
Formal Guarantees in Data-Driven Model Identification and
Control Synthesis

Sadra Sadraddini

Boston University

73o Commonwealth Ave.

Boston, MA

sadra@bu.edu

Calin Belta

Boston University

73o Commonwealth Ave.

Boston, MA

cbelta@bu.edu

ABSTRACT
For many performance-critical control systems, an accurate (simple)

model is not available in practice. Thus, designing controllers with

formal performance guarantees is challenging. In this paper, we

develop a framework to use input-output data from an unknown

system to synthesize controllers from signal temporal logic (STL)

speci�cations. First, by imposing mild assumptions on system con-

tinuity, we �nd a set-valued piecewise a�ne (PWA) model that

contains all the possible behaviors of the concrete system. Next,

we introduce a novel method for STL control of PWA systems with

additive disturbances. By taking advantage of STL quantitative

semantics, we provide lower-bound certi�cates on the degree of

STL satisfaction of the closed-loop concrete system. Illustrative

examples are presented.

CCS CONCEPTS
• Theory of computation → Timed and hybridmodels; Mixed
discrete-continuous optimization; Modal and temporal logics; • Ap-
plied computing → Engineering;
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1 INTRODUCTION
Many systems are performance-critical in the sense that all of their

possible executions must meet certain properties. Most of such

properties are expressed as hard constraints on the trajectories of

the system. Examples include collision avoidance for mobile agents

[32], safety thresholds in clinical applications [33], rules for tra�c

management [12], and temporal logic requirements for synthetic

gene networks [6].
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The goal of formal synthesis is to design provably-correct con-

trollers for performance-critical systems. A wide range of inter-

esting speci�cations can be described using temporal logics [5].

Several methods have been proposed to synthesize temporal logic

controllers [7, 30]. Any guarantee in formal synthesis is valid as

long as the model is valid. However, in many engineering applica-

tions perfect models are not available, or are too complex to use for

synthesis purposes.

One way to approach a model-free synthesis problem is to adopt

learning-based control methods. For example, [1, 27] studied rein-

forcement learning from temporal logic speci�cations. However,

a completely model-free approach does not provide any formal

guarantee since it is always possible to observe a new behavior

from the system that may cause the speci�cation to be violated. To

overcome this issue, some works proposed considering a (highly

non-deterministic) model that contains all the possible behaviors of

yet-to-be-learned system. Thus, the state-space is safely explored -

in the sense that a temporal logic speci�cation is respected - while

a possibly more accurate model and better performance may be ob-

tained during learning [2, 4, 29]. In many applications, availability

of a prior accurate model is asking for too much information. For

example, the work in [4] assumes the prior system to be linear with

all unknown non-linearities contained in a known polytope, which

acts as a set-valued additive disturbance. In this setting, the values

representing both the linear model and the disturbance polytope

have to be known beforehand.

In this paper, we consider an unknown discrete-time system

from which a �nite set of input-output data is given. We also as-

sume known values for bounds describing the system continuity

- in a Lipschitz sense that is clari�ed in the paper. Continuity is

essential to characterize the range of possible system behaviors.

The goal is to design controllers from signal temporal logic (STL)

[17] speci�cations over predicates on state. If STL satisfaction is

not possible, we are still interested in �nding the least-violating

controllers. Our main results and contributions are as follows:

- We �t a piecewise a�ne (PWA) model to data and continuity

constants. PWA models can capture arbitrarily high degrees of

nonlinearity by tuning the number of modes. Unlike existing works

on hybrid model identi�cation [3, 8, 21], the nondeterministic set-

valued model we compute is guaranteed to contain all the behaviors

of the concrete system. All the non-determinism is captured by

polytopic additive disturbances. Since such PWA models are not

unique, we �nd ones that have the smallest non-determinism -

in a sense that is clari�ed in the paper. The model identi�cation

technique in this paper is based on solving a series of non-convex
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optimization problems, which are handled using mixed-integer

linear programming (MILP).

- Once we have obtained a PWA model with additive polytopic

disturbances, we design controllers from STL speci�cations. Unlike

the existing works on STL control [13, 25, 28], our method is able

to provide formal guarantees on the degree of satisfaction. The key

idea is adopting the Tube model predictive control (Tube MPC), a

well known technique in robust predictive control of linear systems

[18], for STL control of hybrid systems. To serve this purpose, we

introduce a method to exploit STL quantitative semantics for con-

troller design. A novel method is introduced to compute the “best"

STL tubes. Once the controller is designed, a lower-bound for the

degree of satisfaction is obtained. Unlike �nite-abstraction-based

methods [7, 31, 34] which can only handle Boolean satisfaction, our

approach takes advantage of the STL quantitative semantics and is

optimization-based.

This paper is organized as follows. The notation and the neces-

sary background on STL are provided in Sec. 2. The problem and

the underlying assumptions are stated in Sec. 3. Technical details

on model identi�cation and control synthesis are provided in Sec.

4 and Sec. 5, respectively. An illustrative example is demonstrated

in Sec. 6.

2 PRELIMINARIES
2.1 Notation
The set of natural, positive natural, real, and non-negative real

numbers are denoted by N, N+, R, and R+, respectively. The empty

set is denoted by ∅. The set of all �nite sequences and in�nite

sequences that can be generated from an alphabet A are denoted

by A∗ and Aω , respectively. A discrete-time real signal - simply

referred to as signal in the rest of the paper - is an in�nite sequence

s[0]s[1]s[2] · · · , where s ∈ (Rn )ω , s[k] ∈ Rn ,k ∈ N. All time

intervals in this paper are interpreted in discrete-time: [a,b] =
{a,a + 1, · · · ,b},a,b ∈ N,a < b. Given sets X ,Y ⊂ Rn , their

Minkowski sum is denoted by X ⊕ Y =
{
x + y���x ∈ X ,y ∈ Y

}
. The

Pontryagin’s di�erence is de�ned as X 	 Y :=
{
x ���{x } ⊕ Y ⊂ X

}
.

