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Abstract: We consider the problem of finding optimal agent trajectories for persistent
surveillance missions subject to temporal logic (TL) constraints. Specifically, we aim to minimize
the time between two consecutive visits to regions of interest in a partitioned environment while
satisfying each agent’s TL specification. We formulate a distributed optimization problem, where
each agent plans its trajectory based only on local information. We use a formal methods
approach to show that any trajectory resulting from the proposed controller satisfies the
corresponding TL constraints. The results are illustrated through simulations by comparing
the proposed strategy with a joint planner and a planner without communication.
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1. INTRODUCTION

In persistent surveillance missions, the agents continuously
and repetitively patrol an area to provide situational
awareness. A challenging objective in such problems is
to find the optimal agent trajectories that optimize a
global performance measure. A prominent approach is to
partition (or discretize) the surveillance area and to define
the performance measure as a weighted sum of the ages of
the regions. In this context, the age of a region is defined as
the amount of time that has passed since the last visit to
the region by an agent. In the literature, various strategies
are used to solve persistent surveillance problems. For
instance, virtual pheromones are used in (Fu and Ang,
2009), where agents are probabilistically guided towards
the areas that have not been visited for a long time. A
vehicle routing problem, (Bertsimas and Van Ryzin, 1991),
is solved to minimize the age of a particular point in
(Stump and Michael, 2011). An optimal control problem is
formulated in (Cassandras et al., 2013), where a metric of
uncertainty growing due to uncovered areas is minimized.
Alternatively, some auction algorithms are used in (Nigam
and Kroo, 2008) to achieve region assignment among the
agents to minimize the maximum age in the environment.
Moreover, the authors of (Elmaliach et al., 2009) find a
minimal Hamiltonian cyclic path and locate the robots
properly on the path to obtain uniform frequency of
visiting the viewpoints.

In some surveillance missions, the agents may be required
to optimize a performance measure subjected to trajectory
constraints such as visiting the regions in a specific order.
For instance, if there exist special locations for uploading
data, the agents should gather information before visiting
these locations. Alternatively, some regions might need to
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be visited sequentially so that the data collected overall
can be processed more effectively. These types of con-
straints represent complex mission specifications, and it
is generally hard to formulate them in a classical opti-
mization setup. As such, Temporal Logics (TL) have been
proposed to specify such complex constraints. TLs are rich
and expressive specification languages, whose syntax and
semantics are well-defined, (Baier and Katoen, 2008). For
example, Linear Temporal Logic (LTL) can be used to
describe a persistent task as: “Visit regions A or B, then
C, infinitely often. Never visit D before visiting C.”

Motion planning subject to a TL formula has been studied
in various studies including, but not limited to, (Kress-
Gazit et al., 2009; Karaman and Frazzoli, 2011; Wong-
piromsarn et al.; 2012; Chen et al., 2012b; Smith et al.,
2011). Typically, the high-level plan is found by model
checking algorithms (Baier and Katoen, 2008), and this
plan is then implemented by a low-level controller. In
multi-agent systems, an essential task is to decompose a
global formula into some local ones, each of which can
be implemented by a single agent (Kloetzer et al., 2011;
Ulusoy et al., 2013; Chen et al., 2012a). In this paper, we
assume that the independent local formulas are already
assigned to the agents as in (Guo and Dimarogonas, 2015).

In this paper, we study a multi-agent persistent surveil-
lance problem, where each agent has limited energy and
limited communication capability. Moreover, each agent
has an individual LTL specification that not only expresses
an order of visiting certain sites but also enforces periodic
visits to the base for refueling. The main objective of
the team is to minimize the summation of the ages of
all regions (i.e. to maximize situational awareness) while
satisfying their individual specifications. However, finding
the optimal joint trajectories (without any specifications)
is shown to be NP-hard by (Pasqualetti et al., 2012).
Therefore, we formulate a distributed optimization prob-
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lem, where each agent computes its individual trajectory
by minimizing the sum of age estimates while satisfying
its own specification. Here, the age estimate refers to an
agent’s local estimation about the ages of each region, and
we allow agents to exchange their age estimates based on
their communication capabilities.

