifest at anytime dur-
ing the execution (uniformly at random) and the readings of
the sensors affected are offset by a value that varies at ev-
ery execution. Finally, independent Gaussian noise signals,
with zero mean and variance σ2 = 0.01, have been added at
the output of the sensors.

For the fuel control system, 1200 total simulations were
performed. In all cases, the throttle command provides a
periodic triangular input, and the engine speed is kept con-
stant at 300 rad/sec (2865 RPM). The simulation time is
60 seconds. In details, we obtained: 600 traces where the
system was working normally; 200 traces with a fault in the
EGO sensor; 200 traces with a fault in the MAP sensor; 200
traces with faults in both sensors. For every trace, we col-
lected 200 samples of the EGO and MAP sensors’ readings.
Some sample traces are shown in Fig. 3. The average simu-
lation time to obtain a single trace was roughly 1 second.

7. IMPLEMENTATION AND RESULTS
We implemented and tested two different instances of Alg.1,

I1 and I2, defined by the choice of meta-parameters given in
Table 1. In the case of I1, the implementation was done in
MATLAB using standard libraries, employing the simulated
annealing optimization method [15], and run on a 3.5 GHz
processor with 16 GB RAM. As for I2, we used the SciPy li-
brary for Python, solving the optimization problem with its
implementation of the differential evolution algorithm [25],
and we tested it on similar hardware. 1

7.1 Maritime surveillance
We tested the I2 instance using a non stratified 10-fold

cross-validation with a random permutation of the data set,
obtaining a mean misclassification rate of 0.007 with a stan-
dard deviation of 0.008 and a run time of about 4 hours per

1The software is available at http://hyness.bu.edu/
Software.html

Figure 3: Fuel Control Dataset. Normal traces are
shown in green, anomalous traces are shown in red.

split. A sample formula learned in one of the cross-validation
splits is:

φI2 = (φI21 ∧ (¬φI22 ∨ (φI22 ∧ ¬φ
I2
3)))

∨ (¬φI21 ∧ (φI24 ∧ φ
I2
5))

φI21 = G[199.70,297.27)F[0.00,0.05)(x ≤ 23.60)

φI22 = G[4.47,16.64)F[0.00,198.73)(y ≤ 24.20)

φI23 = G[34.40,52.89)F[0.00,61.74)(y ≤ 19.62)

φI24 = G[30.96,37.88)F[0.00,250.37)(x ≤ 36.60)

φI25 = G[62.76,253.23)F[0.00,41.07)(y ≤ 29.90)

(7)

We can see in Fig. 4 how the thresholds for φ1 and φ2 capture
the key features of the data set. Notice also the insight we
can gain from their plain English translation: “Normal ves-
sels’ x coordinate is below 23.6 during the last 100 seconds,
i.e., they approach and remain at the port”, and “normal
vessels’ y coordinate never go below 24.2, i.e., they don’t
approach the island”. It is worth mentioning the second
term of the outer disjunction in φI2 , as it highlights a fea-
ture of the data set difficult to spot on the figures: some
normal vessels don’t reach the port (inspecting the data set,
some normal traces stop right after crossing the passage).
As usual when employing decision trees, deeper formulae
focus on finer details of the data set.

In the case of I1, we tested it using a 5-fold cross-validation,
obtaining a mean misclassification rate of 0.0040 and a stan-
dard deviation of 0.0029. The run time is about 16 minutes

8

x (dam)

0 10 20 30 40 50 60 70 80

y
 (

d
a
m

)

15

20

25

30

35

40

45
Naval scenario

Figure 4: Sample of the naval surveillance dataset.
Normal trajectories are green and anomalous tra-
jectories are red. We show in blue the boundaries
of φI21 and φI22 of Eq. (7).

per split. A sample formula learned in one of the splits is:

φI1 = (φI11 ∧φ
I1
2)∨(¬φI11 ∧((φI13 ∧(φI14 ∧φ

I1
5))∨(¬φI13 ∧φ

I1
6)))

φI11 = G[224,280)(x ≤ 18) φI12 = G[14.2,125)(y > 22)

φI13 = F[109,277)(y > 30.6) φI14 = G[279,293)(x ≤ 19.2)

φI15 = F[77.8,107)x > 41) φI16 = F[258,283)(x ≤ 29.5)
(8)

This dataset was also used in [19]. Unfortunately, it is not
possible to make a formal comparison between the formulae
learned by our approach and the ones in [19]. This is due to
the fact that iPSTL, defined in [19], and STLP1 (or STLP2)
do not represent the same STL fragment. However, it is
always possible to make a comparison in terms of sheer clas-
sification performance. In the comparison, it is clear that
we improve the misclassification rate by a factor of 20 while
spending a similar amount of execution time.