The relation ≤ between two matrices of the same size is interpreted

element-wise. The transpose of matrix M is denoted by MT
. The

unit-vector in ith direction and the vector of all ones in Rn are

denoted by e
[i] and 1n , respectively. The absolute value of x ∈ R is

shown by |x |, and the p-norm of x ∈ Rn is denoted by ‖x ‖p . The

unit p-norm ball is Bp :=
{
x ∈ Rn ��� ‖x ‖p ≤ 1

}
. The convex hull of

S ⊂ Rn is denoted by Convh(S ). The indicator function is denoted

by I, where I (p) returns 1 if p = True, and 0 otherwise.

2.2 Signal Temporal Logic
In this paper, a subset of STL formulas is used. The original STL

was introduced in [17] for monitoring bounded continuous-time

real signals, but its principles still apply to discrete-time setting and

unbounded signals.

De�nition 2.1. The set of all bounded STL formulas is denoted

by Φb , which is recursively de�ned as:

• π ∈ Φb , where π is a predicate in the form π := ( f (s ) ≥ 0),
f : Rn → R;

• φ1,φ2 ∈ Φ
b → φ1 ∧ φ2,φ1 ∨ φ2 ∈ Φ

b
, where ∧ and ∨ are

conjunction and disjunction connectives, respectively;

• φ ∈ Φb → X{a }φ ∈ Φb , where X is the temporal “next"

operator, and a ∈ N.

Given a bounded interval [a,b], other useful temporal operators

are constructed:

• F
[a,b]φ :=

∨
k ∈[a,b] X{k }φ,

• G
[a,b]φ :=

∧
k ∈[a,b] X{k }φ,

• φ1U[a,b]φ2 :=
∨
k ∈[a,b] (X{k }φ2 ∧ G

[a,k]φ1
),

where F, G, and U are temporal “eventually", “always", and “until"

operators, respectively. We omit negation connective (¬) from our

de�nition as any temporal logic formula can be written in negation

normal form [20]. We also do not allow predicates involving strict

inequalities - our synthesis approach is optimization based and can

handle only non-strict inequalities.

A global temporal logic formula is in the form G
[a,∞)φ, where

φ ∈ Φb . The set of bounded-global STL formulas - denoted by Φ - is

de�ned as the set of all formulas that can be written in the form:

ϕ =

nϕ∨
i=1

φi
1
∧ G

[a,∞)φ
i
2
, (1)

whereφi
1
,φi

2
∈ Φb , i = 1, · · · ,nϕ , and a ∈ N. It is straightforward to

show that Φ is closed under disjunction, conjunction, and temporal

“next" operator. For the remainder of this paper, we refer to bounded-

global STL simply as STL.

Remark 1. For any STL formula in negation normal form, un-
bounded intervals in “eventually" and “until"" operators can be safely
under-approximated by bounded intervals [20]. This is not the case for
unbounded “always". In addition, the form in (1) is not closed under
bounded “always". However, nesting multiple unbounded “always" in
a single STL formula - such that it can not be simpli�ed - is rarely
useful in applications.

De�nition 2.2. Given predicates on Rn , the STL score function

ρ : Rn × Φ × N→ R is recursively de�ned as:

• ρ (s, f (s ) ≥ 0,k ) = f (s[k]);
• ρ (s,φ1 ∧ φ2,k ) = min(ρ (s,φ1,k ), ρ (s,φ2,k );
• ρ (s,φ1 ∨ φ2,k ) = max(ρ (s,φ1,k ), ρ (s,φ2,k );
• ρ (s,X{a }φ,k ) = ρ (s,φ,k + a);
• ρ (s,G

[a,∞)φ,k ) = infk ′∈N ρ (s,φ,k + a + k
′).

The STL score function has the following distance property [17]:

���ρ (s,φ,k ) − ρ (s
′,φ,k )��� ≤ C sup

k ′>k
‖s ′[k ′] − s[k ′]‖∞, (2)

whereC is a constant determined by the functions appearing in the

predicates. It measures how sensitive the predicates are to changes

in signal values - see [17] for further discussion.

De�nition 2.3. Given φ ∈ Φ with predicates on Rn , and ϵ ∈ R,

the ϵ-language of φ is de�ned as the following set:

L (φ, ϵ ) :=
{
s ∈ (Rn )ω ���ρ (s,φ, 0) ≥ ϵ

}
. (3)

If ϵ1 ≥ ϵ2, then L (φ, ϵ1) ⊆ L (φ, ϵ2). In a Boolean sense, s satis�es

φ if and only if s ∈ L (φ, 0).
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Remark 2. In our discrete-time setting, any STL formula can be
translated into a linear temporal logic (LTL) [5] formula by appro-
priately using the “next" operator. However, LTL representation of
bounded-interval temporal operators may be very ine�cient. Since
we deal with real-valued systems and quantitative semantics, the
formalism of STL is preferred.

3 PROBLEM STATEMENT
Informally, the goal is to use data gathered from an unknown system

to design a control policy such that an STL formula over predicates

on state is satis�ed by all closed-loop trajectories originating from a

designated set of initial conditions. If STL satisfaction is not possible,

we still want to compute the control policy resulting in the least

worst-case STL violation. We formalize this problem in this section.

3.1 System and Assumptions
De�nition 3.1. Given a workspace X ⊂ Rn and an admissible

set of inputs U ⊂ Rm , a control system F is de�ned as a triadic
relation

F ⊂ X ×U × Rn , (4)

which is left-total in the sense that ∀x ∈ X ,∀u ∈ U ,∃x+ ∈ Rn such

that (x ,u,x+) ∈ F .

Sets X and U are assumed to be compact, bounded, and locally

connected in their respective domain. Note that we have not as-

sumed that X is invariant for all controls. It may be possible that

∃(x ,u,x+) ∈ F such that x ∈ X ,u ∈ U , but x+ < X . Keeping the

state within the workspace is a non-trivial task that is an implicit

objective of our problem. A control system F is deterministic if

for all (x1,u1,x
+
1
), (x2,u2,x

+
2
) ∈ F , x1 = x2 and u1 = u2 implies

x+
1
= x+

2
.