This work is closely related to (Ding et al., 2014) and (Guo
and Dimarogonas, 2015). Creating progress constraints
based on an energy function defined over a product au-
tomaton was introduced in (Ding et al., 2014). We use
this idea in a distributed setting, where each agent has
a local objective and an individual specification. Such a
setting for the cooperative motion and task planning under
local LTL specifications was also studied in (Guo and
Dimarogonas, 2015). However, our work is different from
(Guo and Dimarogonas, 2015) in two aspects: 1) we do
not allow any relaxation of an LTL specification, and 2)
we specifically focus on a persistent surveillance scenario,
where energy-limited vehicles aim to minimize the sum of
the ages of each region in a distributed fashion.

2. PRELIMINARIES
2.1 Linear Temporal Logic

Linear temporal logic (LTL) syntax is defined recursively
over a set of atomic propositions AP as follows:

¢ = pl=pld A plo V Y[oUY|XPFP|Go, (1)
where ¢ and 1 are LTL formulas and p € AP is an
atomic proposition. LTL combines the Boolean operators
negation (=), conjunction (A), and disjunction (V) with
the temporal operators until (i), next (X), eventually (F),
and always (G). The semantics of LTL are defined over
infinite words w from the alphabet 247 i.e., the words
consisting of sequences of symbols from the power set of
atomic propositions. We denote the k** position of a word
as w(k), e.g., w(0) is the initial position. A word satisfies
a formula ¢, if ¢ is true at w(0). A word satisfies Fo,
if ¢ is true at some position w(k). Furthermore, a word
satisfies Go, if ¢ is true at all positions in the word. The
formula ¢1U ¢4 is satisfied by a word w, if ¢ is true at all
positions before ¢5 is true. Similarly, X¢ is satisfied by w
if ¢ is true at w(1). These operators can be combined to
define complex mission specifications, such as “eventually
visit region p; and visit region ps infinitely often, and do
not visit region p3 before visiting region p;”, which can be
expressed as:

Fpi A GFp2 A —psUp;. (2)

Definition 2.1. (Buchi Automaton) A Buchi automaton is
a tuple B = (@, ¢80, =, A, F), in which Qg is a finite
set of states, gqgo is the initial state, ¥ is an alphabet,
Ap: Qp X X — Qg is a transition function, and Fz C Qg
is the set of accepting states.

In this paper, we assume that ¥ = 24, A Buchi automa-
ton accepts words from ¢ the set of all infinite words
from ¥, such that the states in Fp are visited infinitely of-
ten. The language of a Buchi automaton, i.e. Lz, is the set
of all such words. For every formula ¢ over AP, there exists
a Buchi automaton By that accepts exactly the language
that satisfies ¢ (i.e., the language Lg, = {w|w = ¢}).

In this work, we consider a fragment of LTL, which we call
the surveillance fragment of the following form

GFS A GFp A G(8= (8U(-8Up) Ao s Avr), (3)

pPEPGF pPEPGF

where 8 € 247 is a task to be performed infinitely often
(e.g., visiting a base to refuel), and Pgr C AP is a
set of atomic propositions (or surveillance tasks) to be
performed infinitely often. The term 8 = (8U (—SUp))
requires that an agent satisfying S must then satsify each
p € ®gF before satisfying 5 again. The terms ¥p,g, and
g enforce ordering, safety, and reactivity constraints on
dar, respectively. For more details on this fragment of
LTL, the reader is directed to (Chen et al., 2012b).

2.2 Graph Theory

An undirected graph, G = (V, E), consists of a set of nodes,
V, and a set of undirected edges, E. For any set of the
nodes, X C V, Gx refers to the subgraph induced by the
nodes in X (i.e., Gx consists of all nodes in X and all
the edges between those nodes). In a graph, a k-length
path is a sequence of nodes q = (vg, v1, ..., V) such that
the edge between any v; and v;41 belongs to E, and its
length is denoted by |q| = k. An undirected graph, G, is
connected if there exists a path between any two nodes of
the graph. The connected components of a graph G are the
set of largest subgraphs of G that are each connected.

