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Chapter 1
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Calin Belta∗

Department of Mechanical Engineering
Division of Systems Engineering

Boston University, Boston, MA 02446
E-mail : cbelta@bu.edu

In this chapter, we outline a hierarchical framework for planning and
control of arbitrarily large groups (swarms) of robots. At the first level
of hierarchy, we aggregate the high dimensional control system of the
swarm into a small dimensional control system capturing its essential
features, such as position of the center, shape, orientation, and size.
At the second level, we reduce the problem of controlling the essential
features of the swarm to a model checking problem. In the obtained hi-
erarchical framework, high level specifications given in natural language
such as linear temporal logic formulas over linear predicates in the essen-
tial features are automatically mapped to provably correct robot control
laws. We present simulation results for the particular case of a continu-
ous abstraction based on centroid and variance of a planar swarm made
of fully actuated robots with polyhedral control constraints.

As a result of tremendous advances in computation, communication,
sensor, and actuator technology, it is now possible to build teams of hun-
dreds and even thousands of small and inexpensive ground, air, and un-
derwater robots. They are light, easy to transport and deploy, and can fit
into small places. Such swarms of autonomous agents provide increased
robustness to individual failures, the possibility to cover wide regions, and
improved computational power through parallelism. However, planning
and controlling such large teams of agents with limited communication and
computation capabilities is a hard problem that received a lot of attention
in the past decade.

It is currently believed that inspiration should be taken from the be-
havior of biological systems such as flocks of birds, schools of fish, swarms
∗This work is partially supported by NSF CAREER 0447721 at Boston University.
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of bees, or crowds of people. Over the past two decades, researchers from
several areas, including ecology and evolutionary biology, social sciences,
statistical physics, and computer graphics, tried to understand how local
interaction rules in distributed multi-agent systems can produce emergent
global behavior. Over the past few years, researchers in control theory and
robotics have drawn inspiration from the above areas to develop distrib-
uted control architectures for multi-agent mobile systems. Even though, in
some cases, it was observed or proved that local interaction rules in distrib-
uted natural or engineered multi-agent systems produce global behavior,
the fundamental questions still remain to be answered. What are the es-
sential features of a large group? How do we specify its behavior? How can
we generate control laws for each agent so that a desired group behavior
is achieved? In this chapter, we outline some ideas and results that could
partially answer the above questions. The approach exploits the interplay
between the “continuous” world of geometric nonlinear control and the
traditionally “discrete” world of automata, languages and temporal logics.

1.1. Specification-induced hierarchical abstractions

The starting point for the approach presented here is the observation that
tasks for large groups evolving in complex environments are “qualitatively”
specified. This notion has a dual meaning. First, a swarm is naturally
described in terms of a small set of “features”, such as shape, size, and
position of the region in plane or space occupied by the robots, while the
exact position or trajectory of each robot is not of interest. Second, the
accomplishment of a swarming mission usually does not require exact values
for swarm features, but rather their inclusion in certain sets. For example,
in the planar case, if the robots are constrained to stay inside an ellipse,
there is a whole set of values for the pose and semi-axes of the ellipse
which guarantees that the swarm will not collide with an obstacle of given
geometry. Moreover, specifications for mobile robots are often temporal,
even though time is not necessarily captured explicitly. For example, a
swarm might be required to reach a certain position and shape “eventually”,
or maintain a size smaller than a specified value “until” a final desired
value is achieved. Collision avoidance among robots, obstacle avoidance,
and cohesion are required “always”. In a surveillance mission, a certain
area should be visited “infinitely often”.

Motivated by the above ideas, in this chapter we briefly describe an
approach for planning and control of robotic swarms based on abstractions.
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Our framework is hierarchical. At the first level, we construct a continuous
abstraction by extracting a small set of features of interest of the swarm.
The result of the continuous abstraction will be a small dimensional con-
tinuous control system, whose dimension does not scale with the number
of robots, and with constraints induced by the individual constraints of the
robots. Intuitively, its state can be seen as the coordinates of a geometrical
object spanning the area or volume occupied by the robots. An illustration
is given in Figure 1.1 for a planar case, where the ”spanning” object is an
ellipse. In this example, if we can control the pose and semiaxes of the
ellipse with the guarantee that the robots stay inside and their control and
communication constraints are satisfied, then in principle we reduce a very
high dimensional control problem to a five dimensional one (two coordi-
nates for position of center, one for rotation, and one for each of the two
semiaxes).