De�nition 3.2. A control policy µ : X ∗ → U is a function that

determines the control input at time t as a feedback of the history

of the system:

u[t] = µ (x[0]x[1] · · · x[t]). (5)

De�nition 3.3. Given a control system F , a control policy µ, a

set of initial conditions X0 ⊆ X , we de�ne the closed-loop language
as L = L (F ,X0, µ ) ⊂ Xω such that x[0]x[1] · · · ∈ L if and only if

x[0] ∈ X0 and

(x[k], µ (x[0]x[1] · · · x[k]),x[k + 1]) ∈ F ,∀k ∈ N.

Assumption 1. There exists a control policy µ such that for some
X0 ⊆ X , we have L (F ,X0, µ ) , ∅.

Assumption 1 is obviously essential for our purpose. Otherwise,

it is not possible to keep the system in the workspace. Assumption

1 can be relaxed for applications in which the objective can be

accomplished in �nite time and the state is allowed to exit the

workspace afterwards. In this paper, our emphasis is on in�nite-

time properties and �nite-time speci�cations are treated as a special

case.

We assume no knowledge of F , which we refer to as the concrete
control system, except the following assumptions.

Assumption 2. (Data Points) We are given a set of N data points
D :=

{
(xi ,ui ,x

+
i ) ∈ F

}
i=1, · · · ,N

.

Assumption 2 is not restrictive as long as perfect state knowledge

is available. We treat F as an input-output black-box. Assumption 2

may also prove useful when some analytical form of F is available,

but is too complex to use for control synthesis purposes. In this

case, we may sample data points from F rather than using its

analytical form. In this paper, we are given data points as a priori.

An immediate extension to our framework is gathering data points

while controlling the system - discussed in Sec. 7.

Assumption 3. (Continuity bounds) We are given non-negative
constants κ0,κx ,κu , referred to as continuity constants, such that for
all (x1,u1,x+

1
), (x2,u2,x

+
2
) ∈ F , the following relation holds:

x
+
2
− x+

1

p ≤ κ0 + κx ‖x2 − x1‖p + κu ‖u2 − u1‖p , (6)

where p ≥ 1 is a choice of norm.

Constant κ0 characterizes the degree of non-determinism in F

and κx ,κu characterize how continuous (in a Lipschitz sense) F

is on X and U . If we know F is deterministic, we let κ0 = 0. The

assumption that the evolution of a physical system is continuous

in state and controls is reasonable. Even many hybrid systems

demonstrate continuity in the Lipschitz sense. Therefore, there

always exists constants κ0,κx ,κu such that (6) holds. The stronger

assumption that we make in Assumption 3 is that we know the

values of continuity constants. Note that κ0,κx ,κu do not need to

be the best constants. In other words, the inequality (6) does not

need to be tight. Any upper-bound for the best values of κ0,κx ,κu
is su�cient for the soundness of the results in this paper, but very

large values obviously lead to conservativeness .

Any guarantee is provided against the values of continuity con-

stants. Estimating the continuity constants using D is not a sound

approach since it is always possible to observe new data points that

falsify the validity of the estimated constants. However, in practice,

there might not be any other option than using D for estimating

the continuity constants. One way to approach this issue is mul-

tiplying the tightest estimates for continuity constants by some

safety factor, depending on the application. There exists several

methods for estimating Lipschitz constants from data [11, 19].

3.2 Problem Formulation and Approach
We are given a STL formula φ in the form (1). The predicates of φ
are considered to be linear over state:

Pi := (πTi x ≤ ζi ), (7)

where πi ∈ R
n

, i = 1, · · · ,nP , - nP is the number of predicates,

and ζi ∈ R. We also de�ne

Π :=
(
πT
1
· · · πTnP

)T
. (8)

Matrix Π ∈ RnP×n characterizes the sensitivity of the predicates to

changes in the state. We do not formulate predicates over controls

but the state may be augmented to include controls (see, e.g., [26]).

Problem 1. Given D from a control system F as in (4), constants
κ0,κx ,κu corresponding to Assumption 3, an STL formula φ over
predicates as in (7), �nd the optimal control policy µ∗ and a set of
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initial conditions X ∗
0
⊆ X such that:

(X ∗
0
, µ∗) = argmax

X0,µ
ϵ

subject to L (F ,X0, µ ) ⊆ L (φ, ϵ ),
L (F ,X0, µ ) , ∅

(9)

Our framework is able to accommodate slight variations of Prob-

lem 1. For instance, X0 may be �xed by a user-speci�ed set or point.

Alternatively, given a certain ϵ , the (largest) corresponding set of

admissible initial conditions may be the asked to be computed. We

may also consider some weighted cost functions added to ϵ , such

as penalizing the controls or distance from a reference trajectory.

Our solution to Problem 1 has two main steps. First, we con-

struct a model from D and continuity constants. Our model has

to serve two purposes: i) it has to contain all the behaviors of F ,

as formalized shortly, and ii) has to be simple enough for control

synthesis. We choose PWA models with user-speci�ed number of

modes - formally de�ned in Sec. 4.2. PWA models are able to capture

arbitrarily high nonlinearities by increasing the number of modes

in exchange for higher computational complexity - both in identi-

fying the model and also synthesis based on the model. We focus

on a a particular class of control strategies that are computationally

tractable to compute. Therefore, completeness may be lost and we

may obtain suboptimal solutions for Problem 1. However, we do

not trade o� correctness. Once our method returns some ϵ∗ for

Problem 1, we have the guarantee that all closed-loop trajectories

of F are in ϵ∗-language of φ.

4 FORMAL MODEL IDENTIFICATION
In this section, we introduce a method to identify a set-valued PWA

model using the data and continuity bounds. First, we provide the

necessary background in Sec. 4.1 to formalize the model identi�ca-

tion subproblem in Sec. 4.2. The solution has two stages, which are

discussed in Sec. 4.3 and Sec. 4.4.

4.1 Simulation Relation
De�nition 4.1. Given two systems F ⊂ X × U × Rn and G ⊂

X ×U × Rn , we say G simulates F if and only if F ⊆ G.

