
A Formal Approach to Deployment of Robotic
Teams in an Urban-Like Environment

Yushan Chen, Xu Chu Ding, Alin Stefanescu, and Calin Belta

Abstract. We present a computational framework for automatic synthesis of con-
trol and communication strategies for a robotic team from task specifications given
as regular expressions about servicing requests in an environment. Our approach is
based on two main ideas. First, we extend recent results from formal synthesis of
distributed systems to check for the distributability of the task specification and to
generate local specifications, while accounting for the service and communication
capabilities of the robots. Second, by using a technique inspired from LTL model
checking, we generate individual control and communication strategies. We illus-
trate the method with experimental results in our Robotic Urban-Like Environment.

1 Introduction

The goal in robot motion planning and control is to be able to specify a motion task
in a rich, high level language and have the robot(s) automatically convert this speci-
fication into a set of low level primitives, such as feedback controllers and commu-
nication protocols, to accomplish the task [13, 5, 14]. In most of the existing works,
the motion planning problem is simply specified as “go from A to B while avoiding
obstacles” [13]. However, there are situations in which this is not enough to capture
the nature of the task. Consider, for example, the miniature Robotic Urban-Like En-
vironment (RULE) shown in Fig. 1, where a robot might be required to “Visit Road
R1 or Road R2 without crossing Intersection I3, and then park in an available park-
ing space,” while at same time obeying the traffic rules. Such a “rich” specification
cannot be trivially converted to a sequence of “go from A to B” primitives.

Yushan Chen · Xu Chu Ding · Calin Belta
Boston University, Boston, MA, US
e-mail: {yushanc,xcding,cbelta}@bu.edu

Alin Stefanescu
University of Pitesti, 110040 Pitesti, Romania
e-mail: alin.stefanescu@upit.ro

A. Martinoli et al. (Eds.): Distributed Autonomous Robotic Systems, STAR 83, pp. 313–327.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{yushanc,xcding,cbelta}@bu.edu
alin.stefanescu@upit.ro

314 Y. Chen et al.

When several robots are available, the problem becomes even more interesting
and challenging. Assume that several service requests occur at different locations
in the city, and they need to be serviced subject to some temporal and logical con-
straints. Some of these requests can be serviced by one (possibly specific) robot,
while others require the collaboration of two or more (possibly specific) robots.
For example, assume that the task is to assemble a piece of machinery in location
P1 or P2 from two components that can be found at P3 and P4. The assembly re-
quires the cooperation of two robots, and the collection of the components needs to
be performed in parallel. Can we generate provably-correct individual control and
communication strategies from such rich, global specifications? This is the problem
that we address in this paper.

It has been advocated as far back as [1] and more recently in [15,8,24] that tem-
poral logics, such as Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) [6], can be used as “rich” specification languages in mobile robotics. All of
the above works suggest that the corresponding formal verification (model check-
ing) algorithms can be adapted for motion planning and controller synthesis from
such specifications. Some related works show that such techniques can be extended
to multi-agent systems through the use of parallel composition [18, 12] or reactive
games [9]. However, such bottom-up approaches are expensive and can lead to state-
space explosion even for relatively simple problems. As a result, one of the main
challenges in the area of motion planning and control of distributed teams based on
formal verification is to create provably-correct, top-down approaches in which a
global, “rich” specification can be decomposed into local (individual) specifications,
which can then be used to automatically synthesize robot control and communica-
tion strategies. In such a framework, the construction of the parallel composition
of the individual motions is not necessary, and therefore the state-space explosion
problem is avoided.

In this paper, we draw inspiration from the area of distributed formal synthe-
sis [17] to develop such a top-down approach. We consider a team of robots that can
move among the regions of a partitioned environment, and which have known ca-
pabilities of servicing a set of requests that can occur in the regions of the partition.
Some of these requests can be serviced by a robot individually, while some require
the cooperation of groups of robots. We present an algorithm that allows for the
fully automatic synthesis of robot control and communication strategies from a task
specification given as a regular expression over the set of requests. For simplicity
of presentation, we model the environment as a graph and the robots as agents that

Fig. 1 Robotic Urban-
Like Environment (RULE).
Khepera III car-like robots
move autonomously on
streets while staying in their
lanes, obeying traffic rules,
and avoiding collisions.

A Formal Approach to Deployment of Robotic Teams 315

can move between adjacent vertices and can communicate only when at particular
vertices. This framework is quite general and can be used in conjunction with cell
decomposition motion planning techniques [5]. In particular, by using feedback con-
trollers for facet reachability in polytopes [10, 2], this scenario can be extended to
robots with continuous dynamics moving in environments with polytopic partitions.

The contribution of this work is threefold. First, we develop a top-down
computational framework for automatic deployment of mobile agents from global
specifications given as regular expressions over environmental requests. This is a
significant extension of our recent work [3] by enlarging the class of specifica-
tions for which a solution exists. Second, we provide a relaxation to the standard
problem of distributed synthesis modulo synchronous products and language equiv-
alence [17]. Specifically, we show how a satisfying distributed execution can be
found when the global specification is only a traced-closed language, rather than a
product language. This extends our previous work [22], in which we provided two
heuristics for the case of asynchronous automata. Third, we implement and illustrate
the computational framework in our Khepera-based Robotic Urban-Like Environ-
ment (Fig. 1). In this experimental setup, the robots can be automatically deployed
from specifications given as regular expressions over requests occurring at regions
in the city.

