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Abstract. Abstractions (also called symbolic models) are simple descriptions of
continuous and hybrid systems that can be used in analysis and control. They are
usually constructed in the form of transition systems with finitely many states.
Such abstractions offer a very attractive approach to deal with complexity, while
at the same time allowing for rich specification languages. Recent results show
that, through the abstraction process, the resulting transition systems can be non-
deterministic (i.e., if an input is applied in a state, several next states are possible).
However, the problem of controlling a nondeterministic transition system from a
rich specification such as a temporal logic formula is not well understood. In this
paper, we develop a control strategy for a nondeterministic transition system from
a specification given as a Linear Temporal Logic formula with a deterministic
Biichi generator. Our solution is inspired by LTL games on graphs, is complete,
and scales polynomially with the size of the Biichi automaton. An example of
controlling a linear system from a specification given as a temporal logic formula
over the regions of its triangulated state space is included for illustration.

1 Introduction

In control problems, trajectories of “complex” mathematical models, such as systems
of differential equations, are usually checked against “simple” specifications, such as
stability of equilibria and set invariance. In formal verification, “rich” specifications,
such as formulas of temporal logics, are checked against “simple”” models of software
programs and digital circuits, such as (finite) transition graphs. There has been a lot of
interest lately in developing theoretical frameworks and computational tools for bridg-
ing in this gap, and therefore allowing for specifying the properties of continuous and
hybrid systems in a rich language, with automatic verification and controller synthe-
sis. Most of the existing approaches are centered at the concept of abstraction, i.e., the
process through which a system with infinitely many states (such as a control system
in continuous space and time) is mapped to a system with finitely many states, called
symbolic, or abstract model. Roughly, the abstract model can be seen as a transition
graph, whose states label “equivalent” sets of states of the initial system.
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The abstract model can be either equivalent with the initial system with respect
to the satisfaction of the specification, or it can provide an approximation, with the
guarantee that the satisfaction of the specification for the abstract model is sufficient
for the satisfaction of the specification by the initial system. Equivalent abstractions are
based on the notion of bisimulation [[1], while sufficient abstractions can be derived us-
ing simulation relations. The class of systems for which equivalent finite models exist
include systems with very simple continuous dynamics, such as timed automata [2]],
multirate automata [3]], rectangular automata [4]], or systems with more complex con-
tinuous dynamics but simpler discrete dynamics, such as o-minimal hybrid systems [J3].
More recent results provide conditions for the existence of equivalent abstractions for
discrete-time continuous-space linear systems [6] and for more general systems through
a relaxed notion of approximate bisimulation [7/8]. Recent works on constructing suf-
ficient abstractions focus on systems with linear dynamics and polyhedral partitions
[9] and systems with polynomial dynamics and partitions given by semi-algebraic sets
[10]. In these works, the construction of sufficient or equivalent abstractions (if they
exist) is expensive, and involves either the integration of vector fields [9]] or quantifier
elimination for real closed fields and theorem proving [[10].

There are two classes of systems for which checking the existence of equivalent ab-
stractions and the construction of sufficient abstractions can be reduced to polyhedral
operations only [11]]: affine systems with simplicial partitions (e.g., triangulations in
the 2D case) and multi-affine systems with rectangular partitions. Roughly, such con-
structions are possible because necessary and sufficient conditions for the existence of
controllers driving all initial states of an affine (multi-affine) system in a simplex (rect-
angle) through a facet in finite time and for making a simplex (rectangle) an invariant
can be reduced to checking the non-emptiness of polyhedral sets [12I13]. If in a sim-
plicial (rectangular) partition of the state space of an affine (multi-affine) system, feed-
back controllers can be designed such that all states either stay inside or leave through
a facet (to a neighbor region), then the corresponding quotient transition system is an
equivalent abstraction (bisimulation quotient). Moreover, this finite transition system is
deterministic, since an applied control uniquely determines the next state. If the control
specification for the initial system is given as a Linear Temporal Logic (LTL) formula
over the regions of the partitioned state space, then the problem reduces to controlling a
deterministic transition system from an LTL formula over its states. This problem is rel-
atively easy, since it can be solved by adapting standard tools from LTL model checking
[14]). We proposed a solution in [[I3]], and used it to develop a fully automated procedure
for control of linear systems from specifications given as arbitrary LTL formulas over
arbitrary linear predicates in the state variables.