Let v; and v, be any two nodes in G. The distance between
v; and vy is denoted as d(v;,vx), and it is equal to the
length of the shortest path between them. The neighbor
set of node v;, N,, is the set including all adjacent nodes
that are connected to v; (i.e. Ny, = {v; | (vs,v;) € E}).

3. PROBLEM FORMULATION
3.1 Environment Model

Suppose that a set of agents operate in an environment
that contains multiple obstacles, a base, and multiple
regions of interest. We abstract such an environment as
an undirected graph, G¢"¥ = (V, ), where V is the set of
nodes representing n regions of interest as well as the base,
while £ is the set of edges representing the feasible travel
in one time step. An agent on v; € V at time ¢ can reach
vy € V at t+1, only if (v1,v2) € €. Let vp denote the base,
and let v; for i = 1,...,n represent each of the n nodes.
Let £ : V — AP denote a labeling function, where AP is
the set of atomic propositions as defined in (1). As such,
L labels the regions in the environment with the atomic
propositions that are satisfied by visiting that region. For
simplicity of presentation, we assume that AP = V so
that we consider formulas over the set of vertices. Fig. 1(a)
illustrates an example of an abstracted environment.

In this setting, each node in the graph has a time-varying
value, i.e. age, which denotes the duration of time a node
is not visited by an agent. As such, the age of node v; at
time ¢, «;(t), has the following dynamics:

0 if E'j s.t. xj(t) = V;,
i(t) = .
ailt) {ai(t —1)+1 otherwise,

(4)

where z;(t) € V is the position of agent j on the
graph. Moreover, the overall situational awareness of the
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environment at time ¢ can be quantified by the summation
of the node ages Y .-, a;(t), whose smaller values indicate
more situational awareness.

3.2 Agent Model

Given G = (V,€), the motion of an agent is modeled
as a deterministic transition system. A transition system
is a tuple 7 = (X, 20, Act, A+, AP, )z), where X C V is
the set of states, 20 € X is the initial state, Act is the
set of available actions, A7 C X x Act x X is the set
of transitions, AP is a set of atomic propositions, and
E is a satisfaction relation. For x € X and p € AP,
(z,p) € if and only if £ (z) = p, where L is the labeling
function defined in Sec. 3.1. Moreover, the agents move
synchronously on the graph so that any state transition
occurs at the same time. The control policy of agent j
is denoted by p;, which is a sequence of states over 7.
Accordingly, if agent j occupies the node z;(t) at time ¢,
Wy = (xj (t+1),2;(t+2)...) determines the target nodes
agent j needs to be in the future time steps.

Each agent has a limited energy capacity, and we use 7} to
denote the maximum operation time of agent j after it is
refueled. Assuming that the travel time between any two
adjacent nodes is 1, 77 € N corresponds to the number
of edges agent j may travel before returning to the base
for refueling. Let 7;(¢) be the remaining travel capacity of

agent j at time ¢. Then, 7;(¢) has the following dynamics:

o T if x;(t) = vp,
75(t) {Tj(t —1)—1 otherwise, ®)

where vp denotes the base. In addition to limited energy,
each agent has a limited communication capability. We
assume that an agent occupying node v; can only commu-
nicate with another agent occupying node v; if v; € N,,.
Based on the preceding assumptions, the communication
graph of the agents becomes a subgraph of G°™".

For example, six agents are located on the nodes ¥ =
{va, v3,v4,vs,v10,v12} of the graph G in Fig. 1(b),
where the communication graph of the agents is a sub-
graph of G°™ that is induced by the nodes in Y and their
adjacent edges. In this setting, we assume that agents can
instantaneously share information in the connected com-
ponent they belong to. For example, the communication
graph in Fig. 1(b) has three connected components, i.e.