2 Preliminaries

Throughout this paper, we assume that the reader is familiar with automata theory
[11,20]. In this section, we merely review some concepts and introduce the notation.

For a set Σ , we use |Σ | and 2Σ to denote its cardinality and power set, respectively.
A collection of subsets Δ = {Σi ⊆Σ , i∈ I} is called a distribution over Σ if

⋃
i∈I Σi =

Σ , where I is an index set. A word is a sequence of symbols from Σ . We denote Σ∗
as the set of all finite words over Σ . A language is a set of words.

Definition 1. A finite state automaton (FSA) is a tuple A = (Q,q0,Σ ,→A,F), where
Q is the set of states, q0 ∈ Q is the initial state, Σ is the set (alphabet) of actions,
→A∈ Q×Σ ×Q is the transition relation, and F ⊆ Q is the set of accepting states.
We also write q

σ−→A q′ to denote (q,σ ,q′) ∈→A.

We denote L (A) as the language accepted by an FSA A. The language of an FSA is
called a regular language, which can be concisely represented by a regular expres-
sion (RE). Given an RE, an FSA accepting all and only the words satisfying the RE
can be constructed by using an off-the-shelf tool, such as JFLAP [19].

Definition 2. The synchronous product of n FSAs Ai = (Qi,q0i ,Σi,→Ai ,Fi), denoted
by ‖n

i=1 Ai, is an FSA A = (Q,q0,Σ ,→A,F), where Q = Q1 ×Q2 × . . .×Qn, q0 =
(q01 ,q02 , . . . ,q0n), Σ = ∪n

i=1Σi, and F = F1 ×F2 × . . .×Fn. The transition relation

→A⊆Q×Σ ×Q is defined by q
σ−→A q′ iff ∀ i∈ Iσ : q[i] σ−→Ai q′[i] and ∀ i /∈ Iσ : q[i] =

q′[i], where q[i] denotes the ith component of q and Iσ = {i ∈ {1, . . . ,n} | σ ∈ Σi}.

316 Y. Chen et al.

For convenience, in the particular case when Σ1 = Σ2 = Σ , we use A1×A2 to denote
‖2

i=1 Ai. Moreover, L (A×B) = L (A)∩L (B) ([20]). An FSA ¬A is defined as an
FSA that accepts the language L (A) where L (A) := Σ∗\L (A).

For a word w ∈ Σ∗ and a subset S ⊆ Σ , we denote by w �S the projection of w
onto S, which is obtained by erasing all actions σ in w that do not belong to S. For
a language L ⊆ Σ∗ and a subset S ⊆ Σ , we denote by L �S the projection of L onto
S, which is given by L �S:= {w �S | w ∈ L}. Starting from the observation that the
projection of a regular language is a regular language, the projection of an FSA A on
a subset S ⊆ Σ is another FSA (denoted by A �S) accepting the language L (A) �S,
through ε-closure, determinization and minimization ([21]).

Definition 3. Given a distribution Δ of Σ , the product of a set of languages Li over
Σi is denoted by ‖i∈I Li and defined as ‖i∈I Li := {w ∈ Σ∗ | w �Σi∈ Li for all i ∈ I}.
A product language over a distribution Δ of Σ is a language L such that L =‖i∈I Li,
where Li = L �Σi for all i ∈ I.

Definition 4. Given a distribution Δ of Σ and w,w′ ∈ Σ∗, we say that w is trace-
equivalent to w′ (w ∼Δ w′) iff w �Σi= w′ �Σi ,∀i ∈ I. We denote by [w]Δ the trace-
equivalence class of w ∈ Σ∗. A trace-closed language over a distribution Δ of Σ is
a language L such that for all w ∈ L, [w]Δ ⊆ L.

The class of trace-closed languages is closed under the operations of union, inter-
section and complementation. Note that a product language is trace-closed (but the
converse is not true) ([16, 21, 23]).

3 Problem Formulation and Approach

Let
E = (V,→E) (1)

be an environment graph, where V is the set of vertices and →E⊆V ×V is a relation
modeling the set of edges. For example, E can be the quotient graph of a partitioned
environment, where V is a set of labels for the regions in the partition, and →E is
the corresponding adjacency relation. In particular, V can be a set of labels for the
roads, intersections, and parking spaces in an urban-like environment and →E can
show how these are connected (see Fig. 2). Assume we have a team of mobile robots
Ai, i ∈ I, whose motions are restricted by E , where I is a set of robot labels.

Let Σ be a set of service requests, or actions to be performed at the vertices of
E . The locations of the service requests are defined as a function a : Σ → V (i.e.,
different requests can occur at the same vertex but vertices do not share requests).
There may be no request at some vertices of E .

We model the capacity of the robots to service requests and cooperation among
robots as a distribution Δ over Σ (i.e.∪i∈IΣi = Σ). Σi is the set of requests that can be
serviced by the robot Ai. For a given request σ ∈ Σ , we define Iσ = {i ∈ I |σ ∈ Σi},
i.e., Iσ is the set of labels of all the agents that can service request σ . The semantics

A Formal Approach to Deployment of Robotic Teams 317

of this distribution is defined as follows. For an arbitrary request σ , if |Iσ | = 1 (i.e.,
there is only one agent that owns it), the agent can (and should) service the request
by itself, independent of the other agents. If |Iσ | > 1, all the agents Ai with i ∈ Iσ
must service the request simultaneously. An agent is said to service a request σ if
it visits the vertex a(σ). We assume that two or more robots can communicate only
when they are at vertices at which shared requests occur.