De�nition 4.1 is reminiscent of the simulation relation in concur-

rent systems [7, 30]. Here we do not de�ne simulation relation with

respect to a particular equivalence class. Every state is equivalent

only to itself - no abstraction is used. Simulation is a partial order

relation since the following properties hold: F simulates F ; If G

simulates F and H simulates G, then H simulates F ; If G sim-

ulates F and vice-versa, then F = G. The following result holds

from language inclusion properties of simulation relation [7].

Lemma 4.2. If G simulates F , then for all µ and X0 we have
L (F ,X0, µ ) ⊆ L (G,X0, µ ).

De�nition 4.3. Given data points D = {(xi ,ui ,x
+
i )}i=1, · · · ,N

from an unknown control system F ⊂ X × U × Rn , constants

κ0,κx ,κu corresponding to Assumption 3, the tightest simulat-
ing control system F ⊂ X × U × Rn is de�ned such that for all

(x ,u,x+) ∈ F , the following holds:

x+ ∈
N⋂
i=1

{
{x+i } ⊕ kx ‖x − xi ‖pBp ⊕ ku ‖u − ui ‖pBp ⊕ k0Bp

}
.

Lemma 4.4. The following properties hold: 1) F ⊆ F ; 2) For any
G that simulates F , we have F ⊆ G.

Proof. 1) The proof follows from two facts that establish F ⊆

F . First, we require that (xi ,ui ,x
+
i ) ∈ F , i = 1, · · · ,N . Second,

any point that is included in F is su�ciently close to other data

points in the sense of (6). 2) We prove by contradiction. If there

exists G simulating F such that F 1 G, then there exists some

(xs ,us ,x
+
s ) ∈ F that is allowed to be in F by Assumption 3. Thus,

F ⊆ G does not necessarily hold.

We may use F for control synthesis, but its representation is

data-size dependent and is often too complex. We need simpler

forms of systems that simulates F (and hence F ).

4.2 Piecewise A�ne Systems
De�nition 4.5. A control system G ⊂ X × U × Rn is PWA if

∀x ∈ X ,∀u ∈ U , we have (x ,u,x+) ∈ G if and only if

x+ ∈




{A1x + B1u + c1} ⊕W1, x ∈ X1,
...

...

{AMx + BMu + cM } ⊕WM , x ∈ XM ,

(10)

where Xi , i = 1, · · · ,M, are polyhedral sets with disjoint interi-

ors,

⋃M
i=1 Xi = X ,M is the number of modes, and Wi ⊂ R

n , i =
1, · · · ,M, are polytopic sets of additive disturbances. Each mode

is an a�ne system with constants Ai ∈ R
n×n ,Bi ∈ R

n×m
and

ci ∈ R
n

. In the rest of this section, we propose a method to solve

the following subproblem:

Subproblem 1. Given data points D from control system F ⊂
X ×U ×Rn , constants κ0,κx ,κu corresponding to Assumption 3, �nd
a PWA control system G in the form of (10), where an upper-bound
forM is given, such that F ⊆ G and α (W1, · · · ,WM ) is minimized,

where α : (2R
n
)
M
→ R is a cost function that promotes smaller

disturbance sets.

The reason that we add a cost criteria to Subproblem 1 is that

a PWA G that simulates F is not unique. In fact, by making the

disturbance sets su�ciently large, G can simulate any system. Hav-

ing large disturbance sets is undesirable for control synthesis. For

computational purposes, we focus on simple forms of disturbance

sets and α . For example, we letWi , i = 1, · · · ,M, to be axis-aligned

hyper-rectangles and α is a norm of side lengths.

4.3 Piecewise A�ne Fitting
Here we simultaneously �nd values representing the sets Xi , and

matrices Ai ,Bi , ci in (10) by solving an optimization problem. We

�nd setsWi afterwards. Consider K ∈ N+ hyperplanes - which we

refer to as guards:
hTi x + 1 = 0, (11)

where hi ∈ R
n , i = i = 1, · · · ,K . The guards partition X into at

most 2
K

polyhedral sets with disjoint interiors:

Xk =
{
x ∈ X ���h

T
i x + 1

(k,i )
∼ 0, i = 1, · · · ,K

}
,k = 1, · · · , 2K , (12)

where ∼: N+ × N+ → {≤, ≥} is de�ned in the following way:

(k,i )
∼

is ≥ if the ith digit from the right of k written in binary numeral



Formal Guarantees in Data-Driven Model Identification and Control Synthesis HSCC ’18, April 11–13, 2018, Porto, Portugal

system is one, and ≤ otherwise. For example, we have 5 = (101)2.

Hence

(5,1)
∼ =≥,

(5,2)
∼ =≤ and

(5,3)
∼ =≥. We interpret further digits on

the left as zero:

(5,i )
∼ =≤, i > 3. The set of decision parameters are

Θ :=
{{
Ak ,Bk , ck ,

}
i=1, · · · ,2K , {hi , }i=1, · · · ,K

}

The best values for Θ are found using the following optimization

problem:

Θ∗ = argmin

Θ
δ

subject to
���x
+
j − (Aix j + Biuj + ci )

���z
k
j ≤ δ1n ,

zkj = 1⇔ x j ∈ Xk , z
k
j = 0⇔ x j < Xi ,

Xi , i = 1, · · · , 2K , given by (12), (11),

j = 1, · · · ,N , i = 1, · · · ,K ,
(13)

where δ is error. Eq. (13) �nds the best PWA �t (additive distur-

bances are not yet considered) such that all data points in D are

within δB∞ of their respective PWA predications.

Since all the values and sets are bounded, we show that (13)

can be cast as a MILP problem using the big-M method. First, the

expression
���x
+
j − (Aix j + Biuj + ci )

���z
k
j ≤ δ1n is equivalent to the

following set of constraints:




−M (1 − zkj ) ≤ x+j −Aix j − Biuj − ci + δ
k
j ≤ M (1 − zkj ),

−δ1n ≤ δ
k
j ≤ δ1n ,

where δkj ∈ R
n

are auxilary variables and M is a large positive

number. Second, we need to capture (12). We de�ne K binaries for

each data point - denoted by bij , i = 1, · · · ,K , introducing a total of

NK binary variables. We have

bij = I (h
T
i x j + 1 ≥ 0) ⇔




hTi x j + 1 ≤ Mbij ,

hTi x j + 1 ≥ −M (1 − bij ).