{1,2,3}, {4}, {5,6}.
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Fig. 1. (a) The abstraction of a surveillance area as a graph
G™ (the obstacles are illustrated by the gray areas).
(b) Six agents are located on the nodes of G,

Instead of keeping track of the true age of each node
through a central authority or a complete communication
graph, each agent maintains a local knowledge about the

age of each node based on their visits and communication

with other agents. Let o (t) be the age of node i at time ¢
according to agent j, which we call the age estimate. Then,

the dynamics of o (t) is as follows:

it) = {o if 2(t) = vy,

0/(t—1)+1 otherwise.

(6)

J(t) = min 0¥t 7
a; (t) (Luin i (1), (7)
where Cj(t) = Ny, U is the communication set of

agent j. Note that if |C;(t)| > 2, agent j updates its age
estimates via exchanging information in its neighborhood.
Fact 1. Let a;(t) be the true age of v;, and let ol (t) be
the age estimate of v; according to an arbitrary agent 7j.
Let o;(0) = o (0) = 0 for all 4, j. Then, a;(t) < & ().

8.8 Problem Definition

We first introduce the global optimization problem for a
general multi-agent persistent surveillance scenario.
Problem 3.1. (Minimize True Age) Let m = (t1, ..y fim)
be the joint control policy for m agents. Given a graph
environment G°"¥ with n nodes, m transition systems
T1,-..; T, m local LTL specifications (¢; for each agent
Jj), and a discount factor v € (0,1), find a control policy

o0 n
nt=argminy 'Y ai(t) (8)
t=1 =1
such that each ¢; is satisfied infinitely often.

Solving Problem 3.1 requires the aggregate states of each
agent to calculate «;(t). Note that such a solution is not
scalable and practical due to the dependence on global
information and coordination. Based on Fact 1, we propose
a distributed solution to Problem 3.1 by considering each
agent’s policy independently. Accordingly, we aim to solve
the following distributed optimization problem:

Problem 8.2. (Minimize Age Estimate) Let 1; be a control
policy for agent j. Given a graph environment G°™¥ with
n nodes, a transition system 7;, an LTL specification ¢;,
and a discount factor v € (0, 1), find a control policy

W = arg minZ’yt Za{(t) g (9)
I
t i=1
such that ¢, is satisfied infinitely often.

Note that the problem of minimizing the sum of the true
ages via a team of robots without any LTL constraints has
already been considered in the literature, e.g., (Pasqualetti
et al., 2012). In this paper, we define a notion called age
estimate and use it to formulate a distributed optimization
problem. Accordingly, solving (9) is an approximate, but
a scalable, approach such that each agent computes its
trajectory independently based on minimizing the sum of
the age estimates and satisfying its own LTL specification.

4. DISTRIBUTED CONTROL SYNTHESIS UNDER
LTL CONSTRAINTS

4.1 Energy Function

In this section, we first describe the product between a
transition system and a Buchi automaton. Then, we define
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an energy function on the states of the product automaton.
Such an energy function is used in (Ding et al., 2014) to
enforce the satisfaction of an LTL formula. Similarly, we
will use the energy function as a progress constraint in
Problem 3.2.

Definition 4.1. (Product Automaton) Given a transition
system T = (X, 2V, Act, A, AP, |:) and a Buchi automa-
ton B = (@5,980, 2,05, Fg), their product automaton
denoted by P =T x B is a tuple P = (Qp, gpo, Ap, Fp),
where Qp = X x Qg is the set of states; gpo = {2} X ¢no
is the initial state; Ap C Qp X Qp is the set of transitions

defined by: ((x, q), (x',q’)) € Apiff t -7 2’ and ¢ 552 q;
and Fp = X x Fp is the set of accepting states on P.
Definition 4.2. (Energy function in P) The energy func-
tion V(gp), gp € Qp, is defined as

min d(gp,qp), if gp ¢ Fp-
Vigp) = { 9»€lr: ,  (10)

0, if gp € Fp-

where Fp« C Fp is the set of self-reachable accepting
states from P, and d (¢p, ¢ ) is the graph distance between
gp and ¢p. If Fp- is not reachable from a state gp € Qp,
then V (¢p) = oc.