We model the motion capabilities of each agent Ai, i ∈ I on the environment
graph E as a transition system Ti, defined as follows:

Ti = (V,v0i ,→i,Π ,�i), i ∈ I, (2)

where v0i ∈ V is the initial state representing the initial location of Ai, →i⊆ V ×V
is a reflexive transition relation satisfying →i⊆→E ∪v∈V {(v,v)}, Π = Σ ∪{ε} is a
finite set of observations, ε is the empty request, and �i⊆ V ×Π is a satisfaction
relation where (v,ε) ∈�i,∀v ∈ V and (v,σ) ∈�i, σ ∈ Σi, iff a(σ) = v. A transi-
tion (v,v′) ∈→ is also denoted by v → v′. For an arbitrary state v ∈ V , we define
Πv = {π ∈ Π | (v,π) ∈�} ∈ 2Π as the set of all observations satisfied at v. A trajec-
tory of Ti is a sequence v(0)v(1) . . .v(n) with the property that v(0) = v0i , v(i) ∈V ,
and (v(i) → v(i+1)), ∀i � 0. We say a trajectory v = v(0)v(1) . . .v(n) of Ti satisfies
a word w = w(0)w(1) . . .w(n) if w(i) ∈ Πv(i), ∀i � 0. In other words, the motion
of robot Ai is restricted by the transition relation →i, which captures motion con-
straints in addition to →E . The locations of the requests in the environment are cap-
tured by relation �i. As it will become clear later, each vertex satisfying ε captures
that a robot can pass through a vertex without servicing any request.

Definition 5. A motion and service plan (or MS plan for short) for robot Ai, i ∈ I
is a word msi ∈ (V ∪Σi)∗ that satisfies the following conditions: (1) msi(1) = v0i ,
(2) if msi(j) ∈ Σi, then msi(j − 1) ∈ V and msi(j) ∈ Πmsi(j−1) (i.e. msi(j − 1) =
a(msi(j))), for all j > 1 and (3) msi �V is a trajectory of Ti. A motion plan for robot
Ai, i ∈ I, defined as mi = msi �V , can be obtained from the MS plan by deleting all
request entries msi(j) ∈ Σi. Similarly, a service plan for robot Ai, i ∈ I, is defined
as si = msi �Σi , can be obtained from the MS plan by deleting all motion entries
msi(j) ∈V .

The semantics of an MS plan is as follows. A vertex entry msi(j) ∈ V means that
the vertex msi(j) should be visited. A request entry msi(j) ∈ Σi, means that robot
Ai should service request msi(j) at vertex msi(j− 1). A request entry msi(j) ∈ Σi,
where |Imsi(j)| > 1, following a vertex entry msi(j − 1) ∈ V , triggers a wait-and-
leave protocol (i.e. synchronization across the robots that share the same request
msi(j), where |Imsi(j)| > 1): while at msi(j−1), robot Ai broadcasts request msi(j)
and listens for broadcasts of msi(j) from all agents A j, j ∈ Imsi(j) \ {i}. When they
are all received, the request msi(j) is serviced and then Ai moves to the next vertex.

Remark 1. Note that one robot only needs to synchronize (communicate) with other
robots that share a request σ with it, where |Iσ | > 1, before servicing this shared
request. The loose synchronization enables parallel executions of individual agents
(i.e. the requests that are not shared by the same robot can be serviced in parallel).

318 Y. Chen et al.

Note that by the definition (conditions (2) and (3)) of an MS plan msi, the motion
plan mi = msi �V is a trajectory of Ti satisfying a word wi ∈ (Σi ∪ ε)∗, where its
corresponding service plan si = msi �Σi is equal to wi �Σi . We say that a word si can
be implemented by the robot Ai if there exists a MS plan msi such that msi �Σi= si.

Given a set of service plans {si, i ∈ I} for the robot team, there may exist many
possible sequences of requests serviced by the team due to parallel executions of
individual agents (we do not assume that we know the time it takes for each agent
to service requests). For a given set of MS plans msi, i ∈ I, we denote

Lteam
MS ({msi, i ∈ I}) :=‖i∈I {si}, where si = msi �Σi , (3)

(see Def. (3)) as the set of all possible sequences of requests serviced by the team
of robots Ai, i ∈ I while they follow their individual MS plans msi. For simplicity of
notations, we usually denote Lteam

MS ({msi, i ∈ I}) as Lteam
MS when there is no ambiguity.

We say that the motion of the team with MS plans {msi, i∈ I} satisfies a specification
given as an RE φ over Σ if Lteam

MS �= /0 and all words in Lteam
MS satisfy φ (i.e. Lteam

MS ⊆
L (A), where A is an FSA accepting only the words satisfying φ). We are now ready
to formulate the main problem:

Problem 1. Given a team of agents Ai, i ∈ I with motion capabilities Ti (Eqn. (2)),
a set of service requests Σ , a task specification φ in the form of an RE over Σ , and
a distribution Δ over Σ , find a set of MS plans {msi, i ∈ I} such that the motion of
the team satisfies φ .

Remark 2. For a set of MS plans, the corresponding Lteam
MS could be an empty set by

the definition of product of languages (since there may not exist a word w ∈ Σ∗ such
that w �Σi= si,∀i ∈ I). In practice, this case corresponds to a scenario where one (or
more) agent waits indefinitely for other agents to service a request σ that is shared
among these agents. For example, if σ does not appear in the service plan of one of
the agent who owns σ but it appears in the service plans of some other agents, then
all those agents will be stuck in a “deadlock” state and wait indefinitely. When such
a deadlock scenario occurs, the motion of the team does not satisfy the specification.