This paper is motivated by recent results extending the work from [12I13].
Specifically, in [16], the authors showed that, for an affine system in a simplex, even
though a controller driving all states through a facet (i.e., to a neighbor) might fail to
exist, controllers driving the system through a set of facets (i.e., to a set of neighbors)
might be found. Similar results were proved for multi-affine systems and rectangles in
[17]. While reducing the conservativeness introduced through the abstraction process,
these results raise a new problem: since a controller does not guarantee a transition to
exactly one neighbor, the abstract transition system is non-deterministic. On the other
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hand, the problem of controlling a non-deterministic transition system from a rich spec-
ification such as an LTL formula over its states is currently not solved.

In this paper, we focus on specifications given as formulas of a fragment of LTL
[14] for which the corresponding languages are generated by deterministic Biichi au-
tomata. We propose a solution inspired from (infinite) LTL games [18[19/20], which
are played by two players on a graph. Roughly said, we generalize this problem to
transition systems with inputs, and treat non-determinism as an adversary. The so-
lution is presented in the form of a feedback automaton, which at each step reads
the current state of the transition system and generates the applied control. We ap-
proached this problem in our previous work [21]], where we mapped it to a classical
LTL game played on a modified transition system by assigning its states to the two
players. As opposed to [21]], the solution that we propose here is complete, in the sense
that we find a solution if one exists. The algorithms proposed in this paper were im-
plemented as a user-friendly software tool under Matlab, which is freely downloadable
fromhttp://iasi.bu.edu/~software/nondet.htm.

2 Case Study

To motivate the problem and illustrate our approach, we consider an example of con-
trolling an affine system from a specification given as a temporal logic statement about
the reachability of simplices in a triangulation of its state space. Consider the following

affine system:
[-04 02 10 0.7
T= [ 0.5 —0.8} T [0 1} ur {0.5} > M

where the state and controls are restricted to rectangular sets = € [2,10] x [1,7] and
u € [—1,1] x [—1,1], respectively. Assume the (planar) state space of the system is
triangulated as shown in Fig.[I(a).
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Fig. 1. (a) Triangular partition of the planar state space of system (I) and the vector field cor-
responding to the uncontrolled system. (b) The deterministic transition system modelling con-
trollers driving all states in a simplex through a facet or making a simplex an invariant ((J‘;— with
i # j is a feedback controller for g; guaranteeing exit to ¢; in finite time; o} is a feedback
controller making ¢; an invariant.
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Assume we want to find initial states and control strategies for system (I)) such that
all the trajectories of the closed loop system satisfy the following specification:

“eventually visit q¢ and q12, in any order” 2)

In other words, it is desired that the trajectories of the closed loop system evolve in
the triangulated environment such that, at some point in the future, the regions labelled
by g and qi2 (not necessarily in this order), are reached. Note that this specification
contains temporal (“eventually”) and logical (“and”) information. Temporal logics

offer formal frameworks for such temporal and logical statements. Specifically, in our
case, the specification translates to the following Linear Temporal Logic (LTL) formula
over the set of symbols {q1,...,q14}:

o =Ogs N iz, 3)

where “{”” means “eventually” and “A” is the well known notation for “and”. Therefore,
the problem translates to controlling the affine system (IJ) from a specification given as
the temporal logic formula () over triangles in its partitioned state space.

This problem can be seen as a particular case of the framework we developed in
[13], where an arbitrary linear system was controlled from LTL formulas over arbitrary
linear predicates in its state variables. In short, the computational tool developed in
consists of the following steps: (i) construct a polyhedral partition of the state
space using the linear predicates in the specification, (ii) for each of the polytopes in the
partition, find feedback controllers making the polytope an invariant, and, for each of its
facets, find feedback controllers driving all the initial states in the polytope through the
facet (to a neighbor polytope) in finite time, (iii) arrange the results of the previous two
steps in the form of a transition system (or transition graph), where the states (nodes)
label the polytopes, and the transitions (included in the adjacency relations between
polytopes) are labelled by the corresponding controllers designed in the previous step
(a self transition corresponds to a controller making the corresponding polytope an
invariant set), (iv) design a control strategy for the transition system constructed in the
previous step, in the form of a hybrid system. For our example, the transition system
obtained in step (iii) is shown in Figure[T] (b).