7.2 Fuel control
In this scenario, we tested both instances using the EGO

and MAP sensors’ readings (variables x1 and x2). We per-
formed a similar cross-validation for I2, resulting in a mean
misclassification rate of 0.054 with a standard deviation of
0.025 and a run time of about 15 hours per split. A sample
formula, obtained from one of the cross-validation splits, is:

φI2 = ¬φI21 ∧ φ
I2
2 ∧ φ

I2
3

φI21 = F[1.85,58.70)G[0.00,0.57)(x1 ≤ 0.13)

φI22 = G[11.35,59.55)F[0.00,0.03)(x1 ≤ 0.99)

φI23 = G[1.65,58.89)F[0.00,0.44)(x2 ≤ 0.90)

(9)

Notice in this case how the resulting subformulae are equiv-
alent to first-level primitives, suggesting that P2 is an overly
complicated set of primitives.

Regarding I1, using a 5-fold cross-validation, we obtained
a mean misclassification rate of 0.0350 and a standard devi-
ation of 0.0176. The run time is about 18 minutes per split.

A sample formula learned in one of the splits is:

φ1 = (φI11 ∧ (φI12 ∧ (φI13 ∧ φ
I1
4))) ∨ (¬φI11 ∧ (φI15 ∧ (φI16 ∧ φ

I1
7)))

φI11 = F[22,58.4)(x2 > 0.932) φI12 = G[29.3,59.6)(x2 < 0.994)

φI13 = G[56,58.3)(x1 > 0.0979) φI14 = G[49.9,55.3)(x1 < 0.863)

φI15 = G[39.5,58.4)(x2 > 0.193) φI16 = F[59.4,59.7)(x1 > 0.25)

φI17 = G[2.52,53.3)(x1 < 1.05)
(10)

In both case studies, the execution time of I2 is higher then
I1. This occurs because the instance I2 involves a more com-
plicated optimization problem. Specifically, I2 uses primi-
tives from P2 with 4 free parameters, whereas I1 uses prim-
itives with only 3 free parameters.

8. CONCLUSION
In this paper, we presented an inference framework of

timed temporal logic properties from time series data. The
framework defines customizable decision-tree algorithms that
output Signal Temporal Logic (STL) formulae as classifiers.
This work is in line with recent interest in Temporal Logic
Inference (TLI) and is motivated by the need to construct
classifiers which provide good performance and can be in-
terpreted over specific application domains. The proposed
algorithms are model-free and are suitable for inferring prop-
erties from time series data for problems such as anomaly
detection, monitoring, and application domains as diverse
as the automotive industry and maritime port security.

The proposed framework describes decision-tree learning
algorithms which may be customized by providing three
components: (a) a set of primitive properties of interest;
(b) an impurity measure which captures the node’s homo-
geneity; and (c) stopping conditions for the algorithm. The
performance advantage of the proposed procedures is due
to the incremental nature of growing STL formulae repre-
sented as trees. Moreover, the problem of finding optimal
primitives becomes easier as a procedure grows a tree. This
follows from the fact that a node’s optimization problem has
always a fixed number of parameters and the data is parti-
tioned between the two children of the node. Another con-
tribution of the paper is the definition of extended versions
of the classical impurity measures such that these take into
account the robustness degrees of signals. We argue that
the extended versions of the impurity measures increase the
generalization capability of the resulting formulae.

In the paper, we test two possible instances of the frame-
work (form a possibly very large set of choices) on two case
studies in the maritime security and automotive fields. We
show that the algorithms are able to capture relevant timed
properties in both cases. The quality of the computed STL
formulae is assessed using the misclassification rate averaged
over multiple test folds.

Future work includes extending the proposed framework
to online mode, where traces are provided incrementally, in-
stead of a single batch of signals available from the beginning
of the learning procedure. We plan to perform a comprehen-
sive comparative study of the framework for multiple choices
of primitive formulae sets and impurity measures, tested on
case studies of varying complexity. Future work will also fo-
cus on improving the local optimization procedures, which
will boost the overall performance of the framework.

9

9. ACKNOWLEDGMENTS
This work was partially supported by DENSO CORPO-

RATION and by the Office of Naval Research under grant
N00014-14-1-0554.

10. REFERENCES
[1] E. Asarin, A. Donzé, O. Maler, and D. Nickovic.

Parametric identification of temporal properties. In
Runtime Verification, pages 147–160. Springer, 2012.

[2] E. Bartocci, L. Bortolussi, L. Nenzi, and
G. Sanguinetti. System design of stochastic models
using robustness of temporal properties. Theoretical
Computer Science, 587:3–25, July 2015.

[3] E. Bartocci, L. Bortolussi, and G. Sanguinetti.
Data-driven statistical learning of temporal logic
properties. In Formal Modeling and Analysis of Timed
Systems, pages 23–37. Springer, 2014.