Remark 3. We made some apparently restrictive assumptions in the formulation of
Prob. 1: we assumed that the vertices do not share requests and that the robots can
communicate only when they are in the same vertex. They are made for the sim-
plicity of notation. To relax the first assumption, we can use a relation instead of a
function to define the locations of requests. The second assumption can be relaxed
by introducing a communication relation on V (i.e. a communication graph).

In the case that Prob. 1 has a solution, for each MS plan msi, a robot generates a
control and communication strategy, which is a finite sequence of control primi-
tives, interrupts, and communication protocols. To guarantee the uniqueness of this
strategy, we assume that each robot is equipped with a set of motion primitives (feed-
back controllers), such that the selection of a motion primitive at a vertex uniquely
determines the next vertex, given that the robot is properly initialized and the his-
tory of visited vertices is known. In other words, we assume that Ai can follow any
trajectory of Ti (see Sec. 5).

A Formal Approach to Deployment of Robotic Teams 319

Our approach to solve Prob. 1 can be summarized as follows. We first generate an
“implementable” FSA for each robot, which captures all the possible service plans
that can be implemented by the robot (Sec. 4.1). Then, if the language satisfying the
global specification φ is trace-closed, we generate a solution to the problem. Other-
wise, we attempt to construct an FSA whose language is trace-closed and satisfies
the global specification. If we succeed (the language of this FSA is not empty), then
we use it to generate a solution (Sec. 4.2.) Our overall approach is summarized as a
provably-correct algorithm in Sec. 4.2.

In our previous work [3], we provided a solution to Prob. 1 by following the
“standard” approach to distributed synthesis modulo synchronous products and lan-
guage equivalence [17]. As a result, our approach was conservative, since we could
only generate a solution for the particular case when the language satisfying φ was a
product language (Def. 3). In this paper, we show that we can find a solution to Prob.
1 if the language satisfying φ is trace-closed. Since trace-closed languages are less
restrictive than product languages (i.e. product languages are trace-closed but not
vice versa), we significantly reduce the conservatism from our previous approach.
In addition, our current approach is less expensive. Indeed, checking whether a lan-
guage is trace-closed is linear in the size of the FSA accepting the language, while
checking whether a language is a product language is PSPACE-complete [21].

4 Synthesis of Local MS Plans from the Global Specification

We omit all the proofs in this section due to space limitations. They are available in
our detailed technical report [4].

4.1 Synthesis of the Local Implementable Specifications

We begin with the conversion of the specification φ over Σ to a minimal and de-
terministic FSA A = (Q,q0,Σ ,→,F), which accepts exactly the language over Σ
that satisfies φ (using JFLAP [19]). We call A the global specification. Given the
distribution Δ , we assign requests to each agent. Specifically, we construct a set
of projected FSAs Ai = (Qi,q0i ,Σi,→Ai ,Fi) whose languages are the projections of
L (A) onto the local alphabets Σi, i ∈ I (see Sec. 2). The projected FSAs are used as
a starting point to find a solution to Prob. 1 because of the following proposition.

Proposition 1. If a set of MS plans {msi, i∈ I} is a solution to Prob. 1, then its corre-
sponding service plans si = msi �Σi are accepted words of Ai (i.e. si ∈L (Ai),∀i ∈ I).

However, to provide a provably correct solution for Prob. 1, it is not sufficient to
simply choose an arbitrary accepted word from the projected FSAs Ai to be a service
plan si. We need to make sure that (1) the service plan si can be implemented by
robot Ai and (2) all possible sequences of requests serviced by the team satisfy φ .
To satisfy the first requirement, we aim to find an FSA AE

i for each i ∈ I such that
the language of AE

i equals all the accepted words of Ai that can be implemented

320 Y. Chen et al.

by the agent Ai in the environment. We address the second requirement in the next
sub-section.

To obtain AE
i , we first construct a new FSA Âi from Ai by adding the action ε to

Σi and self-transitions (q,ε,q) to each state q ∈ Qi. For a robot, the action ε means
that no request is serviced. We denote the set of all these self transitions by →εi .
The FSA Âi, i ∈ I, can now be defined as:

Âi = (Q̂i, q̂0i , Σ̂i,→Âi
, F̂i), (4)

where Q̂i = Qi, q̂0i = q0i , Σ̂i = Σi ∪{ε}, →Âi
=→Ai ∪→εi , and F̂i = Fi.

It is important to note that these self-transitions do not affect the semantics of Ai,
since they mean that if no request is served by robot Ai, then the state of the Ai re-
mains the same. Given a word ŵ ∈L (Âi), we can obtain a word w = ŵ �Σi∈L (Ai).
Note that the input ε corresponds to the observation ε in the transition system Ti and
the set of inputs Σ̂i of Âi is a subset of the observations Π of Ti.