Since an applied control uniquely determines the next state, the transition system
constructed above is deterministic (e.g., the transition system in Figure [ (b)). There-
fore, step (iv) of the above procedure reduces to the problem of controlling a determin-
istic transition system from a specification given as an LTL formula over its states. One
can find a solution to this problem by model checking the transition system with the
negation of the formula using (off-the-shelf tools, such as SPIN and NuSMV). How-
ever, there is no control over the produced counterexample, which might be too long,
or simply not implementable by the initial continuous system. To overcome this, in
[13]], we proposed another solution for the problem, which will be also briefly reviewed
in Remark [3l The solution consists of the following steps: (a) construction of a Biichi
automaton accepting the language satisfying the formula, (b) synchronization of the
transition system with the Biichi automaton by taking their product, (c) finding a run
in the product automaton that is implementable by the initial continuous system and
is optimal with respect to a cost imposed by the particular application, and (d) finding
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the control strategy in the form of the sequence of controls producing the run from the
previous step. Step (d) is possible because, in a deterministic transition system, a run is
uniquely determined by a sequence of applied controls.

By applying the procedure from to our example, we find that the set of ini-
tial states for which control strategies can be designed such that all trajectories of the
closed loop system satisfy the formula is given by the union of all triangles except for
q1, 92, q13, q14- The solution is of course conservative, in the sense that, even though
we label some triangles as not containing initial states for trajectories satisfying the for-
mula, there might exist states in these triangles such that trajectories originating there
satisfy the formula. There are two sources of conservativeness in this approach: (1) the
initial states are treated as whole sets given by the initial triangles (no subpartition is
performed), and (2) only controllers either driving all initial states to a facet or making
a triangle an invariant are allowed. Related to the latter source of conservativeness, one
can imagine that, even though controllers driving all initial states to a facet might fail to
exist, controllers guaranteeing exiting through a set of facets might be found. For exam-
ple, by using the techniques from [12]], no feedback controllers can be found to drive the
states in triangle ¢; through the separating facet with gs, or through the separating facet
with ¢o. However, by using the more general conditions from [16]], a feedback controller
can be found which guarantees that all initial states in ¢; will eventually reach either gg
or go. However, if such controllers are allowed, the quotient transition system becomes
nondeterministic. For our example, the resulting transition system is shown in Figure[2]
(b). By applying the general method for controlling nondeterministic transition systems
proposed in this paper, coupled with feedback controllers as in [16], we show in Section
that control strategies producing trajectories satisfying the formula can be found for
all initial states in qi, qo, . .., q14. In other words, the conservatism from our previous
method is considerably reduced.

3 Preliminaries

Throughout the paper, for a finite set A, we will use the notations |A|, A¥, and 24 to
denote its cardinality, the set of all infinite words over A, and its power set (the set of
all its subsets), respectively.

Definition 1 (Transition system). A finite (nondeterministic) transition system is a tu-
ple T = (Q, X, 0), where:

— @ is a finite set of states,
— X is a finite input alphabet,
- 0:Q x X — 29 is a (nondeterministic) transition function.

For a given state g € (), the set of available (feasible) inputs is denoted by X, (i.e., Xy
is the set of o; € X for which |§(q, 0;)| > 1). An input word o € X* is denoted by
0 = 010203 ... A trajectory or run of T produced by an input word o starting from ¢
is an infinite sequence w € Q¥, w = wywows . .. with the property that w; = ¢ and
Vi >1, Wit1 € (5(@01‘70'1‘).