4.2 Design of a Receding Horizon Controller

This section presents the design of a state-feedback con-
troller for each agent that solves (9). The proposed con-
troller is designed over the product automaton, which
captures both the motion of an agent and the satisfaction
of an LTL specification. Let P; be the product automaton
of agent j. We denote the product automaton state of
agent j at time ¢ by s;(). Note that any s;(t) € Qp,
corresponds to an energy V(s;(t)), i.e. the distance to a
self-reachable accepting state at time ¢, as defined in (10).
Moreover, agent j has a remaining movement capacity at
time t as 7;(t), i.e. the remaining number of transitions
it can pursue before returning to the base. Accordingly,
we define J;(s;(t), s;(t — 1),C;(t)) that is the sum of the
age estimates at time ¢ with respect to agent 7 under the
transition from s;(t — 1) to s;(t) over P; based on the
shared information among the agents in C}(t). Then, (9)
can be reformulated for all j as

15 = w3000 -1, C0) (1)
t=1

5.tV (s;(t) < 75(t),
where the constraint in (11) restricts the agent not to
move to a product automaton state that has a higher

energy (longer distance to satisfaction) than its movement
capacity. Note that the set C;(t) depends on the states of

all agents at t. Instead of predicting the elements of this1o
set for future time steps, we design a controller for agent !
j that can immediately utilize the information shared in12
C;(t) to compute the next control action. Therefore, we1s

propose a receding horizon controller to solve the problem
in (11) by formulating a fixed horizon optimization as:

t+N

N
Hj
t'=t+1

stV (5,(8) < 7,(t),

14
15

177

where N is the look-ahead horizon, and uf’ " results in a
state trajectory over P; as q{:LHN = (s;(t+1),...,s;(t+
N)). Agent j moves from s;(t) to s;(t+ 1), which is also
mapped to 7T; to update the age estimates according to
(7). Then, agent j solves (12) to obtain q{i2:t+N+1v and
it moves to s;(t + 2) from s;(t + 1).

We introduce Alg. 1 as the receding horizon controller of
agent 7. Alg. 1 starts with creating a Buchi automaton
B; from the agent’s specification ¢;. Then, a product
automaton P; is constructed from B; and 7;. Each state
qp; € Qp, is labeled with its energy, V' (¢p,). Moreover, we
construct Fp~ C Fp, which contains the accepting states
that are self-reachable through a 77-length path. Note that
77 is the maximum movement capacity of agent j. Given
the initial automaton state s;(0), if V' (s;(0)) > 77, then it
is not possible to find a trajectory originating from s;(0)
and satisfying ¢; in 7 transitions. Thus, the algorithm
returns no solution. Otherwise, at each time ¢, agent j
updates its age estimates via (7). Then, it computes the set
of all feasible N-length paths from its current state s;(t),
which we denote 1, (s;(t), N). For any g’ € 9; (s;(t),N),
the feasibility implies that each state in q/ = (s;(t +
1),...,8j(t + N)) does not violate the energy constraint
in (12). Moreover, every q’ has a corresponding cost, i.e.,
o(q?), calculated via (12). Accordingly, the optimal path
q’* is found via an auction-based selection to assign each
agent with the lowest (possible) cost paths. In particular,
each agent first selects q/* = arg MiNgs ey, o(q’) and
determines the destination node at the next time step.
If multiple agents plan to travel to the same node vy,
the agent whose path has the lowest cost, travels to wvy.
Then, the other agents filter the paths starting with vy
from their feasible path sets, i.e. ¢; (s;(t), N), and select a
path with the next lowest cost by sequentially modifying
¥; (5;(t), N). Finally, when the agent finds q’* = (s; (¢t +
1),...,s;(t + N)), it implements the transition from s;(t)
to s;(t + 1) and repeats the algorithm.