The relation zkj = I (x
k
j ∈ Xk ) can be converted to:

zkj =
K∧
i=1

Sgn(k, i,bij ),

where Sgn(k, i,bij ) = b
i
j if

k,i
∼ =≥, and is¬bij otherwise. The conjunc-

tion and negation applying to integers is interpreted in a Boolean

sense - e.g., 1 ∧ 0 = 0, 1 ∧ 1 = 0,¬1 = 0, etc. The variables

zkj ∈ [0, 1], j = 1, · · · ,N ,k = 1, · · · , 2K , are declared as contin-

uous variables, but always take binary variables. Encoding Boolean

operations as mixed-integer constraints is a standard procedure

(see, e.g., [9]) and further details are not presented here.

4.4 Adjusting Disturbances
Now we �nd disturbance in (10) such that G simulates F . We let

every disturbance set to be a hyper-rectangle that is symmetric

around the origin. The length of the side in qth
cartesian direction

of Wi , q = 1, · · · ,n, is found using the following optimization

x

x+

x

D

F

G

x+

Figure 1: Example 4.7: The degree of non-determinism may
depend on the distribution of the data.

problem:

ηi
∗
[q] = argmax

x,u,η

���e
T
[q]ηi

���
subject to x+ = x+j + k0β

0

j + kx β
x
j + kuβ

u
j

βxj ∈ ‖x − x j ‖pBp ,

βuj ∈ ‖u − uj ‖pBp , ‖β
0

j ‖∞ ∈ B∞

x+ = Aix + Biu + ci + ηi
x ∈ Xi ,u ∈ U , j = 1, · · · ,N .

(14)

We let:

Wi =
{
w ∈ Rn | − η∗i ≤ w ≤ η∗i

}
(15)

Theorem 4.6. The PWA system constructed from solutions of (13),
and (14), (15), i = 1, · · · , 2K , simulates F .

Proof. Eq. (14) gives the farthest point (in the qth
direction) in

F from the model given by (13). Since the worst-case distances are

considered in each direction, the sets in (15) added to the solution

in (13) establish F ⊆ G. �

The following simple example shows that the distribution of

data a�ects model identi�cation, even if their PWA �ts - models

without disturbances - are identical.

Example 4.7. Consider �tting a line (a single mode PWA model)

to a one-dimensional data set of N = 4 points, shown by red circles

in Fig. 1. There are no control inputs. The box represents X 2
. The

relation F and the learned a�ne G are shown by cyan and yellow

regions, respectively. In the �gure to the left, points are closer to the

edges ofX , creating a vacuum of data in the center ofX , which leads

to large non-determinism in G. On the other hand, data points on

the right are more evenly-spaced, leading to less non-deterministic

G.

Remark 3. Over�tting arises when few data is used to decide
about a large number of variables. Since our model identi�cation is
set-valued and takes into account all “other" possible data, over�tting
is never an issue. Even with one single data point, De�nition (4.3)

de�nes a set-valued model F with very large non-determinism -
virtually useless for control synthesis.

4.5 Computational Aspects
Eq. (13) is a combinatorial optimization problem with NK binary

variables and O
(
K max(n2 + nm + Nn)

)
continuous variables. The
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worst-case complexity of MILPs scales exponentially with the num-

ber of its binary variables and polynomially with the number of its

continuous variables and constraints. MILP solvers �nd the global

optimum. We may terminate a large MILP early to obtain a subop-

timal solution - after a feasible integer solution is found. Eq. (14)

is a non-convex optimization problem that can also be cast as a

MILP when p = 1,∞. The number of its binary variables scales

by O (N (n +m)) and the number of continuous variables and con-

straints scale similarly to (13). Validity of the continuity constants is

implicit in the feasibility of (14) - if k0,kx ,ku are under-estimated

then (14) may become infeasible.

In practice, exact solutions for (14) may be unachievable. Heuris-

tics may be used to over-approximate the sets in (15). The value of

δ found in (13) provides a lower bound for the sides of disturbance

sets. As (14) is sensitive to the number of data points, increasing

the density of data decreases uncertainties in a linear fashion - as

illustrated in Fig. 1. Thus, a good heuristic may be to solve (14) for

small data sets and accordingly adjust the values for larger data

sets.

5 FORMAL CONTROL SYNTHESIS
Once we have a PWA model with user-speci�ed complexity, we can

use it for control synthesis. In this section, we propose a method -

called tube STL - for solving the following subproblem.

Subproblem 2. Given a PWA system in the form (10) and STL
formula φ with predicates in the form in (7), �nd an optimal control
policy µ∗ and a set of initial conditions X ∗

0
⊆ X subject to (9).

We �rst explain the key results of tube STL in Sec. 5.1. The

technical details on designing the tube and nominal trajectories are

discussed in Sec. 5.2 and Sec. 5.3, respectively.

5.1 Tube STL Control
De�nition 5.1. Given a PWA system as in De�nition 4.5, the

nominal PWA system is de�ned as function д : X × U → Rn ,

where:

д(x ,u) = Aix + Biu + ci ,x ∈ Xi . (16)

Note that Gnom
:=

{
(x ,u,д(x ,u)) |x ∈ X ,u ∈ U

}
is a deterministic

system. Thus, controlling it from STL speci�cations can be accom-

plished by planning the controls in an open-loop fashion - which

is also a complete method for �nite time speci�cations [16]. Any

PWA system can be transformed into a mixed-logical dynamical

(MLD) system [9]. Temporal logic control of deterministic MLDs -

with linear predicates and PWA cost functions - maps to solving

MILPs [16, 24, 25]. However, when disturbances are present, the

problem becomes very hard as predicting the switching behavior

is intractable. The method in [25] proposed reactive STL receding

horizon planning, but this approach does not provide any guarantee

on STL satisfaction and maintaining MILP feasibility. Conservative

solutions for stabilization of PWA are proposed using �xed feedback

gains (e.g., see [15]). However, STL requirements are often more

complicated than stabilization and desirable trajectories may need

to traverse the polyhedral regions Xi , i = 1, · · · ,M, in a complex

manner.