A formal definition of the syntax and semantics of Linear Temporal Logic (LTL)
formulas is beyond the scope of this paper. Intuitively, an LTL formula over the set )



292 M. Kloetzer and C. Belta

is any “sensible” combination of elements from (), logical operators — (negation), A
(conjunction), V (disjunction), = (implication), < (equivalence), and temporal oper-
ators () (next), U (until), { (eventually), (] (always). The semantics of LTL formulas
are given over runs of transition system 7'. For example, if the states () of T" are labels
for regions in a partitioned state space of a control system, then the control specifica-
tion “visit region q;, then region g, and then go to final target g3, while avoiding ¢;”
translates to formula

Qg1 A O(g2 A (mq1)Ugs)) 4

which is true for any run in which ¢; appears at some position, then gs appears, and
then eventually g3 appears, while ¢; does not appear before this happens.

For every LTL formula over @, there exists a Biichi automaton (also called a gener-
ator of the LTL formula) accepting all and only the words satisfying it [22].

Definition 2 (Biichi automaton). A Biichi automaton is a tuple B= (S, Sy, Q,dp, F),
where:

— S is a finite set of states,

- So C S is the set of initial states,

— Q is the input alphabet,

- 05 : 8 x Q — 2% is a nondeterministic transition function,
— F C S is the set of accepting (final) states.

The semantics of a Biichi automaton is defined over infinite input words. Let w =
wrwaws..., w € Q¥, be an infinite input word of automaton B. We denote by R (w)
the set of all initialized runs of B that can be produced by w:

RB(U}) = {7" = 818283...| S1 € So, Si+1 € 6B(si,wi), Vi > 1} 5)

Definition 3 (Biichi acceptance). A word w € Q¥ is accepted by the Biichi automaton
B ifand only if Ir € Rp(w) so that inf(r) N F # 0, where inf(r) denotes the set of
states appearing infinitely often in the run r.

In words, an input word w is accepted by B if and only if there exists at least a run
induced by w that visits F' infinitely often.

Remark 1. Motivated by the particular control application, we use simplified definitions
of transition system, Biichi automaton, and Biichi acceptance. We refer to [14]] for more
general definitions.

4 Problem Formulation and Approach

Problem 1. Given a transition system 7' = (Q, X, ) and a Biichi automaton B =
(S, S0,Q,0p, F), find a set of initial states Q¢ C @ and a control strategy for 7" such
that all runs of 7" are accepted by B.
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The Biichi automaton B from the above problem should be seen as a generator for an
LTL formula ¢ over (), which is the high-level control specification. Due to some com-
plexity issues that go beyond the scope of this paper, in this work we assume that the
Biichi automaton B from Problem[lis deterministic (i.e., So = {so} is a singleton, and
0p : S x @ — Sis a partial function). Intuitively, the current state of a deterministic
Biichi automaton shows the progress towards the satisfaction of the LTL formula, and
this information is used in developing the strategy from that point on. If a deterministic
Biichi automaton does not exist for a given formula, the nondeterministic Biichi gener-
ator has to be translated into a more complicated type of deterministic automaton, like
Muller or Rabin.

Remark 2. It is important to note at this point that, although for any LTL formula a
generator Biichi automaton can be constructed, this automaton is in general nondeter-
ministic, and cannot be always determinized [23]]. However, the assumption that the
Biichi generator is deterministic does not seem restrictive from an expressivity point
of view [24], since most LTL formulas capturing control tasks (including the formulas
in Eqn. @), @), as well as specifications like safety and liveness) belong to some iso-
lated fragments of LTL, for which (partially-ordered) deterministic generators can be
constructed [23]].

Remark 3. 1f the transition system 7" were deterministic (i.e. § : @ x X — @), then
a solution to Problem [I] could be found by using an idea similar to model checking
[T4UT3]]: the product automaton T' x B is computed and in this product automaton an
accepting run with a specific structure is found and projected to a run of 7. Since T is
deterministic, a control strategy implementing the desired run can be constructed. This
approach also works in the case of nondeterministic Biichi automata.

Problem [Tlis related to the problem of controlling a discrete event system modelled as
a transition system with inputs [26]]. However, in this latter case, the specification is
given as an w-regular expression over inputs (rather than an LTL formula over states).
In this paper, we propose a method inspired by the theory of LTL games. An LTL game
is defined on a graph G = (V, E) and it is played by two players: a protagonist and
an adversary. The set of nodes (states) V' is partitioned into a set of protagonist’s states
Vp, from which the protagonist can choose the next state, and a set of adversary’s states
Va, from which the adversary chooses the next state [[18]]. A play consists of an infinite
sequence of states resulted from an infinite sequence of transitions (edges) chosen by
the two players. The specification for an LTL game is an LTL formula over the set of
states V. A play is won by the protagonist if the produced run satisfies the LTL formula.