Algorithm 1 Receding Horizon Controller for Agent j

input : A transition system 7j;, specification ¢;, maximum opera-
tion time T;, and lookahead horizon N

Construct Buchi automaton B; from ¢;
Take product P; of B; and T;
Compute V(gp,) for all gp; € Qp,;
if V(5;(0)) > 77 then
L return no solution
else
al (0)«O0foralli=1,...,n
for ¢ + 0 to co do
Update o (t) according to (6) and (7)

Compute the set of feasible paths, 1 (s;(t), N)

Compute the cost of each path o(q’) Va? € 1, (s;(t), N)
Find q/* via Auction (a(qj), Cj (t))

Implement the transition from s;(t) to s;(¢t + 1) on P; and
the corresponding transition on 7;

Update 7;(t) based on (5)

t—t+1

. t—t / /
argom Z V(i) 85 = 1)) (12) In the following theorem, we present a sufficient condition

that ensures the infinitely often satisfaction of a given LTL
specification. To this end, we present an upper bound for
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the energy of the initial product automaton state with
respect to the vehicle capacity.

Theorem 4.1. Given an LTL formula ¢; as (3), Alg. 1 pro-
duces an infinite trajectory satisfying ¢; if V (s;(0)) < 7.

Proof. If V(s;(0)) < 77, then there exists a path (of
at most 77-length) from s;(0) to the set of self-reachable
accepting states Fp~. Moreover, the path originated from
5;(0) only contains states satisfying V (s;(t)) < 7;(t) < 77
for all ¢ > 0 because only the paths with feasible states
are taken into account (line 10). Now, we will show that
V(s;(t)) goes to zero infinitely often. Since 7;(t) is a
decreasing function, (5), while the agent is not at the
base, V (s;(t)) will eventually go to zero in at most 7;(t)
time steps. In particular, if the agent is patrolling in the
environment at ¢ = ¢’ > 0, then there always exists k;
such that ¢’ + 7;(¢') > k; > t' and V(s;(k;)) = 0 (i.e.,
s;(k;) € Fp-). Note that k; is finite, thus the time sequence
(K1, ks, ...) is infinite in the repeated run of Alg. 1. Hence,
Alg. 1 produces an infinite trajectory (s;(0),s;(1),...)
such that V(s;(t)) < 7;(t) for all t > 0 and V (s;(k;)) =
0 for an infinite sequence (k1,ko,...), where k; > 0.
Consequently, the resulting infinite trajectory satisfies ¢;.

4.8 Complezity

The offline computations in Alg. 1 are constructing the
Buchi automaton (B) from an LTL formula ¢, generating
the product automaton (7 x B), and computing the
energy of each product automaton state (lines 1-3). The
complexity of the offline part greatly depends on the length
of the LTL formula, i.e. |¢|, since the size of the product
automaton is bounded by | X | x |¢|x2/*! (Ding et al., 2014),
where |X| is the number of states in 7, and |¢| x 2/¢! is
the maximum number of states in B created from ¢. Note
that the offline part of Alg. 1 may have arbitrarily high
computation cost, but it is executed only once.

Theorem 4.2. Given an LTL formula ¢; as (3), the number
of online operations to be performed by each agent via
Alg. 1 scales with O(Ap(s;)V + |C}]), where Ap(s;) is
the number of transitions that can be taken at s;, N is
the horizon length, and Cj is the communication set.

Proof. At each time step, each agent j computes the V-
length feasible paths (with the corresponding costs) from
its current product automaton state s; (lines 10-11). This
process is similar to a depth-first search so the maximum
number of operations is bounded by Ap(s;)Y. Moreover,
the optimal path is found by an auction-based selection in
a sequential way so that the maximum number of decision-
making among C; is at most |C;|. Hence, the overall
online operations performed by agent j is in the order of
O(Ap(s;)N +1C5]).

5. CASE STUDY

Consider two agents that move on the graph displayed in
Fig. 1. The agents are deployed simultaneously from the
base. The first agent must satisfy the specification

¢1 = GFuvy A GFua A GFvi9 A G (v;, = vl (—vpldve) A (—upldvig) ), (13)
while the second agent must satisfy the specification
¢3 = GFu, A GFuz A GFug A G(v,, = vl (~vyldvs) A (~vldvs) ) (14)

Note that ¢ expresses “visit the base, node 2, and node
10 infinitely often, and never return to the base before
visiting nodes 2 and 10”. ¢5 has the similar structure as
¢1, but the second agent must visit nodes 3 and 8 instead
of nodes 2 and 10. The maximum operation time of both
agents is 20, i.e., 7{ = 73 = 20, the planning horizon is 3,
i.e., N = 3, and the discount factor is 0.8, i.e., v = 0.8.
The simulations were implemented in MATLAB by using
a laptop with a 2.6 GHz processor and 8 GB memory.

