
Consistent Multi-robot Object Matching
via QuickMatch

Zachary Serlin(B), Brandon Sookraj, Calin Belta, and Roberto Tron

Boston University, Boston, MA 02446, USA
zserlin@bu.edu

Abstract. In this work, we present a novel solution and experimental
verification for the multi-image object matching problem. We first review
the QuickMatch algorithm for multi-image feature matching and then
show how it applies to an object matching test. The presented experiment
looks to match features across a large number of images and features
more often and accurately than standard techniques. This experiment
demonstrates the advantages of rapid multi-image matching, not only
for improving system performance, but also for use in new applications,
such as object discovery and localization.
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1 Motivation

In this paper, we propose a solution to the following problem: given a set of
images taken from a team of robots (or camera network), match unique object
features, as they enter and exit the images from multiple perspectives. This prob-
lem is fundamental to both computer vision and robotics applications, where fea-
ture matching can be used in object detection, localization, and tracking [2,21],
homography estimation [15], structure from motion [6], and formation control
[10]. Solutions to this problem are traditionally computationally complex, and
often mismatch features when considering more than two images [2,8]. Multi-
image correspondences allow for greater match reliability, and a more accurate
representation of objects in the universe. The proposed solution leverages a rela-
tively recent algorithm, QuickMatch [17], to quickly and reliably discover corre-
spondences across multiple images. The experiments presented in this paper
benchmark QuickMatch’s performance by implementing an object matching
framework under realistic conditions (i.e. images with clutter, repeated struc-
tures, and poor image quality); a target object is matched across a network of
cameras, and then these matches are used to generate the target’s trajectory.
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2 Problem Statement

Given a set of images I = {1, 2, . . . , i, . . . , N} and a set of Ki feature vectors, xik,
extracted from each image, determine matches (xi1k1 ↔ xi2k2 : i1 �= i2) between
features from separate images, such that matched features represent the same
point in the scene.

3 Related Work

Feature matching is a basic process in many computer vision algorithms. Pair-
wise matching is the classical approach to this task, where features between two
images are compared based on a distance metric (e.g. Euclidean or Manhattan
distance), and declared a match if this distance is below some threshold [8,18].
This method is used in two standard algorithms, Brute Force (BF) matching, and
Fast Library for Approximate Nearest Neighbors (FLANN) matching. Pairwise
matching has difficulties matching entities with repetitive structure or similar
appearance (e.g. windows) because the distance metric alone does not consider
the distinctiveness (smallest distance between features from the same image)
of the features. Including distinctiveness of features during matching has been
shown to be beneficial [8]. For multi-image matching, pairwise matches scale
poorly with the number of images and across multiple images, match correspon-
dences often do not belong to the same ground truth object. Graph matching
has also been used for pairwise matching. This approach attempts to match ver-
tices (features) and edges (matches) simultaneously to determine better pairwise
matches [20], but it cannot handle the multi-image setting.

Beyond pairwise matching, a number of other approaches exist for multi-
image matching (where multiple images are directly considered) that are based
on optimization, graphs, and clustering. Optimization based approaches are
based upon non-convex problems where optimization constraints must often be
relaxed to reliably obtain solutions [12,20]. Moreover, these approaches require
to know a priori the number of objects, which is often not available, and do not
consider distinctiveness of the features. Cycles in graphs are early predecessors
to the QuickMatch algorithm and have largely been used to remove inconsistent
matches [7]. Clustering can be cast as finding clusters of similar features. Algo-
rithms such as k-means [9] and spectral clustering [11] have been explored to this
end, but also often require a predefined number of objects, and do not consider
that a unique feature only occurs once in an image.

QuickMatch uses density-based clustering algorithms [4,19], which find clus-
ters by estimating a non-parametric density distribution of data [13,14]. These
approaches do not require prior knowledge of the number or shape of clusters, and
can be modified to include feature distinctiveness by construction. This paper is
an experimental extension of [17], where QuickMatch was initially introduced.
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4 Contribution

The primary contribution of this paper is the testing and experimental validation
of the QuickMatch algorithm under more realistic conditions, as opposed to pre-
vious evaluations using standard datasets. This experiment tests the algorithm
for computational efficiency and match accuracy by employing a distributed
camera network to localize a moving target.