To restrict the trajectories of a TS Ti with a set of observations Π to the language
accepted by an FSA with a set of actions Σ̂i ⊆ Π , we define the following product
automaton, which is inspired from LTL model checking [6]:

Definition 6. (Adapted from [8]) The product automaton Pi = Ti ⊗ Âi between the
transition system Ti = (V,v0i ,→i,Π ,�i) and the FSA Âi = (Q̂i, q̂0i , Σ̂i,→Âi

, F̂i), is

an FSA Pi = (QPi ,q0Pi
,ΣPi ,→Pi ,FPi), where QPi = V × Q̂i, q0Pi

= (v0i , q̂0i) is the set

of initial states, ΣPi = Σ̂i ⊆ Π is the set of inputs and FPi = V × F̂i is the set of
accepting (final) states. The transition relation →Pi⊆ QPi ×ΣPi ×QPi is defined as

(v,q)
σPi−−→Pi (v′,q′) iff v →i v′,q

σPi−−→Âi
q′ and σPi ∈ Πv.

A transition (v,q) σ−→P (v′,q′) of Pi exists iff (v,v′) ∈→i and request σ occurs at
vertex v, i.e. a(σ) = v. Transitions with input ε mean that a robot is moving from
one vertex v to vertex v′ (v may be equal to v′) without servicing any request. rPi =
(vi(0), q̂i(0)) . . . (vi(n), q̂i(n)), where q̂i(j) ∈ Q̂i, vi(j)∈V and j ∈ {1, . . . ,n} is a run
accepted by the product automaton Pi, i ∈ I. We define the projection of rPi onto Ti

as γTi(rPi) = vi(0) . . .vi(n). The following proposition shows that we can use a run
of Pi to find a trajectory of Ti satisfying the local specification (a word of L (Âi)).

Proposition 2. Given any word wÂi
∈ L (Âi), there exist at least one trajectory of

Ti satisfying wÂi
iff wÂi

∈ L (Pi).

Finally, we obtain AE
i that captures L (Pi) by removing environment information

stored in Pi. To achieve this, we collapse the states of Pi, by taking ε-closure, de-
terminizing, and minimizing Pi. The interested readers are referred to [11] for more
details about these procedures. Thus, given a word w ∈ L (AE

i), there exists a word
w′ ∈L (Pi) such that w′ �Σi= w. Using this fact, the following proposition shows that
AE

i captures the largest subset of L (Ai) which can be implemented by the robot Ai

in the environment.

A Formal Approach to Deployment of Robotic Teams 321

Proposition 3. A word wE
i ∈ L (Ai), i ∈ I, can be used to generate a MS plan msi

for Ai, such that msi �Σi= wE
i , if and only if wE

i ∈ L (AE
i).

4.2 Synthesis of Individual MS Plans

To solve Prob. 1, we need to guarantee that all possible sequences of request ser-
viced by the team of robots following their MS plans satisfy the global specifica-
tion. More specifically, we aim to find a set of service plans {si, i ∈ I} such that
‖i∈I {si} ⊆ L (A) and ‖i∈I {si} �= /0. The following proposition shows that a trace-
closed language is sufficient to satisfy this requirement and provide a solution to
Prob. 1:

Proposition 4. Given a language L and a distribution Δ of Σ , if L is a trace-closed
language and w ∈ L, then ‖i∈I {w �Σi} ⊆ L.

Our approach aims to construct an FSA AG whose language is both trace-closed and
included in L (A). By Prop. 4, an arbitrary word accepted by AG can be used to gen-
erate a set of service plans satisfying the desired requirement by projecting this word
onto the given distribution Δ . Furthermore, we use the synchronous product (SP) of
the local implementable specifications generated in the previous sub-section to en-
sure that the obtained service plans can be implemented by individual agents. This
is achieved by taking product of automata, which produces intersection of regular
languages.

Specifically, to find AG, we first check if L (A) is trace-closed. An algorithm
that checks this property for an arbitrary FSA can be found in [4]. If L (A) is
trace-closed, then we define AG = A× ‖i∈I AE

i . Otherwise, we define AG = ¬(‖i∈I

Bi)× ‖i∈I AE
i , where Bi = B �Σi and B =‖i∈I AE

i × (¬A). In this second case, AG

is constructed specifically to remove words w ∈ L (‖i∈I AE
i) that cannot be used

to generate desired individual service plans for the robots (i.e. ‖i∈I {si = w �Σi} �
L (A)). The following proposition shows that AG satisfies the desired requirement.

Proposition 5. L (AG) is a trace-closed language and L (AG) ⊆ L (A).

If L (AG) is not empty, then a solution to Prob. 1 can be found by picking any
accepted word of AG. In this paper, we obtain this word wg by using a backward
reachability search starting from the set of accepting states and ending at the ini-
tial state. In a particular application, any optimization criterion can be used. Once
obtained, wg is projected onto the given distribution to generate a set of MS plans.

The overall approach proposed in this section is summarized in Alg. 1. In the
following theorem, we show that the solution obtained by Alg. 1 is provably correct.

Theorem 1. If L (AG) �= /0, then Alg.1 returns a solution to Prob. 1, i.e. , a set of
MS plans {msi, i ∈ I} such that Lteam

MS ⊆ L (A) and Lteam
MS �= /0.