Fig. 1.1. Cooperative tasks for robotic swarms can be specified in terms of low dimen-

sional abstractions capturing the pose and shape of geometrical objects describing the

area (volume) occupied by the robots, such as spanning ellipses.

At the second level of the hierarchy, we use discrete abstractions to
generate control strategies for the continuous abstraction from high-level,
human-like task specifications given as temporal and logic statements about
the reachability of regions of interest by the swarm. Simply put, through
“smart” partitioning, discrete abstractions reduce the problem of control-
ling the continuous abstraction to a control problem for an automaton. In
the discrete and finite world of automata, such human-like specifications
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translate to temporal logic formulas, and the control problem resembles
model-checking, which is just a more sophisticated search on a graph.

When combined, the two approaches lead to the hierarchical abstrac-
tion architecture shown in Figure 1.2, where the continuous abstraction
reduces the dimension of the problem by focusing on swarm cohesion and
robot dynamics and constraints, and the discrete abstraction captures the
complexity of the environment. The geometry of the obstacles and the spec-
ifications of the swarming task determine a partition of the state space of
the continuous abstraction produced at the first level. Discrete abstractions
will then be used to check the existence and construct admissible control
laws for the continuous abstraction, which captures the individual robot
constraints. Therefore, in this hierarchical abstraction framework, ”quali-
tatively” specified swarming tasks, such as temporal and logical statement
about the reachability of regions of interest, are in principle reduced to
analysis of finite state automata.

Hierarchical
abstraction

Low dimensional continuous control system

Extract essential features
of the swarm

Finite state transition system 

Model checking 
type algorithms

Input: human-like 
(temporal logic) 
statements over 
environment and 
features of interest of 
the swarm

Discrete
abstractionDiscrete trajectories 

Provably correct 
control laws

Continuous
abstraction

Output: Individual
control laws

High dimensional 
continuous control system

Fig. 1.2. Hierarchical abstraction architecture for planing and control of robotic swarms:

high level specifications given in human-like language such as temporal logic formulas are
used to construct a discrete and finite description of the problem. Tools resembling model

checking are involved to find a solution for this problem, which is then implemented as
a hybrid control strategy for the continuous abstraction. Individual robot control laws

are then generated through projection.
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1.2. Continuous abstractions: extracting the essential fea-
tures of a swarm

Coordinates of geometrical objects describing the volume (or area) occu-
pied by the robots can serve as abstract descriptions of the swarm. For
example, for a planar task, controlling the pose (position and orientation)
and semiaxes of a spanning ellipse, while making sure that the robots stay
inside it, can be used for a large class of cooperative tasks. A pictorial illus-
tration of this idea is given in Figure 1.1, where the ellipse can be shrunk,
reshaped, and/or reoriented for avoiding obstacles.

Inspired by this idea, one can think of abstractions as having a product
structure of a Lie group capturing the pose of the team in the world frame
and a shape, which is an intrinsic description of the team, invariant to the
world coordinate frame. In our example from Figure 1.1, the group would
be the position of the center and the orientation of the ellipse in the world
frame, while the shape would correspond to its two semiaxes. For such a
group-shape representation of the swarm, it makes sense to require that the
group part be controlled separately from shape. Indeed, the idea of having
a coordinate free definition of the shape together with shape control law
decoupled from group is fundamental in formation control. Without know-
ing the coordinates of the robot in the world frame, only shape variables
can be measured and controlled using on-board sensors of the robots.1,2 In
addition, a description of the swarm should be invariant to robot permuta-
tions. This would lead to robustness to individual failures for the planning
and control architecture to be developed.

To introduce the main ideas, let us assume for simplicity that the swarm
is composed of N identical planar fully-actuated point-like robots with poly-
hedral control constraints. In other words, each robot is described by a
control system of the form:

ṙi = ui, ui ∈ U, i = 1, . . . , N, (1.1)

where ri ∈ R2 is the position vector of robot i in a world frame, ui is its
velocity, which can be directly controlled, and U ⊆ R2 is a set capturing the
control constraints. We collect all the robot states in r = [rT

1 , . . . , rT
N ]T ∈

R2N and the robot controls in u = [uT
1 , . . . , uT

N ]T ∈ R2N . We denote by Q

the set of all swarm configurations, which equals R2N if no obstacles and
environment limits are imposed.