In order to evaluate the performance of the proposed algo-
rithm, we compare it with respect to two other strategies.
The first one is a joint planner that computes the feasible
paths for the two agents jointly based on the true age. This
planner can also be thought of as a centralized planner that
decides on actions for both agents to globally minimize
the sum of the ages in the given horizon. The second
strategy allows the agents to act independently without
any communication. In other words, this strategy is similar
to Alg. 1; however, the agents are not able to communicate
with each other, i.e. C;(t) = {j}, Vj,t. In the results, we
refer to these planners as Communication (Alg. 1), Joint,
and No Communication.

The instantaneous sums of the node ages for three strate-
gies are illustrated in Fig. 2. In Fig. 2(a), the results of the
Joint planner are presented, where the true age and the
age estimates are exactly the same. In Fig.s 2(b) and (c),
the results of the Communication and No Communication
strategies are presented, where the blue line corresponds to
the true age whereas the yellow and the red lines illustrate
the age estimates of both agents. Also, the straight line in
all figures shows the steady-state average sum of the true
ages, which can represent the average situational aware-
ness of the mission. In all figures, first a transient behavior
is observed, then all ages settle into a periodic steady state
behavior. The results indicate that the age estimates are
closer to the true age with communication than without
communication. In Fig. 3(a), the discounted sum of the
true ages is shown for three strategies. As expected, the
Joint planner has the lowest age sum (the highest situ-
ational awareness); however, it has a significantly higher
computational cost than the other two strategies. Specif-
ically, the discounted age sum via the Communication
strategy is only 4% higher than the Joint planner, but
its computation time is less than half of the joint planner
as seen from Tab. 1. Moreover, if N is increased from 3
to 5, the computation complexity of the Joint planner
dramatically increases. Based on the results, the Alg. 1
exhibits a sufficiently good performance with a much lower
complexity as shown in Tab. 1. Finally, Fig. 3(b) illustrates
the energy function that goes to zero periodically for both
agents. This implies that agents periodically satisfy their
LTL specifications. Note that the energy functions are not
strictly decreasing. The small jumps in Fig. 3(b) indicate
that the agents may jump the higher energy states (getting
further away from the satisfaction) to minimize the ages
as long as their capacity allows it (i.e. V (s;(t)) < 7;(t)).

Table 1. The results for 500 steps with v = 0.8.

Planner Horizon (N) = 3 Horizon (N)= 5
Comp. Time (sec) | Cost | Comp. Time (sec) | Cost
Joint 29.07 49842 1951.08 42605
w/Comm. 13.68 51935 50.87 48331
No Comm. 8.94 54799 42.76 55502
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Fig. 2. The sum of true ages is shown in blue, while the sum of age estimates are shown in red and yellow. The straight
line indicates the steady-state average sum of true ages. N = 3 and v = 0.8. (a) Joint planner (true age and age
estimate overlap); (b) Planner with communication (Alg. 1); (c) Planner without communication.
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Fig. 3. (a) The discounted sum of the true ages, N = 3
and v = 0.8. (b) Energy function, V (s;), of 2 agents.

6. CONCLUSION

We considered a multi-agent persistent surveillance prob-
lem, where agents walk on a graph to minimize the sum
of the node ages while satisfying their own LTL specifi-
cations. Instead of planing the joint team trajectories by
minimizing the sum of the true ages, we defined an objec-
tive function based on the age estimates, which enabled to
design a receding horizon controller to plan each agent’s
trajectory independently by using only local information.
We used an automata-theoretic approach to show that any
trajectory resulting from the proposed controller satisfies
the corresponding LTL specification. We also showed by
simulations that the proposed controller performs suffi-
ciently good with a low computational complexity.
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