The protagonist has a winning strategy if, whenever the current state is in V,,, she
manages to choose transitions such that she wins the current game, no matter what
transitions the adversary chooses when the current state is in V. The goal of an LTL
game is to find the set of initial states from where the protagonist has winning strategies
and a winning strategy for plays starting in those initial states. The existing algorithms
for solving LTL games are complete, in the following sense: when starting from the
found set of initial states, the winning strategy guarantees that the protagonist wins the
game, no matter how smart the adversary is, and when starting from any other state,
the adversary has a strategy prohibiting the protagonist’s winning [19].
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Intuitively, we can think of control Problem[TJas an LTL game in which the adversary
uses the non-determinism in the problem in the smartest way possible to prevent us
from producing runs of 7" satisfying the formula. More precisely, while we have full
control in choosing the current input of the transition system 7" in every state from @),
the adversary can choose the next state in the case when the chosen input produces
nondeterministic transitions.

Maybe the simplest way of transforming our problem into a standard LTL game
would be to partition the set of states () in two sets: a protagonist’s set J;,, with each
state having only deterministic outgoing transitions, and an adversary’s set (), with
each state having at least one input producing non-deterministic transitions. Then, a
graph with vertices () can be easily constructed, where the adversary has full control in
choosing any existing transition from states in ). An algorithm for solving LTL games
can be applied to this graph, and the resulting winning strategy (if any) can be adapted
for the initial 7" as follows: in states from (), the winning strategy (giving the next state
to be reached) is easily mapped to the input producing the deterministic transition to the
desired next state, and in states from (), any feasible input can be applied (since we gave
full control to the adversary). Obviously, this strategy is conservative because we don’t
use our power of choosing inputs in every state, but instead we give all the transitions
(inputs) from some states to the adversary. An attempt to reduce this conservatism can
be as follows: first, place all states from () in (),. Then, for each non-deterministic
input in a node, replace the non-deterministic transitions with a deterministic one to a
newly added state in (), and assign the removed non-deterministic transitions to this
new state. The solution is correct only for some LTL fragments, it is more complex, and
it still cannot be proved to be complete.

In [21]], Problem [I] was mapped to an LTL game for an augmented transition sys-
tem obtained by splitting the states of 7' and by assigning them to the protagonist
and the adversary. However, this procedure led to a conservative, incomplete solution.
In the next section, we present a different approach, which is based on an adaptation of
the LTL game algorithms, and which leads to a complete solution to Problem 1l

5 Solution to Problem [

In this section, we show how the main steps involved in solving an LTL game can
be adapted to our problem. We first construct a product automaton P between the tran-
sition system 7" and the Biichi automaton B (Sect.[5.1). We then solve a Biichi game
on P and find a set of initial states, together with a memoryless (positional) winning
strategy (Sect. [5.2). Finally, the set of initial states and the winning strategy for 7" are
obtained by projecting the initial states of P into () and by adapting the winning strat-
egy of P for T, respectively (Sect. [5.3). Unlike the winning strategy for P, the one
corresponding to 7" will have memory.

5.1 Constructing the Product Automaton

Definition 4 (Product automaton). The product automaton P = T X B between the
nondeterministic transition system T = (Q), X, 0) and the deterministic Biichi automa-
ton B = (S, S0, Q, 05, F') is defined as the tuple P = (Sp, Spo, X, dp, Fp), where:
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- Sp = Q x S is the finite set of states,

Spo = Q X Sy is the set of initial states,

2 is the input alphabet,

- 6p : Spx X — 257 is the transition function, defined as 5p ((q, s),0)={(¢',s") €
Sp|q €d(q,0)and s’ = d5(s,q)}, where (q,s) € Spando € X,

— Fp = Q x F is the set of accepting (final) states.