Remark 4 (Completeness). In the case that L (A) is trace-closed, our approach is
complete in the sense that we find a solution to Prob. 1 if one exists. This follows

322 Y. Chen et al.

Algorithm 1. Construction of a set of MS plans from a global specification
Input: A RE φ , a distribution Δ , and a set of TS {Ti = (V,v0i ,→i,Π ,�i), i ∈ I}
1: Convert φ to a deterministic and minimal FSA A and construct {Ai, i ∈ I} (Ai = A �Σi

,∀i ∈ I)
2: Construct {Âi, i ∈ I} from {Ai, i ∈ I} (Eqn. 4) and {Pi = Âi ⊗Ti, i ∈ I} (Def. 6)
3: Take ε-closure, determinize, and minimize Pi to obtain {AE

i , i ∈ I}, where L (AE
i) =

L (Pi)
4: Construct ‖i∈I AE

i , which is the synchronous product of AE
i

5: if L (‖i∈I AE
i) = /0, return no solution exists

6: if L (A) is trace-closed, AG = A×‖i∈I AE
i else AG =¬(‖i∈I ((‖i∈I AE

i ×(¬A)) �Σi))×‖i∈I

AE
i

7: if L (AG) = /0, return no solution found
8: Find a word wg ∈ L (AG) and obtain a set of local words wloc

i = wg �Σi

9: Construct {Âloc
i , i ∈ I} (Eqn. 4) from {Aloc

i , i ∈ I}, where L (Aloc
i) = wloc

i ,∀i ∈ I

10: Construct {Ploc
i = Âloc

i ⊗Ti, i ∈ I} and find the accepted runs {rPloc
i

, i ∈ I} and the corre-
sponding accepted words {wi = wi(0) . . .wi(n), i ∈ I}.

11: Obtain {rTi = γTi(rPloc
i

) = vi(0) . . .vi(n + 1), i ∈ I} and {msi =
vi(0)wi(0) . . .vi(n)wi(n) �V∪Σi , i ∈ I}

12: return a set of words {msi, i ∈ I}

directly from Prop. 3 and the definition of product of languages. If L (A) is not
trace-closed, a complete solution to Prob. 1 requires one to find a non-empty trace-
closed subset of L (A) if one exists. This problem is undecidable (the proof is in [4]).
Therefore, our overall approach to Prob. 1 is not complete.

Remark 5 (Complexity). Checking if a language of a DFA A is trace-closed is lin-
ear in the size of A (this can be readily seen from the algorithm checking language
trace-closedness in [4]). The overall complexity of Alg. 1 also depends on the con-
struction of ‖i∈I AE

i and the size of AG. Note that the construction of ‖i∈I AE
i and

the size of AG are not related to the size of the transition system Ti but only with
Ai, which depends on the global DFA A and the distribution Δ . This fact substanti-
ates the statement made in the introduction that we avoid constructing the parallel
composition of the individual motions (represented by Ti) to prevent state-space ex-
plosion, and therefore our method scales well with the number of agents in the team.
A detailed complexity analysis can be found in our technical report [4].

5 Automatic Deployment in the RULE

In our implementation, the global specification φ is first converted to the minimal
DFA A by using JFLAP [19]. The rest of Alg. 1 is implemented in MATLAB: (1)
we take a global DFA A, a distribution Δ and a set of transition systems Ti as inputs
and output a set of individual MS plans for the robotic team; (2) we use Dijkstra’s
algorithm (see [7]) to find a word or a run accepted by an FSA by assuming that each
transition of the FSA has default cost 1; if the algorithm fails to find an accepted

A Formal Approach to Deployment of Robotic Teams 323

run, the language of this FSA is empty; (3) we implement the standard algorithm
(see [11]) for taking ε-closure, determinizing a ε-NFA and minimizing a DFA. The
output of Alg. 1 is then mapped to control and communication strategies (described
in Sec. 3) through the use of motion primitives.

In this section, we show how our solution to Prob. 1 can be used to deploy a team
of robots using a rich specification to service requests occurring in a miniature city.
Our Robotic Urban-Like Environment (RULE) shown in Fig. 2 is a collection of
roads, intersections, and parking lots, which are connected following a simple set of
rules (e.g., a road connects two (not necessarily different) intersections, the parking
lots can only be located on the side of (each bound of) a road). Each intersection
has traffic lights that are synchronized in the usual way. A desktop computer is used
to remotely control the traffic lights through XBee wireless boards. Each parking
lot consists of several parking spaces, where each parking space can accommodate
exactly one car, and each parking lot has enough parking spaces to accommodate all
the robots at the same time. The city is easily reconfigurable through re-taping and
re-placement of the wireless traffic lights in intersections.

The robots are Khepera III miniature cars. Each car can sense when entering an
intersection from a road, when entering a road from an intersection, when passing
in front of a parking lot, when it is correctly parked in a parking space, and when
an obstacle is dangerously close. Each car can distinguish the color of a traffic light
and different parking spaces in the same parking lot. Each car is programmed with
motion and communication primitives allowing it to safely drive on a road, turn in an
intersection, park, and communicate with other cars. All the cars can communicate
through Wi-Fi with a desktop computer, which is used as an interface to the user
(i.e., to enter the global specification) and to perform all the computation necessary
to generate the individual control and communication strategies. Once computed,
these are sent to the cars, which execute the task autonomously by interacting with
the environment and by communicating with each other, if necessary. We assume
that the communication protocol is deadlock-free.

Modeling RULE using the framework described in Sec. 3 proceeds as follows.
The set of vertices V of the environment graph E is the set of labels assigned to
the roads, intersections, and parking lots (see Fig. 2). The edges in →E show how
these regions are connected. We assume that inter-robot communication is possible

Fig. 2 The topology of the
city for the case study from
Sec. 5 and the labels of the
roads, intersections, and
parking lots

324 Y. Chen et al.

only when the robots are in the same parking lot. The motion capabilities of the
(identical) robots are captured by a transition system Ti (Eqn. (2)) which has 27
vertices and 42 transitions. Note that, in reality, each vertex of Ti has associated a
set of motion primitives, and each transition is triggered by a Boolean combination
of interrupts. For example, at vertex R5l, only one motion primitive follow road is
available, which allows the robot to drive on the road. There is only one possible
transition from R5l to I1, which is triggered by at int AND green light, where at int
is an interrupt generated when the robot reaches the end of a road at an intersection,
and green light is an interrupt generated at the green color of the traffic light.