To construct a continuous abstraction with a product structure of group
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and shape, we build a smooth surjective map

h : Q → A, h(r) = a (1.2)

where h is called the (continuous) abstraction, or aggregation, or quotient
map and a is denoted as the abstract state of the swarm. We require A to
have a product structure of a group G and a shape S, i.e.,

A = G× S, a = (g, s), a ∈ A, g ∈ G, s ∈ S. (1.3)

g ∈ G and s ∈ S are the group and the shape part of a ∈ A, respectively.
The invariance to robot identifications translates to invariance of h to per-
mutations of ri. The invariance to world frame translate to left invariance
for h, which simply means that, if a change occurs in the world frame,
which can be modelled as an action by an element ḡ ∈ G, then in the image
of the swarm configuration through the map h, the group part will be left
translated by ḡ, while the shape part will not change.

The notions of invariance with respect to world frames and permuta-
tions of robots, which are fundamental for swarms, are properly approached
in shape theory in the well known ”n-body problem”, traditionally studied
in theoretical physics,3 and more recently applied to robotics.1 However,
these works focus on maximal shape spaces (i.e., largest subspaces of con-
figuration spaces invariant to permutations and world frames), and are
therefore restricted to very small teams of robots. To use such ideas for
robotic swarms, one can start, as in the works enumerated above, from Ja-
cobi vectors.4 However, instead of computing maximal Jacobi spaces, one
can try “democratic” sums over dot products and triple products of Jacobi
vectors, as suggested in.1 Jacobi vectors are already translation reduced,
the dot products are invariant to rotations, and permutations of particles
are easy to characterize as actions of the ”democracy” group O(N − 1).
Moreover, such sums can give useful estimates of the area occupied by the
robots in the planar case, and of the volume of a spanning region in the
spatial case.

Alternatively, one can investigate the eigenstructure of the inertia ten-
sor of the system of particles ri, i = 1, . . . , N . Properly normed and ordered
eigenvectors can give the rotational part of the group, while the eigenvalues
(and physically significant combinations of them) are good candidates for
shape variables. Related to this, one can think of a probabilistic approach,
starting from the assumption that the vectors ri are normally distributed.
Then their sample mean and covariance converge to the parameters of a
normal distribution when N is large enough. The corresponding concentra-
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tion ellipsoid is guaranteed to enclose an arbitrary percentage of the robots
inside it, and can therefore be used as a spanning region. If the distribution
is not normal, higher central moments can be useful in defining abstractions
as well. For example, the third moment (skewness) is a measure of how far
the distribution is from being symmetric, while the fourth central moment
(kurtosis) can be used as a measure of the coverage by the robots of the
area of the ellipsoid.

In addition to providing a description of the swarm position, size, and
shape that is invariant to permutations and world frames, we will require
h to perform a correct aggregation of the large dimensional state space Q

of the swarm. Let u(r) and w(a) be the vector fields giving the full dy-
namics of the swarm and of the continuous abstraction, respectively, with
a = h(r). In our view, a correct aggregation has three requirements. First,
the flow ṙ = u(r) and the quotient map (1.2) have to be consistent, which
intuitively means that swarm configurations that are equivalent (indistin-
guishable) with respect to h are treated in an equivalent way by the flow
of the swarm. Second, a correct aggregation should allow for any motion
on the abstract space A, which we call the actuation property. Third, we
do not allow the swarm to spend energy in motions which are not “seen”
in the abstract space A (detectability). In,5 using a geometrical approach,
we provide necessary and sufficient conditions for correct aggregation. In
short, the consistency of the flow ṙ = u(r) and of the quotient map (1.2) is
equivalent to the “matching condition” dh(r)u(r) = dh(r′)u(r′), for all r,
r′ with h(r) = h(r′), where dh(r) denote the differential (tangent) map of
h at point r. The actuation property is equivalent to requiring h to be a
submersion, while the detectability requirement is equivalent to restricting
u(r) to the range of dhT (r). Note that all these characterizations are all
very simple conditions that can be easily checked computationally. In con-
clusion, if all the above conditions are satisfied, then arbitrary “abstract”
vector fields w(a) (a = h(r)) in A can be produced by “swarm” vector fields
u(r).