The product automaton P is in fact a nondeterministic Biichi automaton with input
alphabet X. Its acceptance condition is formulated as in Definition[3] but with respect to
input words from X, The product automaton in Definition can be regarded as a match
between the states and transitions of 7" and B. The transition function of P captures
both the nondeterministic behavior of 7' and the way of deterministically tracking the
progress towards the satisfaction on the LTL formula corresponding to B (infinitely
visiting set F' of B).

Let wp € X“ be an accepted input of automaton P and let 7p = (¢;1, ;1) (¢i2, 552)
(i3, 853)... be a resulted run such that inf(rp) N Fp # (. Then, a result from the
model checking theory states that the projection of rp to states in @ is a run rp =
i1, qi2, ¢i3... of T accepted by B. Furthermore, a run of 7" accepted by B exists if
and only if P has an accepted run. However, since 7" is nondeterministic, we cannot
make sure that a certain run will be followed, as we could for the deterministic case
mentioned in Remark[3l Therefore, our goal becomes to design a controller that applies
to T" inputs guaranteeing that any possible run will be accepted by B. Looking at P, this
goal translates to designing a strategy of applying inputs to P such that any possible run
rp satisfies inf(rp) N Fp # 0.

This problem resembles a Biichi game, which is an intermediate step in solving a
classical LTL game. The results from the next section can be seen as an extension of
the solution to the Biichi game from partitioned graphs [[18] to transition systems with
inputs, where the protagonist can choose inputs and the adversary can choose the next
state in nondeterministic transitions.

5.2 Solving a Biichi Game

As stated in the previous subsection, we want to apply inputs to P such that the subset
of states F'p will be visited infinitely often. Whenever a nondeterministic transition is
encountered, even though we are able to choose the input, the adversary will decide the
next state, and we have to make sure that we will be able to accomplish the goal, no
matter what state the adversary chooses. Eventually, by using a fixed-point strategy, we
will be able to isolate a set of states Wp C Sp (the winning region), from where we
can guarantee infinitely many visits to Fp. An immediate adaptation of a result from
the theory of LTL games [18]] states that if a nonempty set Wp together with winning
strategy of applying inputs exist, then there also exists a memoryless (positional) strat-
egy, which applies a certain input in each state from Wp. In other words, a memoryless
strategy willbeamap 7p : Wp — 3.

In the following three definitions, which are adapted from [19], A is an arbitrary
subset of the set of states Sp.
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Definition 5 (Recurrent set). The recurrent set of A, denoted by R(A), is defined as
the set of all s € A from which there can be enforced infinitely many revisits to set A.

The recurrent set will be recursively computed by starting with Ro(A) = A and by
finding, at each step i > 1, the set R;(A), which is the set of all s € A from which
there can be enforced at least 7 revisits to set A. Then, because A is finite, the decreasing
sequence A O Rq(A) DO Ra(A)... will reach a stationary value (which can be the
empty set) for some ¢ < |AJ, and that value is R(A). The actual details of computing
R;(A) will be given after Definition [7]

Definition 6 (Attractor set). The attractor set of A, denoted by A(A), is the set of all
s € Sp from which there can be enforced a visit to set A in zero or more steps.

Enforcing a visit in zero steps is equivalent to starting from A and applying no in-
put. The attractor set will be the stationary value of an increasing sequence: Ag(A) C
Ai1(A) C Az(A) ..., where A;(A) is the set of all s € Sp from which there can be
enforced a visit to set A in at most ¢ steps. It is easy to see that the recursion starts with
Ap(A) = A and, at each step, A;11(A) is computed as the union of A;(A) with the
setof all s € Sp \ A;(A) from which there can be enforced a visit to set .A;(A) in one
step, for ¢ > 0. The stationary set (A;4+1(A) = A;(A)) will again be reached in a finite
number of steps ¢ < |Sp].

The winning region Wp is given by Wp = A(R(Fp)): once R(Fp) is reached,
we are certain that we can revisit states from Fp infinitely often. However, in order
to effectively compute the recurrent set of a given subset of states, we need one more
definition.

Definition 7 (Proper attractor). The proper attractor of A, denoted by A*(A), is
defined as the set of all s € Sp from which there can be enforced a visit to set A in one
or more steps.