It is important to note that, by selecting a motion primitive available at a vertex,
the robot can correctly execute a run of Ti, given that it is initialized on a road. In-
deed, only one motion primitive (follow road) is available on a road (more details
about the motion primitives can be found in [4]). In other words, MS plans defined
in Sec. 3 and derived as described in Sec. 4 can be immediately implemented by a
robot. It is easy to see that, under some reasonable liveness assumptions about envi-
ronmental events (e.g., the traffic lights will eventually turn green), such a transition
system captures the motion of each robot correctly.

In the rest of this section, we present a case study. Assume that two robots (cars),
labeled as C1 and C2, are available for deployment in the city with the topology
from Fig. 2. Assume the set of service requests is Σ = {H1,H2,L1,L2,L3,L4,L5},
where Li, i = 1,2,3,4,5 are “light” requests, which require only one robot, and
therefore should be serviced in parallel, while Hi, i = 1,2 are “heavy”, and re-
quire the cooperation of the two robots. Assume that C1 can service L1 and L4

and C2 can service L2, L3 and L5, i.e., the set of requests is distributed as Σ1 =
{L1,L4,H1,H2}, Σ2 = {L2,L3,L5,H1,H2}. between the two agents. Assume the re-
quests occur at the parking lots as given by the assignment function a(L1) = P1,
a(L2) = P2, a(L3) = P3, a(L4) = P4, a(L5) = P1, a(H1) = P4, and a(H2) = P5. Fi-
nally, assume that the global task specification is to service L4 and then L5 or first
service H1, then both L1 and L2 in an arbitrary order, then H2, and finally both L1

and L3 in an arbitrary order. Formally, this specification translates to the following
RE over Σ : L4L5 + H1 (L1L2 + L2L1) H2 (L1L3 + L3L1).

Using Alg. 1, we generate a set of FSAs AE
i . Since RULE is fully connected,

all the words accepted by Ai can be implemented. In this example, L (A) is nei-
ther a product language nor a trace-closed language (e.g., for w = L4L5, we have
[w]Δ = {L4L5,L5L4} and hence, [w]Δ � L (A)). Therefore, the FSA AG is obtained
as described in Sec. 4.2. We choose wg = H1L1L2H2L1L3 ∈ L (AG). The corre-
sponding service plans for C1 and C2 are s1 = H1L1H2L1 and s2 = H1L2H2L3, re-
spectively. The FSAs generated by Alg. 1 are shown in Fig. 3. Finally, we generate
the MS plans for C1 and C2. By assuming that C1 and C2 start in R2l and R1l respec-
tively, the two MS plans are

ms1 : R2l I2R4rI3R8rP4H1R8rI4R5l I1R6rP1L1R6rI4R8lP5H2R8l I3R8rI4R5l I1R6rP1L1

ms2 : R1l I1R3l I2R4rI3R8rP4H1R8rI4R5l I1R3l I2R3rP2L2R3rI1R5rI4R8lP5H2R8l I3R8rI4R6lP3L3

A Formal Approach to Deployment of Robotic Teams 325

FSA Ai Synchronous Product Global FSA A E FSA AG
locFSA AiFSA Ai y

A1 || A2
Agent 2Agent 1

Global FSA A

0 0, 0

E E

0

S i

21 4

1, 1

1 2 2, 1
3

1

2

L1 L2
0

H1

H1 L1
3

L1H2

H1

L1L2L4
L5L4

Robot 1:

3

1

2

L1 L2
H1

21 40 3

Robot 1:

1, 2 2, 1

2, 2
4L2 L1

5L1 L3
H2

H1 L1 L1H2

3, 3

H2

L1 L2
9 0, 44, 0

L4

Robot 2:

4

32

L2 L1

5L1 L3

H2

21 40
H1 L1

3
L1H2

Robot 2:

4 4
8

76

L1

L3

L3

L1

21 40
H1 L2

3
L3H2

3, 3

3, 4 4, 3

L1

L1

L3

L3L5
L5 L4

L5
8

7

5

6

L1

L3

L3

L1

21 40
H1 L2

3
L3H2

Robot 2:

4, 4L1

Fig. 3 The FSAs generated by applying Alg. 1

The request entry H1 and H2 will trigger the wait-and-leave protocol (see Sec. 3)
since they are shared by both robots. The above MS plans are then mapped to control
and communication strategies through the use of motion primitives and interrupts.

To demonstrate that our method scales well with respect to the number of agents
in the team, we deploy 5 agents in a simulator for the RULE platform. Specifically,
in this case study, the global FSA A has 9 states, the transition system Ti for each
robot has 26 vertices and 41 transitions, the synchronous product ‖i∈I AE

i has 37
states and the determinized and minimized FSA AG has 9 states. The generation of
the MS plans for both case studies described in this section takes less than 2 seconds.
The movies for the actual deployment in the RULE platform and the simulator are
both available at http://hyness.bu.edu/RULE_media.html.