Examples of continuous abstractions In,6 we defined a 5 - dimen-
sional abstraction (1.2) that can be used for swarms of fully actuated pla-
nar robots. The abstraction satisfies all the requirements stated above. An
extension to unicycles, based on a simple input-output regulation interme-
diate step, is described in.7 In the abstraction a = (g, s), the 3-dimensional
group part is g = (µ, θ) ∈ SE(2), where µ is the centroid of the swarm
and θ ∈ S1 parameterizes the rotation that diagonalizes the inertia tensor
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of the system of particles. The 2-dimensional shape s ∈ R2 is given by
the eigenvalues of the inertia tensor. In this interpretation, the abstrac-
tion captures the pose and side lengths of a rectangle with the guarantee
that the robots are always inside. Equivalently, if the robots are assumed
normally distributed, µ can be interpreted as sample mean, θ as rotation
diagonalizing the sample covariance matrix, while the shape variables s are
the eigenvalues of the covariance matrix. In this second interpretation, the
abstraction parameterizes an ellipse, with the guarantee that an arbitrary
percent of the robots stay inside. A simulation result is shown in Figure 1.3,
where a swarm of N = 100 robots (evolving on a 200-dimensional space!)
is driven through a tunnel by designing controls on a 5 - dimensional space
parameterizing a spanning ellipse.
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Fig. 1.3. 99 of N = 100 normally distributed planar robots are driven through a tunnel

by designing 5 - dimensional controls for the corresponding equiprobability ellipse.

When orientation is not relevant for a certain application, we can define
a simpler 3 - dimensional abstraction, by restricting the group g to the
position of the centroid µ, and by collapsing the shape s to the sum of the
two shape variables from above. In this case, the N robots described by a 3
- dimensional abstract variable a = (µ, s) are enclosed in a circle centered
at µ and with radius proportional to s. In Figure 1.4, we show a simulation
for controlling N = 30 robots using this simpler abstraction. Initially, the
robots are distributed on three concentric circles.
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Fig. 1.4. N = 30 robots experiencing an expansion using control laws based on 3-
dimensional abstraction. The centroid is kept fixed. Orientation, parallelism, angles,

and ratios of lengths are preserved.

A generalization of these ideas to 3D environments is possible. In,8

we constructed a 9-dimensional abstraction (a = (g, s) for a swarm in 3D,
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(a) (b) (c) (d)

Fig. 1.5. N = 100 robots pass a corridor by controlling the 9-dimensional abstraction
parameterizing a concentration ellipsoid.

where the group part g = (µ,R) ∈ SE(3) consists of centroid µ ∈ R3 and
rotation R ∈ SO(3) that diagonalizes the inertia tensor. As before, the
shape s ∈ R3 captures the eigenvalues of the inertia tensor. In Figure 1.5,
we show a simulation of controlling a swarm of N = 100 robots in space
based on this 9-dimensional abstraction, which can be seen as parameter-
izing an ellipsoid spanning the volume occupied by the swarm.

1.3. Discrete abstractions: accommodating rich specifica-
tions

Once the large dimensional state of the swarm is correctly aggregated by
properly choosing the aggregation map and the robot control laws, we have
the freedom to assign arbitrary vector fields w(a) in the abstract space A.
These vector fields will be constructed from high-level temporal and logical
specifications over the continuous abstraction a. For example, assume that
a = (µ, s) ∈ R3, where µ ∈ R2 gives the centroid of a swarm and s ∈ R is its
size (e.g., area). If it is desired that the swarm converges to a configuration
in which its centroid belongs to a polygon P d and with a size smaller than
sd, this can be written more formally as “eventually always (µ ∈ P d and
s < sd)”, with the obvious interpretation that it will eventually happen
that µ ∈ P d and s < sd and this will remain true for all future times.
If during the convergence to the final desired configuration it is necessary
that the swarm visits a position µ̄ with a size s̄, then the specification
becomes “eventually ((µ = µ̄ and s = s̄) and (eventually always (µ ∈ P d

and s < sd)))”. If in addition it is required that the size s is smaller than
s̄ for all times before s̄ is reached, the specification changes to “s < s̄ until
((µ = µ̄ and s = s̄) and (eventually always (µ ∈ P d and s < sd)))”.

The starting point in the development of the discrete abstraction is the
observation that such specifications translate to formulas of temporal logics
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over linear predicates in the abstract variables. Informally, LTL formulas
are made of temporal operators, Boolean operators, and atomic proposi-
tions connected in any “sensible way”.9 Examples of temporal operators
include X (“next time”) , F (“eventually”, or “in the future”), G (“al-
ways” or “globally”), and U (“until”). The Boolean operators are the
usual ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒ (implication), and
⇔ (equivalence). The atomic propositions are properties of interest about
a system, such as the linear inequalities in µ and s enumerated above. For
example, the last specification in the above paragraph corresponds to the
LTL formula (s < s̄)U(µ = µ̄ ∧ s = s̄) ∧ (FG(µ ∈ P d ∧ s < sd)).