5 Technical Approach

A two-stage, offline, centralized solution is implemented on a system of dis-
tributed ground robots and a central computer. Features are first extracted
using off-the-shelf feature extraction methods (SIFT), and the features are then
matched using the QuickMatch algorithm to find a given reference object. These
matches are used to perform homography estimation between the reference
object and the camera network to generate target trajectories.

5.1 Feature Extraction

Feature extraction aims to find and describe representative points from high
dimensional data, such as an image [1,5,8,21]. Features themselves are also high
dimensional vectors. In this experiment, the scale invariant feature transform
(SIFT) feature is used, which extracts Ki 128-dimensional vectors that represent
the appearance of each feature point. See [8,18] for more details on this stan-
dard feature extraction algorithm. Other feature types can be used and we also
tested with Oriented FAST and Rotated BRIEF (ORB) features and Speeded-
Up Robust Features (SURF), however SIFT was the most reliable.

5.2 QuickMatch

The QuickMatch algorithm is a density based clustering algorithm. It begins
by calculating the distance between all features (we use Euclidean distance in
our application). For each image, the minimum distance, σi, between any two
features is used as the distinctiveness of features for that image. Recall, from
above, xik is a point in the high dimensional feature space. The feature density
D(xik) is then calculated for each point using the formula

D(x) =
N∑

i=1

Ki∑

k=1

h(x, xik;σi), (1)

h(x1, x2;σ) = exp(−‖x1 − x2‖
2σ2

), (2)

with kernel function h, and distinctiveness σi. With this feature density, the
features are organized into a tree structure, with parent nodes being the nearest
neighbor with a higher density.
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parent(xik) = arg min
i′k′∈J

d(xik, xi′k′), (3)

J = {i′k′ : k �= k′,D(xi′k′) > D(xik)}. (4)

Edges are directed to parents along the gradient of feature density, and ultimately
toward the center of the parent cluster or to another distant cluster. Once the
tree has been constructed, edges are broken if either of two criteria are met; (1)
parent and child groups have nodes from the same image, or (2) the edge is
larger than a user defined threshold (ρ) times σi. This method results in a forest
of trees, where each tree is a cluster representing a unique entity in the universe.
In practice, each tree represents a point that is common among images, meaning
the algorithm discovers common features among very similar objects. Feature
discovery will be explored further in Sect. 7.3, where groups of matching points
are organized into object detections and homography transformations.

5.3 Homography and Localization

An homography is a perspective transformation between the view points of two
images that can also be used to determine the relative position of an object given
a reference image. Given a reference viewpoint x̃, a new viewpoint can be found
given the homography matrix H as Hx̃. The H matrix can be estimated with a
set of known relative points (or matched features) between the two images. Once
H is estimated, it is possible to compare the position of objects in each image
in a relative coordinate system. To improve the estimate of H, random sample
consensus (RANSAC) is used to remove match outliers by randomly sampling
the matches, finding a fit of the data, and then removing any matches that fall
outside of a user defined region [15].

Using the homography transformations between each image and a target
reference image, the object can be localized up to a distance scale factor, as
shown in Fig. 1(a). Given a known parameter of the target object, in this case
the object’s height, this ambiguity can be resolved, and the relative position can
be determined. When taken together with other cameras in the network and a
known global camera pose, the target object can be accurately positioned in the
global reference frame, allowing for generating a target’s trajectory (e.g., Fig. 4).

Homography and localization are limited by the reference images used for
matching, and are prone to noisy and inaccurate measurements. Firstly, the sys-
tem can only identify the known side of the object, unless the target is symmetric.
To overcome this, multiple reference target images are used here. Secondly, inac-
curate measurements in distance and bearing are common. These inaccuracies
arise from extreme sensitivity to object height estimate errors when calculating
target distance. To account for these errors in practice, multiple measurements
can be used to estimate each position, and then a filter can be used to smooth
the target’s trajectory.
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6 Experiment