De�nition 5.2. Given a PWA system as in De�nition 4.5, the

switching-disturbance system is de�ned as

G
swd

:=
⋃M
σ=1

{
(x ,u,x+)���x ∈ R

n ,u ∈ Rm ,

x+ ∈ {Aσ x + Bσu} ⊕Wσ
}
.

(17)

The switching-disturbance system is an aggregation of linear sys-

tems with polytopic disturbances. Its switching is modeled as fully

non-deterministic - this way of modeling is conservative but useful

as explained shortly. We propose control policies of the following

form:

µ (x[0]x[1] · · · x[t]) = µnom (x[0], t ) + µ� (x[t]), (18)

where µnom : X × N → U is an open-loop control policy and

µf b : Rn → U is a state-feedback control policy. Informally, µnom

is a precomputed plan of controls for the nominal system, while

µf b takes responsibility of attenuating disturbances - the deviations

from the nominal trajectory. We design µf b for all possible switch-

ings of the system. This approach is conservative, but decouples

the design of µf b and µnom. Note that µf b (x[t]) has access to the

knowledge of mode at time t . Thus, the mode of G
swd

is observable

but its future is not predictable. We de�ne Σ : X → {1, · · · ,M}
such that σ = Σ(x ) if x ∈ Xσ , σ = {1, · · · ,M}.

De�nition 5.3. A tube corresponding to control policy µtube :

Rn × {1, · · · ,M} → Rm is a set T ⊂ Rn such that 0 ∈ T and the

following relation holds:

L (G
swd
,T , µtube) ⊆ Tω (19)

Moreover, the set Tu ⊂ R
m

is de�ned as:

Tu :=
{
µtube (x ,σ )���x ∈ T ,σ ∈ {1, · · · ,M}

}
. (20)

A tube is a robust forward invariant set [10] for G
swd

. The

invariance-inducing control policy µtube can be rewritten as µtube :
T × {1, · · · ,M} → Tu . The following theorem is the key result of

this section.

Theorem 5.4. Consider a PWA systemG, its nominal and switching-
disturbance versions Gnom and G

swd
, initial condition x0 ∈ X , and

an STL formula φ with predicates in the form of (7). Let T and
µtube : T × {1, · · · ,M} → Tu be a tube and its invariance controller,
respectively. Assume x0 ∈ X 	 T . Let

µnom :

M⋃
i=1

(Xi 	 T ) × N→ (U 	 TU )

be an open-loop control policy such that

L (Gnom,x0, µ
nom) ⊆ L (φ, ϵ ),

where L (Gnom,x0, µnom) = {xnom[0]xnom[1] · · · , xnom[0] = x0} -
it consists of only one signal. Then, by replacing the following policy
in (18)

µ� (x[t]) = µtube
(
x[t] − xnom[t], Σ(x[t])

)
,

the following guarantee holds:

L (G, {x0} ⊕ T , µ ) ⊆ L (φ, ϵ −max

x ∈T
‖Πx ‖∞), (21)

where Π is the predicates matrix de�ned in (8).
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Proof. The proof is constructive. The modes are switched ac-

cording to the actual trajectory, but the tube invariance holds for

arbitrary switching. First, we show that the closed-loop trajectories

remain within T -vicinity of the nominal trajectory. The proof is by

induction. Base: x[0] ∈ {xnom[0]} ⊕ T since x[0] = xnom[0] and T
contains the origin. Inductive step: x[t] ∈ {xnom[t]} ⊕ T implies

x[t + 1] ∈ {xnom[t + 1]} ⊕ T , which is immediately veri�ed by the

fact that T is robust forward invariant. Also note that each nom-

inal point is at the center of a tube that is fully contained within

a region corresponding to a certain mode. It follows (2) that any

trajectory within T -vicinity of the nominal trajectory can decrease

the STL score by at most maxx ∈T ‖Πx ‖∞, which is the largest pos-

sible change in the value of a predicate. The rest of the proof holds

by (2). �

Our solution to Problem 1 is established from Theorem 5.4 and

Lemma 4.2, which is stated as follows:

Corollary 5.5. Let G be a PWA system that simulates F . If a
nominal policy µnom, initial condition x0, and a tubeT and its control
policy µtube exists such that (21) holds, then we have

L (F , {x0} ⊕ T , µ ) ⊆ L (φ, ϵ −max

x ∈T
‖Πx ‖∞). (22)

5.2 Tube Design
A tube can be viewed as a robust control invariant (RCI) set [10]. We

desire the tube with the smallest maxx ∈T ‖Πx ‖∞. It is also desirable

to keep Tu small so the nominal trajectory can take bene�t of a

larger set of admissible controls. Given a bounded set S ⊂ Rn ,

�nding the maximal RCI set - a �xed-point - inside S is a well-

known undecidable problem [10]. Moreover, performing the �xed-

point algorithm for PWA systems with additive disturbances is

computationally challenging [23]. We desire �nding the smallest

RCI set by solving an optimization problem. The authors in [22]

formulated the problem of computing RCI sets for linear systems

with polytopic disturbances and constraints as convex optimization

problems. The cost function can be designed to promote small RCI

sets. However, the method in [22] does not apply to switching

systems. Here we propose a new method to compute optimized RCI

sets for switching systems with additive disturbances.

5.2.1 Set-Parameterization. We parameterize the RCI sets by a

user-speci�ed number of hyper-rectangles. For each mode, there

should exist a control input for each vertex of each hyper-rectangle

such that for all allowable disturbances the vertex �nds a successor

in at least one of the hyper-rectangles. Thus, we enforce invariance

by design. We show that the convex-hull of the hyper-rectangles is

a RCI set. We de�ne Γ axis-aligned hyper-rectangles as

R (pγ ,aγ ) :=
{
x ∈ Rn |aγ ≤ x ≤ pγ + aγ

}
,

where pγ ∈ Rn ,aγ ∈ Rn+. γ = 1, · · · , Γ, represent the lower-left

corners and sides, respectively. The vertices of hyper-rectangles

are denoted by q
γ
k ,k = 1, · · · , 2n ,γ = 1, · · · , Γ. Note that

R (pγ ,aγ ) = Convh

({
q
γ
k

}
k=1, · · · ,2n

)
.