1o
2o

3o

1r

2r

3r

Fig. 1.6. (a) A polygonal 2D state space, the target polygonal regions r1, r2, r3 (shown

in green) and the regions to be avoided o1, o2, o3 (shown in grey), which can be expressed
as conjunctions of the linear predicates π1, π2, . . . , π10. The arrows indicate the drift

vector field of system (1.4). There exist control strategies such that all trajectories of

the closed loop system (1.4) satisfy formula (1.5) for any initial state in P , except for the
grey and the blue regions. A sample trajectory originating in the allowed set of initial

conditions is shown.

In,10 we developed a computational framework for control of arbitrary
linear systems (i.e., ẋ = Ax + b + Bu) from specifications given as Linear
Temporal Logic (LTL) formulas in arbitrary linear predicates over the state
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x. To illustrate the method, consider the 2D linear system

ẋ =
[

0.2 − 0.3
0.5 − 0.5

]
x +

[
1 0
0 1

]
u +

[
0.5
0.5

]
, x ∈ P, u ∈ U, (1.4)

where P is the bounding polytope shown in Figure 1.6, and the control
constraint set is U = [−2, 2]×[−2, 2]. Assume the task is to visit a sequence
of three regions r1, r2, and r3, in this order, infinitely often, while avoiding
regions o1, o2, and o3 for all times (see Figure 1.6). Using the temporal
and logic operators defined above, this specification translates to the LTL
formula:

G(F(r1 ∧ F(r2 ∧ Fr3)) ∧ ¬(o1 ∨ o2 ∨ o3)) (1.5)

The solution is given as the set of initial states from which the formula
can be satisfied (see Figure 1.6) and a corresponding set of feedback control
strategies.

1.4. Hierarchical abstractions: automatic deployment of
swarms from human-like specifications

We are now ready to present a computational framework allowing for auto-
matic deployment of arbitrarily large swarms of fully actuated robots from
specifications given as arbitrary temporal and logic statements about the
satisfaction of linear predicates by the swarm’s mean and variance. These
types of specifications seem to be enough for a fairly large class of tasks.
In addition, the method allows for automatic containment inside the envi-
ronment, obstacle avoidance, cohesion, and inter-robot collision avoidance
for all times.

To extract the mean and variance of the swarm, we define the following
3-dimensional abstraction map:

h(r) = a, a = (µ, σ), µ =
1
N

N∑
i=1

ri, σ =

√√√√ 1
N

N∑
i=1

(ri − µ)T (ri − µ). (1.6)

In,5 we show that the robot controllers

ui(ri, a) =
[
I2

ri−µ
σ

]
w(a), i = 1, . . . , N, (1.7)

where w(a) is an arbitrary vector field in the abstract space R3, provide a
correct aggregation with respect to the abstraction map (1.6). Under the
assumption that the environment and the obstacles are polyhedral, then
we also show that containment inside the environment, obstacle avoidance,
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cohesion, and inter-robot collision avoidance can be expressed as LTL for-
mulas over linear predicates in the abstract variables (µ, σ). In addition,
arbitrary polyhedral control constraints can be accommodated. The proofs
are based on the following two main facts: (i) under the control laws (1.7),
the swarm undergoes an affine transformation, which preserves the vertices
of its convex hull, and the pairs of robots giving the maximum and mini-
mum pairwise distances, and (ii) quantifier elimination in the logic of the
reals with addition and comparison is decidable.

For illustration, consider a swarm consisting of N = 30 robots moving
in a rectangular environment P with two obstacles O1 and O2 as shown
in Figure 1.7 (a). The initial configuration of the swarm is described by
mean µ(0) = [−3.5, 4.5]T and variance σ(0) = 0.903. The convex hull of
the swarm is initially the square of center µ(0) and side 2 shown in the top
left corner of Figure 1.7 (a).

Consider the following swarming task given in natural language: Always
stay inside the environment P , avoid the obstacles O1 and O2, and maintain
maximum and minimum inter-robot distances of 3.5 and 0.01, respectively.
In addition, the centroid µ must eventually visit region R1. Until then, the
minimum pairwise distance must be greater than 0.03. After R1 is visited,
the swarm must reach such a configuration that its centroid is in region R2

and the spanned area is greater than the initial one, and remain in this
configuration forever. Regions R1 and R2 are the two squares shown in
Figure 1.7 (a).