6 Conclusion

We presented a framework for automatic deployment of a robotic team from a spec-
ification given as a regular expression over a set of service requests occurring at
known locations of a partitioned environment. Given the robot capabilities to ser-
vice the requests, and the possible cooperation requirements for some requests, we
find local control and communication strategies such that the global behavior of
the system satisfies the given specification. We illustrate the proposed method with
experimental results in our Robotic Urban-Like Environment (RULE).

We are currently pursuing several future directions. We are expanding the set of
global specifications to formulas of temporal logics, such as Linear Temporal Logic,
to enrich the expressiveness of the global specifications. We are also working on
extensions to probabilistic frameworks. Specifically, we will use formulas of prob-
abilistic temporal logics, such as probabilistic Linear Temporal Logic (pLTL). The
satisfaction of the global specification will be guaranteed probabilistically and the
deterministic transition systems will be replaced with Markov Decision Processes.

http://hyness.bu.edu/RULE_media.html

326 Y. Chen et al.

Acknowledgements. We are grateful to all reviewers for the thoughtful comments. This
work was partially supported by ONR-MURI N00014-09-1051, ARO W911NF-09-1-0088,
AFOSR YIP FA9550-09-1-020, and NSF CNS-0834260 at Boston University and by
CNCSIS-UEFISCSU no. 7/05.08.2010 at the University of Pitesti.

References

1. Antoniotti, M., Mishra, B.: Discrete event models + temporal logic = supervisory con-
troller: Automatic synthesis of locomotion controllers. In: IEEE International Confer-
ence on Robotics and Automation (1995)

2. Belta, C., Habets, L.: Control of a class of nonlinear systems on rectangles. IEEE Trans-
actions on Automatic Control 51(11), 1749–1759 (2006)

3. Chen, Y., Birch, S., Stefanescu, A., Belta, C.: A hierarchical approach to automatic de-
ployment of robotic teams with communication constraints. In: IEEE/RSJ International
Conference on Intelligent Robots & Systems, Taipei, Taiwan, pp. 5079–5084 (2010)

4. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: A formal approach to deployment
of robotic teams in an urban-like environment. Tech. rep., Boston University (2010),
hyness.bu.edu/dars

5. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun,
S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press
(2005)

6. Clarke, E.M., Peled, D., Grumberg, O.: Model Checking. MIT Press (1999)
7. Cormen, T.: Introduction to Algorithms. MIT press (2001)
8. Fainekos, G., Kress-Gazit, H., Pappas, G.: Hybrid controllers for path planning: A tem-

poral logic approach. In: IEEE Conference on Decision and Control and European Con-
trol Conference, Seville, Spain, pp. 4885–4890 (2005), doi:10.1109/CDC.2005.1582935

9. Gazit, H.K., Fainekos, G., Pappas, G.J.: Where’s Waldo? Sensor-based temporal logic
motion planning. In: IEEE Conference on Robotics and Automation, Rome, Italy (2007)

10. Habets, L., Collins, P., van Schuppen, J.: Reachability and control synthesis for
piecewise-affine hybrid systems on simplices. IEEE Trans. Aut. Control 51, 938–948
(2006)

11. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley (2007)

12. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from tem-
poral logic motion specifications. IEEE Transactions on Robotics 26(1), 48–61 (2010)

13. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers (1991)
14. LaValle, S.M.: Planning algorithms. Cambridge University Press, Cambridge (2006)
15. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multiagent motion tasks based

on LTL specifications. In: IEEE Conference on Decision and Control, Paradise Islands,
The Bahamas, pp. 153–158 (2004)

16. Mazurkiewicz, A.: Introduction to trace theory. In: The Book of Traces, pp. 3–41. World
Scientific (1995)

17. Mukund, M.: From Global Specifications to Distributed Implementations, pp. 19–34.
Kluwer Academic Publishers (2002)

18. Quottrup, M.M., Bak, T., Izadi-Zamanabadi, R.: Multi-robot motion planning: A timed
automata approach. In: IEEE International Conference on Robotics and Automation,
Barcelona, Spain, pp. 4417–4422 (2004)

19. Rodger, S.H., Finley, T.W.: JFLAP: An Interactive Formal Languages and Automata
Package. Jones and Bartlett Publishers (2006)

20. Sheng, Y.: Regular Languages. Springer, New York (1997)
21. Stefanescu, A.: Automatic synthesis of distributed transition systems. Ph.D. thesis, Uni-

versity of Stuttgart (2006)

hyness.bu.edu/dars

A Formal Approach to Deployment of Robotic Teams 327

22. Ştefănescu, A., Esparza, J., Muscholl, A.: Synthesis of Distributed Algorithms Using
Asynchronous Automata. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 27–41. Springer, Heidelberg (2003)

23. Thiagarajan, P.S., Henriksen, J.G.: Distributed Versions of Linear Time Temporal Logic:
A Trace Perspective. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491,
pp. 643–681. Springer, Heidelberg (1998)

24. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic plan-
ning for dynamical systems. In: IEEE Conference on Decision and Control and Chinese
Control Conference, Shanghai, China, pp. 5997–6004 (2009)

	A Formal Approach to Deployment of Robotic Teams in an Urban-Like Environment
	Introduction
	Preliminaries
	Problem Formulation and Approach
	Synthesis of Local MS Plans from the Global Specification
	Synthesis of the Local Implementable Specifications
	Synthesis of Individual MS Plans

	Automatic Deployment in the RULE
	Conclusion
	References