De�ne θ := {pγ ,aγ }γ=1, · · · ,Γ as the set of 2nΓ parameters. The ver-

tex representation of disturbance setWσ isConvh(wσ ,1, · · · ,wσ ,dσ ),

σ ∈ {1, · · · ,M}, where dσ ∈ N+ is the number of vertices ofWσ .

We de�ne

T (θ ) := Convh

({
q
γ
k

}
γ=1, · · · ,Γ,k=1, · · · ,2n

)
. (23)

Theorem 5.6. If there exists uγk,σ ∈ R
m ,γ = 1, · · · , Γ,k =

1, · · · , 2n ,σ ∈ {1, · · · ,M}, such that

y
γ
k,σ , j ∈

Γ⋃
γ=1
R (pγ ,aγ ), (24)

where yγk,σ , j := Aσp
γ
k + Bσu

γ
k,σ +wσ , j , then T (θ ) is a tube with

Tu (θ ) = Convh{u
γ
k,σ }k=1, · · · ,2n,γ=1, · · · ,Γ,σ ∈{1, · · · ,M} .

Proof. Consider any point x ∈ T (θ ) and σ ∈ {1, · · · ,M. There

exists λ
γ
k ≥ 0,

∑Γ
γ=1

∑
2
n

k=1 λ
γ
k = 1, such that x =

∑Γ
γ=1

∑
2
n

k=1 λ
γ
kq
γ
k .

Let

vσ :=

Γ∑
γ=1

2
n∑

k=1

λ
γ
ku

γ
k,σ .

Note that vσ ∈ Tu since it is a convex combination of 2
nΓ points

in Tu . We have the following deductions:

y = Aσ x + Bσvσ +wσ , j
= Aσ

∑Γ
γ=1

∑
2
n

k=1 λ
γ
kq
γ
k + Bσ

∑Γ
γ=1

∑
2
n

k=1 λ
γ
ku

γ
k,σ +wσ , j

=
∑Γ
γ=1

∑
2
n

k=1 λ
γ
k (Aσq

γ
k + Bσu

γ
k,σ +wσ , j ) =

=
∑Γ
γ=1

∑
2
n

k=1 λ
γ
ky

γ
k,σ , j

⇒ (Aσ x + Bσvσ ) ⊕ {wσ , j }j=1, · · · ,dσ ⊆ T (θ ).

By taking the convex hulls of both sides, we verify {Aσ x +Bσvσ } ⊕
Wσ ⊆ T (θ ), and the proof is complete.

5.2.2 Optimization. The conditions in Theorem 5.6 are formu-

lated as a set of constraints. Eq. (24) is equivalent to the following

Boolean logic formula being true forγ = 1, · · · , Γ,k = 1, · · · , 2n ,σ ∈
{1, · · · ,M}, j = 1, · · · ,dσ :

Γ∨
β=1

(
(pβ ≤ y

γ
k,σ , j ) ∧ (y

γ
k,σ , j ≤ pβ + aβ )

)
. (25)

We encode (25) using binary decision variables and big-M method -

technically similar to Sec. 4.3. Using basic convexity notions, we

formulate the following MILP:

θ∗ = argmin

θ
ξ

s .t . ‖Πq
γ
k ‖∞ ≤ ξ ,k = 1, · · · , 2n ,

(23), (24), (25),γ = 1, · · · , Γ.

(26)

The solution of (26) yields the smallest STL tube. A corresponding

invariance-inducing control policy µtube can be designed from the

proof of Theorem 5.6:

µtube (x ,σ ) = argmin

u
J (u)

subject to x =
∑Γ
γ=1

∑
2
n

k=1 λ
γ
kq
γ
k

u =
∑Γ
γ=1

∑
2
n

k=1 λ
γ
ku

γ
k,σ ,

λ
γ
k ≥ 0,

∑Γ
γ=1

∑
2
n

k=1 λ
γ
k = 1.

(27)

where J (u) is a user-de�ned convex linear/quadratic cost function.

Eq. (27) is a linear/quadratic program with 2
nΓ decision variables.
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Figure 2: Example 5.7: tube constructed from convex hull of
3 hyper-rectangles, and a sample trajectory.

Thus, µtube takes a PWA form. A proper choice for J (u) is ‖Aσ x +
Bσu‖∞, which penalizes the distance from the center of the tube.

Example 5.7. Consider a double integrator disturbance-switching

system in R2 with two modes, where

A1 =

(
1

1

2

1

2

3

2

)
,A2 =

(
3

2
1

− 1

2
1

)
,B1 = B2 =

(
0

1

)
.

The disturbance set areW1 =W2 =
1

10
B∞, and U = [−1, 1]. Note

that both matrices are unstable. We found a tube for Γ = 3 in 95

seconds using Gurobi MILP solver on a 3.0 GHz dual core MacBook

Pro. The hyper-rectangles, the RCI set and a sample trajectory

inside the tube are shown in Fig. 2. The switches and disturbances

were generated randomly with uniform distributions.

5.3 Nominal Trajectory Design
As mentioned earlier, STL satisfaction of a deterministic PWA sys-

tem can be mapped into a MILP problem. The details are not in-

cluded here as they are well documented in [16, 24]. The objective

is maximizing the STL robustness score function. In order to deal

with unbounded “always" operator in (1), lasso trajectories are used

(similar to [24]):

xnom[0]xnom[1] · · · = ζ0 (ζp )
ω , (28)

where ζ0 = xnom[0]xnom[1] · · · xnom[τ0] is the pre�x, and ζp =
xnom[τ0+1]xnom[τ0+2] · · · xnom[τ0+τp ] is the periodic su�x. The

values for τ0 and τp are designated by the user. Typically, larger

values result in more �exibility and better performance, in exchange

of larger computation cost. The control sequence corresponding

to the open-loop control policy is computed from the following

optimization problem:

{µol , ϵ∗} = argmax

u[τ ]
ϵ

subject to xnom[τ + 1] = д(xnom[τ ],unom[τ ]),
∃i ∈ {1, · · · ,M} s. t. xnom[τ ] ∈ Xi 	 T ,
unom[τ ] ∈ U 	 Tu ,
xnom[0] = x0,τ = 0, · · · ,τin + τp
ϵ = ρ (xnom[0]xnom[1] · · · ,φ, 0).