[4] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. CRC press,
1984.

[5] S. Bufo, E. Bartocci, G. Sanguinetti, M. Borelli,
U. Lucangelo, and L. Bortolussi. Temporal Logic
Based Monitoring of Assisted Ventilation in Intensive
Care Patients. In Leveraging Applications of Formal
Methods, Verification and Validation, number 8803 in
Lecture Notes in Computer Science, pages 391–403.
Springer, Oct. 2014.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
Detection: A Survey. ACM Comput Surv,
41(3):15:1–15:58, July 2009.

[7] T. H. Cormen. Introduction to Algorithms. MIT Press,
third edition, July 2009.

[8] A. Donzé, T. Ferrere, and O. Maler. Efficient robust
monitoring for STL. In Computer Aided Verification,
pages 264–279. Springer, 2013.

[9] A. Donzé and O. Maler. Robust Satisfaction of
Temporal Logic over Real-Valued Signals. In
K. Chatterjee and T. A. Henzinger, editors, Formal
Modeling and Analysis of Timed Systems, number
6246 in Lecture Notes in Computer Science, pages
92–106. Springer Berlin Heidelberg, 2010.

[10] G. E. Fainekos and G. J. Pappas. Robustness of
temporal logic specifications for continuous-time
signals. Theor. Comput. Sci., 410(42):4262–4291, Sept.
2009.

[11] E. A. Gol, E. Bartocci, and C. Belta. A formal
methods approach to pattern synthesis in reaction
diffusion systems. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, pages
108–113. IEEE, 2014.

[12] R. Grosu, S. A. Smolka, F. Corradini, A. Wasilewska,
E. Entcheva, and E. Bartocci. Learning and detecting
emergent behavior in networks of cardiac myocytes.
Commun. ACM, 52(3):97–105, 2009.

[13] B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for
temporal logic requirements for automotive systems.
Proc Appl. Verification Contin. Hybrid Syst., 2014.

[14] L. Hyafil and R. L. Rivest. Constructing optimal
binary decision trees is NP-complete. Information
Processing Letters, 5(1):15–17, May 1976.

[15] L. Ingber. Adaptive simulated annealing (ASA):
Lessons learned. Control Cybern., 25:33–54, 1996.

[16] R. Isermann. Fault-diagnosis systems. Springer, 2006.

[17] X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia.
Mining Requirements from Closed-Loop Control
Models. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., PP(99):1–1, 2015.

[18] A. Jones, Z. Kong, and C. Belta. Anomaly detection in
cyber-physical systems: A formal methods approach.
In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pages 848–853. IEEE, 2014.

[19] Z. Kong, A. Jones, and C. Belta. Temporal Logics for
Learning and Detection of Anomalous Behaviors.
IEEE Trans. Autom. Control, 2016. inpress.

[20] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol,
and C. Belta. Temporal Logic Inference for
Classification and Prediction from Data. In
Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, HSCC ’14,
pages 273–282, New York, NY, USA, 2014. ACM.

[21] K. Kowalska and L. Peel. Maritime anomaly detection
using Gaussian Process active learning. In 2012 15th
International Conference on Information Fusion
(FUSION), pages 1164–1171, July 2012.

[22] O. Maler and D. Nickovic. Monitoring Temporal
Properties of Continuous Signals. In Y. Lakhnech and
S. Yovine, editors, Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems,
number 3253 in Lecture Notes in Computer Science,
pages 152–166. Springer Berlin Heidelberg, 2004.

[23] J. R. Quinlan. C4.5: Programs for Machine Learning.
Elsevier, June 2014.

[24] B. D. Ripley. Pattern recognition and neural networks.
Cambridge university press, 1996.

[25] R. Storn and K. Price. Differential Evolution – A
Simple and Efficient Heuristic for global Optimization
over Continuous Spaces. Journal of Global
Optimization, 11(4):341–359, Dec. 1997.

[26] H. Yang, B. Hoxha, and G. Fainekos. Querying
Parametric Temporal Logic Properties on Embedded
Systems. In Testing Software and Systems, number
7641 in Lecture Notes in Computer Science, pages
136–151. Springer, 2012.

[27] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian
statistical model checking with application to
Stateflow/Simulink verification. Form Methods Syst
Des, 43(2):338–367, Aug. 2013.

10

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset -1.70, 722.17 Width 91.12 Height 70.68 points
 Mask co-ordinates: Horizontal, vertical offset 12.77, 700.88 Width 55.36 Height 31.51 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 -1.7032 722.1667 91.1239 70.6849 12.7744 700.8761 55.3557 31.5102

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 0
 1

 1

 HistoryList_V1
 qi2base