The proper attractor is computed similarly to the attractor set, but the following differ-
ences appear: we start with AJ (A) = ) and, at each iteration, we compute .A;-Erl (A)
as the union of A; (A) with the set of all s € Sp \ A (A) from which there can
be enforced a visit to set A4;(A) U A in one step. This comes from the fact that the
proper attractor set requires at least one step to be taken (one input to be applied) in
order to visit set A, while the regular attractor from Definition [6] consider as a visit the
situation of starting from set A and taking no transition. Because of this difference,
the proper attractor is suitable for computing the recurrent set, by using the recurrence
Riv1(A) = Ri(4) N AT (R;(A)): at each step, keep only states from R;(A) from
where a revisit to R;(A) can be enforced in a strictly positive number of steps.

We now have all the tools for solving the Biichi game on the product automaton P.
Due to space constraints, we do not include the corresponding algorithm here, and we
refer to the technical report fromhttp: //iasi.bu.edu/ “software/nondet.
html. The idea of solving the Biichi game on P is to first compute R(Fp) (using the
recurrence given after Definition [7), and then, if the resulting set is nonempty, the set
Wp = A(R(Fp)) is computed (as described after Definition [6). The winning strategy
mp is constructed during the computation of these sets, by searching inputs from Y
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guaranteeing the satisfaction of definitions for recurrent and attractor sets, respectively.
The obtained solution is the set Wp and the memoryless strategy 7p : Wp — X If the
set Wpg = Spo N Wp is nonempty, then there exist initial states of P from where Fp
will be visited infinitely often. Otherwise, our Biichi game with inputs has no solution,
and correspondingly Problem[Tlis infeasible. The solution from this section is complete,
and its correctness is guaranteed by construction.

5.3 Constructing the Control Strategy for T’

If there is a solution for winning the Biichi game on the product automaton P (set W pq
is nonempty), we have to adapt this solution to our initial transition system 7. First, the
set of initial states of 7" from where the LTL formula can be satisfied is Qo = a(Wpy),
where map « : Sp — @ is just the projection of states from P to (). Second, the control
strategy for T will be an automaton C' obtained from the memoryless strategy 7p in the
winning region Wp. The input applied to C' will be the current state of T, and the output
of C' will give the next input to be applied to 7.
The control automaton C' is the tuple C' = (S, @, so, T, 7, '), where:

— S'is the set of states of B,

— ( is the input set, equal with the set of states of T,

— Sp is the initial state of the deterministic Biichi automaton B,

- 7:5 % Q — S is the memory update function, 7(s, q) = d5(s, q) if (¢,s) € Wp,
and 7(s, ¢) undefined otherwise,

- m: S8 x Q — X is the output function, 7(s, ¢) = 7p((g,s)) if (¢, s) € Wp, and
7 (s, ¢) undefined otherwise.

The correctness of the control automaton C' can be verified as follows: if we equip
C with the set of final states I, then the product automaton 7" x C' will have the same
states as P, its transitions will be the subset of transitions of P that can appear during
the winning of a Biichi game, and the strategy for applying inputs is exactly 7p.

To summarize, the solution to Problem [Tl is given by the set of initial states Qp =
a(Wpp) and the feedback control automaton C'. Whenever 7" starts from an initial state
in set (Qg, the satisfaction of the LTL formula corresponding to the Biichi automaton B
is guaranteed by the controller C', which, at each step, reads the current state of 7', uses
map 7 to determine the next input to be applied to 7, and updates its own internal state
by using the map 7.

Since the solution from section [3.2]is complete, the overall procedure proposed in
this paper for solving Problem Il is complete. On complexity, the running time of the
overall three-step procedure is O(|Q|? - |S]? - |X|) (proofs are omitted due to space
constraints). If the specification is given as an LTL formula, to this we need to add
the running time for the conversion of the formula to a Biichi generator, which is at
most double exponential in the length of the formula [25]]. If smaller fragments of LTL
are considered, then the construction of the Biichi generator can be more efficient. For
example, for the LTL fragment which includes the example in Eqn. (@), exponential
complexity can be achieved [23]. Moreover, note that this upper bounds for complexity
are very rarely attained in practice.