The experiment consists of a team of five iRobot Create2 ground robots, each
with a forward facing camera, distributed throughout the experimental area
shown in Fig. 1. Each camera has a 62◦×48◦ field of view, and takes a 640×480 px
image at 2 Hz. Through the center of the area, the target object is driven along
the trajectory shown in Fig. 1(a) over approximately thirty seconds. All cameras
are triggered simultaneously and the images are sent to a central computer for
feature extraction and matching. The central computer has an Intel i7-7800x
3.5 GHz processor, and runs Ubuntu 16.04 LTS and ROS Kinetic. Features are
extracted using SIFT with an octave layer of 6, a contrast threshold of 0.10, an
edge threshold of 15, and sigma of 1.0. The matches from QuickMatch (using
ρ = 1.1) are used to determine which cameras observe the target object at each
time step, based on the number of matches with a target image (in this exper-
iment 10 matches are required). The matches between each reference images
and the current images are used to determine the homography between them,
using RANSAC with a threshold of 10.0. The homography is used to gener-
ate a bounding box around the target object using a perspective transforma-
tion on the target image corners. The relationship between pixel height of this
box and distance from the camera is calibrated beforehand using an object of
known size (in this experience a checkerboard pattern of know dimension). The
localization points are recorded to build a target trajectory, which is then com-
pared to ground truth measurements from an OptiTrack c© motion capture system
(Fig. 1(b)).

(a) (b)

Fig. 1. (a) Overhead view of experimental area with trajectory of the target object,
position of the robots, and the approximate field of view for the camera network (shown
in yellow). (b) Prospective view of experimental area with modified iRobot Create2
platform, target object, and overhead OptiTrack c© motion capture system.

7 Results

QuickMatch is evaluated in two ways: pure matching performance, and in the
context of a target localization application. The QuickMatch algorithm is first
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compared to standard matching algorithms in the OpenCV Software Package
[2], Brute Force (BF), and FLANN. Both algorithms use the Euclidean distance
metric and a threshold match distance of 0.75 [2,8]. Unlike QuickMatch, both
algorithms cannot consider matches across more than two images but do have
very low execution times.

QuickMatch is implemented in Python and takes 5.6 s to find matches
between 6254 SIFT features (from 115 images), while BF and FLANN are both
implemented in C++, and both take approximately 0.05 s to find the matches
between the reference image features, and the same 6254 features. This time
difference arises from two factors: the inherently slower runtime of Python com-
pared to C++ [3], and the extra comparisons done by QuickMatch to solve
the entire Multi-match problem. If BF and FLANN compared all images with
all other images combinatorially (as QuickMatch implicitly does) their computa-
tion times would be ∼5.75 s, which is comparable to QuickMatch’s slower Python
implementation. This time also does not account for the post processing time
necessary to reconcile inconsistent matches from both BF and FLANN, is not
required in QuickMatch.

7.1 Precision Versus Recall

Although QuickMatch is slower, it outperforms both BF and FLANN in the
number of matches correctly found, and generally in terms of precision vs. recall
(PR) and precision-recall area under the curve (PR AUC), which are common
metrics for evaluating matching algorithms [16]. Figure 2(a) shows the precision
(fraction of correctly matched images) versus recall (fraction of possible matches

Fig. 2. (a) Precision vs. recall curves for the QuickMatch, Brute Force, and FLANN
algorithms. All algorithms are run on the same feature vectors. A match is considered
to exist if the number of matched features is above a threshold.
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found) curves for QuickMatch, BF, and FLANN. For any recall level, Quick-
Match maintains a higher precision level than either BF or FLANN. These curves
are non-monotonic because mismatched features appear at a higher rate than
correctly matched features at higher thresholds. PR AUC is a threshold agnostic
metric used for comparing overall performance of matching algorithms [16]. In
terms of PR AUC, QuickMatch achieves 0.64, while BF and FLANN reach 0.49
and 0.45 respectively. The overall increase in precision stems for QuickMatch’s
ability to consider more instances of the reference object, by matching cycles of
features across multiple images. It is therefore able to find the reference object
not only more consistently, but with many more matched features. An example
of these matches is shown in Fig. 3.

(a) (b)

Fig. 3. (a) Example image matches between the reference object image (left) and an
experimental image (right): Circles represent features, and lines indicate matches. (b)
Homography and localization of car with prospective transform of bounding box.