This task translates to the following LTL formula over linear predicates
in µ and σ:

G(Pco ∧ Pd) ∧ {(σ > 0.54)U[(µ ∈ R1) ∧ FG((µ ∈ R2) ∧ (σ > σ(0)))]},
(1.8)

where Pco guarantees containment and obstacle avoidance and is a proposi-
tional logic formula consisting of 27 occurrences of 19 different linear pred-
icates in µ and σ, Pd gives upper and lower bounds for σ that guarantee
cohesion and inter-robot collision avoidance, and σ > 0.54 corresponds to
pairwise distance greater than 0.03. A solution is shown in Figure 1.7 (b)
as the trace of the convex hull of the swarm. By close examination, it can
be seen that the specified task is accomplished.



May 27, 2008 13:20 World Scientific Review Volume - 9in x 6in book˙ch˙belta˙v1

Abstractions for Planning and Control of Robotic Swarms 13

(a) (b)

Fig. 1.7. (a) Initial deployment of a swarm consisting of 30 robots in a rectangular

environment P with two obstacles O1 and O2. The regions R1 and R2 are used in the

task specification. (b) Trace of the convex hull of the swarm (yellow) and trajectory of
centroid µ (red).

1.5. Limitations of the approach and directions for future
work

While providing a fully fully automated framework for deployment of arbi-
trarily large swarms from rich specifications given in human-like language,
the approach presented in the previous section has several limitations.
First, it is computationally expensive, since, in addition to polyhedral op-
erations, it involves quantifier elimination and a graph search resembling
LTL model checking. Second, in order to guarantee that the swarm does
not collide with an obstacle, we impose that the whole convex hull of the
swarm has empty intersection with the obstacle. One can imagine that
there might exist motions of the swarm where an obstacle enters the con-
vex hull without hitting any of the robots. Third, we restrict our attention
to a very small set of essential features, which only allow for translation
and scaling of the convex hull. For example, if rotation was allowed, mo-
tions where the spanning polytope would rotate to avoid obstacles rather
than just unnecessarily shrinking, would have been possible. Fourth, our
approach to the control of the essential features of the swarm based on
discrete abstractions is conservative, as detailed in.10

Fifth, in its current form, the approach assumes that the environment is
static and known. Any change in the boundaries of the environment or in
the obstacles should be followed by a full re-computation. This being said,
for a static and known environment, our framework is robust with respect
to small errors in knowledge about the environment. This results from the
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fact that the discrete abstraction procedure for control of the continuous
abstraction from temporal logic specifications over linear predicates (devel-
oped in our previous work10) is robust to small changes in these predicates.
Sixth, throughout this work, we assume that the robots are fully actuated
point masses. However, to accommodate robots of non-negligible sizes, one
can enlarge the obstacles and shrink the environment boundaries.11 To
accommodate more complex dynamics, one can add another level in the hi-
erarchy. For example, using input-output regulation, controlling a unicycle
can be reduced to controlling the velocity of an off-axis reference point.12

Alternatively, one might try to capture robot under-actuation constraints
by properly constructing the continuous abstraction, as suggested in.6

Last but not least, the resulting communication architecture is central-
ized. In fact, for all the continuous abstractions reviewed in this article, the
control law for each robot depends on the current state of the robot and
the state of the continuous abstraction (see Equation (1.7)). However, this
does not seem very restrictive due to two main reasons. First, in a practical
application, this communication architecture can be easily implemented if
a swarm of ground vehicles is deployed together with an UAV, such as a
blimp. The UAV can be equipped with a camera, and each time it can
localize the robots, compute the abstract variable a, and then disseminate
it back to the robots. Note that the bandwidth of the broadcast variable a

is low (since a is low dimensional) and does not depend on the size of the
swarm. Second, recent results13 in consensus algorithms show that global
variables, such that the centroid µ, can be estimated using local informa-
tion, under some mild assumptions of the topology of the communication
graph. Starting from this idea, as suggested in,14 one can build an “abstract
state estimator” based only on local information, and feed the estimated
values into the framework described above.

1.6. Conclusion

We reviewed some basic ideas and preliminary results allowing for fully au-
tomated deployment of arbitrarily large swarms from high level and rich
specifications. Our approach is hierarchical. In the first level of the hierar-
chy, we aggregate the large dimensional state space of the swarm into a small
dimensional continuous abstract space which captures essential features of
the swarm. In the second level, we control the continuous abstraction so
that specifications given in linear temporal logic over linear predicates in
the essential features are satisfied. For planar robots with polyhedral con-
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trol constraints moving in polygonal environments with polygonal obstacles,
and a 3D continuous abstraction consisting of mean and variance, we show
that a large class of specifications are captured.
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