298 M. Kloetzer and C. Belta

The three-step procedure proposed in this paper has been implemented in Matlab.
The user-friendly interface takes as input the transition system 7' and the Biichi au-
tomaton B, and returns the control automaton C'. The software package is freely down-
loadable fromhttp://iasi.bu.edu/~software/nondet.htm.

6 Case Study Revisited

Let us now revisit the case study from Section [2] which requires to find initial states
and feedback controllers for system (I)) such that all trajectories of the corresponding
closed loop system satisfy specification @), i.e., LTL formula (@). The deterministic
Biichi automaton corresponding to the formula (not shown due to space constraints)
has 4 states, one final state, and 56 transitions, out of which 52 are self transitions.

We start by constructing a transition system 7" with states @ = {qi, ..., q14} corre-
sponding to the partition elements and with transitions capturing the ability of design-
ing affine feedback controllers such that a triangle either becomes an invariant for the
closed loop system, or it is left in finite time to one or several neighbors. To compute
such controllers, we used the method developed in [16], which consists of polyhedral
operations only. We first check transitions to one neighbor. Then, if some neighbor(s)
cannot be reached, we check transitions to the possible pairs of neighbors that include
the non-reachable one(s). We stop either when every neighbor can be reached (through
deterministic or non-deterministic transitions), or when all combinations of exit facets
were checked (including the set of all three facets). The resulting transition system
(shown in Figure 2] (b)) has 38 transitions, out of which 27 are deterministic.

%
%

£

i)

(a)

Fig. 2. (a) Two continuous trajectories of the controlled system, starting from the points marked
with 7o” (x = (4, 1.5) and = (8, 1.1), respectively) and asymptotically converging to the
points marked with ”X”. (b) The nondeterministic transition system modelling feedback con-
trollers making a triangle an invariant and driving all states to one or several neighbors. De-
terministic transitions are shown in solid line, while non-deterministic transitions are shown in
dashed line. 0';-7 1 labels a controller driving all initial states in g; to g; or gx.

By using the three-step approach from Sect. [l we conclude that formula ¢ can
be satisfied by trajectories starting from any triangle ¢;, ¢ = 1,...,14. The product
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automaton has 56 states, which appear all in the winning region Wp. The control au-
tomaton C' has 4 states. The computation for all three steps took less than one second.
We skip the exact details on how this discrete control strategy is applied to the continu-
ous system (). Roughly, a discrete transition in 7" takes place when the current triangle
is left. Each input to be applied to 7" is mapped to an affine feedback controller, and
applied as long as the continuous trajectory evolves in the current triangle.

In Fig. [2] (a), we show two continuous trajectories starting in region ¢q; and corre-
sponding to the strategy imposed by the control automaton C'. Even though the contin-
uous trajectories reach different sequences of triangles, they both satisfy the formula.
Each trajectory converges to a point marked by ”X”, inside gg and q;2, respectively.
Note that the solution presented here is less conservative than the one shown in Sec-
tion2l which was based on control-to-facet problems and deterministic transition sys-
tems. We also solved the (discrete part of the) problem by using two other (conservative)
approaches: (1) direct translation to an LTL game on a graph (see Sect. ), and (2) LTL
game played on an augmented transition system (see [21]]). Notably, as in Section 2]
these two methods returned that the formula can be satisfied by starting from any trian-

gle except q1, g2, q13, q14.

7 Conclusion

We developed a method for control of a nondeterministic transition system from a spec-
ification given as a temporal logic formula generated by a deterministic Biichi automa-
ton. The method is complete and scales polynomially with the size of the Biichi gener-
ator. We illustrated the application of the method to the control of a continuous planar
affine system from a specification given as an LTL formula over regions in a triangu-
lated environment.

The method proposed here is quite general, and can be used whenever a finite tran-
sition system representation of a control problem can be constructed (e.g., multi-affine
dynamics and rectangular partitions). Therefore, it provides the first steps towards the
construction of expressive specification languages for symbolic control. An immediate
application is automatic planning and control of robot motion, where triangulation and
rectangular grids are the most used partitioning schemes, and task specifications are
naturally given as temporal and logic statements about the reachability of regions of
interest in the robot environment.
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