7.2 Homography and Localization

In order to further demonstrate the utility of the QuickMatch algorithm, matches
were used to localize a target object in relation to the camera network, and then
estimate its global trajectory. This was done using all three above algorithms
with again an identical set of SIFT features. QuickMatch considers multi-image
matches between the set of target images and the set of five robot images at
each time step, while BF and FLANN consider matches between each target
image and the robot image individually. Once feature matches are generated,
RANSAC is used to estimate the homography matrix H for each pair of images
while also removing outliers from the matches. The homography between the
reference image and each robot image is used to generate a bounding box around
the target in the robot image as shown in Fig. 3(b). This bounding box, given
a known camera calibration, provides bearing and height information for the
target. The target height is known and is used to find the relate distance to the
target with the bounding box height. With these two values, a distance and a
bearing, the object can be localized with respect to each robot.
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Fig. 4. (a) QuickMatch trajectory estimate. (b) BruteForce trajectory estimate. (c)
FLANN trajectory estimate. (d) Histogram of estimate error for each algorithm.

The above steps are performed using the match data from each of the three
above algorithms. Figures 4(a–c) show the results of the localization estimation
for each algorithm. Red points are estimate target poses for each time step, blue
points denote the ground truth measurements, black octagons are the camera net-
work positions, and the green regions are the one standard deviation error between
all localization estimates at each time step. The localization error was found by
taking the absolute distance between the estimated and ground truth position at
each time step. QuickMatch had an error of 0.2118± 0.4254 m, BF had an error of
0.2349 ± 0.4027 m, and FLANN had an error of 0.6232 ± 1.1722 m. QuickMatch
outperforms both BF and FLANN in terms of accuracy, which is indicative of its
higher match quality. BF matcher also performs well and maintains a low variance,
however it is not as accurate. FLANN is the worst performing of the three, and has
a number of extremely erroneous estimates. Generally, monocular camera distance
measurements are very sensitive to match errors, meaning target localization error
is an indirect method for testing the overall accuracy of each method. Figure 4(d)
shows a histogram of the localization error, which is found by comparing the local-
ization estimate to the ground truth pose at each time step. The histogram makes
it clear that QuickMatch maintains a higher number of accurate matches and has
a small number of highly erroneous estimates. In practical applications, a Kalman
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filter would be employed to smooth the estimates, but the values are left unaltered
here to demonstrate the algorithm’s output.

7.3 Feature Discovery

The QuickMatch algorithm implicitly discovers common features among images
by creating clusters of similar features. These clusters correspond to specific loca-
tions in the universe, and therefore can be used to find both targets and land-
marks across images. Landmarks, although not used in this paper, are points
that occur commonly across all images (except when occluded), and are use-
ful for multi-agent localization tasks. In the images collected, landmarks were
the clusters with the largest number of features, because many of this images
did not contain the target object. An example landmark cluster is shown in
Fig. 5(a). Features belonging to the target object are generally smaller than the
landmark clusters, but can still be extracted, and show key features of the target.
Figure 5(b) shows one such cluster, which is the front hood of the car model. Fea-
ture discovery is one attribute of QuickMatch that does not exist in either BF
or FLANN and can be useful for discerning what features are most descriptive
of images from the network.

Fig. 5. (a) Landmark feature cluster. (b) Target feature cluster.

8 Conclusion

This experiment highlights the utility of QuickMatch multi-image matching for
object matching. QuickMatch is able to find many more object feature matches
than standard methods by considering matches across all images, not just pair-
wise matches. The presented experiment tests the QuickMatch algorithm in an
experimental setting with realistic conditions, and shows that multi-image match-
ing is superior to standard methods at matching the reference object (even as it
enters and exits images across the entire camera network). Quickmatch is also
tested with a target object localization and again outperforms both the BF and
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FLANN algorithms. Beyond testing Quickmatch, this experiment also demon-
strates its feature discovery ability by showing a characteristic landmark and
target feature cluster from the test images. This approach is the precursor to
an online, distributed, and decentralized approach. Our future work will focus
on a distributed version of object discovery and localization and multi-camera
homography. We also plan to use these extracted trajectories for higher level
tasks. Overall, QuickMatch is shown to be a versatile multi-feature matching
algorithm that outperforms standard pairwise matching algorithms.
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