(29)

An immediate extension to our STL control framework is to

adopt an online MPC algorithm that replans the nominal trajec-

tory at each time to achieve a better performance. We leave this

extension for our future work.

Figure 3: Case Study: (Left): Regions of interest. (Right):
Computed polyhedral partition from (13).

5.4 Computational Aspects
The tube is given by the MILP in (26), which has 2

nΓ2
∑M
σ=1 dσ

binary variables - resulting in a computational bottleneck. The de-

sign of tube is o�ine. Similarly, computing the nominal trajectory

is also a MILP solved in an o�ine fashion. The number of binary

variables scales linearly with the trajectory length, the number of

modes, and the number of predicates. Encoding robustness into the

optimization cost function can be accomplished without introduc-

ing additional binary variables [28]. The only online part of our

control policy is (27), which is a convex program and it is solved

e�ciently.

6 CASE STUDY
We adopt a controlled version of the genetic toggle switch model

in [14]. The control system F is constructed from:

x+
[1]
∈

{
4

5
x
[1]
+ 1

2(1+x 3

[2]
)
+ e−

1

5
x
[1]
[t ]u

[1]

}
⊕ 1

20
[−1, 1],

x+
[2]
∈

{
4

5
x
[2]
+ 1

2(1+x 2

[1]
)
+ e−

1

5
x
[2]
[t ]u

[2]

}
⊕ 1

20
[−1, 1],

(30)

where X = [0, 1]2 and U = [−1, 1]2. The state components rep-

resent gene repressor concentrations. The goal is to oscillate the

concentration levels. The STL speci�cation is:

φ = G
[0,∞]¬R0 ∧ F

[0,10]R1 ∧ G
[10,∞] (F[0,10]R1 ∧ F

[0,10]R2), (31)

where R0,R1,R2 are conjunctions of predicates that characterize

the regions illustrated in Fig. 3 (left). Speci�cation (31) states that

“within 10 time units, R1 has to be visited. Afterwards, R1 and

R2 must be visited in�nitely often while the time between two

consecutive visits is never greater than 10. Also, always avoid R0."

All rows of Π are unit vectors.

Note that (30) is unknown to the controller. We sampled 400

evenly-distributed data points from X ×U . The number of guards

is set to K = 2. We used (13) - the computation time was about 5

minutes using Gurobi MILP solver - and obtained the following

guards:

h1 = (−1.5,−0.5)T ,h2 = (0,−3.0)T ,δ = 0.07,

and a�ne dynamics:

A1 =

(
0.75 −0.38

−0.3 0.78

)
,B1 =

(
0.85 0.0

−0.0 0.85

)
, c1 =

(
0.66

0.56

)
,

A2 =

(
0.79 −0.04

−0.35 0.73

)
,B2 =

(
0.85 −0.01

0.01 0.97

)
, c2 =

(
0.5

0.6

)
,
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Figure 4: Case Study: a closed-loop trajectory of (30).

Figure 5: Case Study: histogram of STL scores.

A3 =

(
0.76 −0.4

−0.17 0.83

)
,B3 =

(
0.98 0.01

−0.01 0.86

)
, c3 =

(
0.66

0.48

)
,

A4 =

(
0.87 −0.01

−0.15 0.81

)
,B4 =

(
0.96 −0.0

0.01 0.97

)
, c4 =

(
0.49

0.5

)
.

Note that some non-diagonal elements of matrices B are non-zero

as disturbances in�uence data, making it impossible to fully distin-

guish the e�ect of control inputs from disturbances. The polyhedral

partitions are shown in Fig. 3 (right). We use the in�nity norm

everywhere and set k0 = 0.05,kx = 1.5,ku = 1, which is veri�ed

both against (30) and data. Using the procedure outlined in Sec. 4.4,

we solved (14) 8 times (2 for each mode) - the computation times

were about 15 seconds for each case - and obtained:

W1 = [−0.25, 0.25] × [−0.33, 0.33], W2 = [−0.13, 0.13] × [−0.28, 0.28],

W3 = [−0.28, 0.28] × [−0.21, 0.21], W4 = [−0.17, 0.17] × [−0.23, 0.23].

We foundT = [−0.28, 0.28] × [−0.33, 0.33] andTu = 0.39B∞. Thus,

maxx ∈T ‖Πx ‖∞ = 0.33 for Γ = 1. The nominal trajectory was

computed for x0 = (0.65, 0.65)T , τ0 = 10,τp = 40, took 4 seconds to

solve, and resulted in ϵ∗ = 0.13. Thus, we obtain the guarantee that
all the closed-loop trajectories of (30) are in the −0.2-language of φ as
0.13− 0.33 = −0.2. A sample trajectory of (30) is shown in Fig. 4. In

simulations, we observed that STL scores were always greater than

the guarantee (-0.2). A histogram of STL scores for 1000 simulations

of 60 time steps is shown in Fig. 5. The di�erence between the worst-

case theoretical STL score (denoted by the red line) and STL score

measured from simulations highlight the conservativeness of the

methods in this paper. All simulations were performed by sampling

disturbances in (30) uniformly from their respective domains.

7 CONCLUSION AND FUTUREWORK
We developed a framework to use data for provably correct model

identi�cation and control synthesis. The methods that we intro-

duced in this paper are sound, but come at theoretically very high

computational complexity. Moreover, the methods are conserva-

tive. We highlighted the tradeo�s between conservativeness and

computational complexity.

Future work will focus on improving the methods introduced

in this paper. In particular, we will look for useful heuristics to

speed up model identi�cation. Furthermore, we shall extend the

framework in this paper to the case when identi�cation and syn-

thesis are performed simultaneously - which is particularly useful

in engineering applications.
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