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Abstract: We present a method for identification of gene regulatory network topology using
a time series of gene expression data. The underlying assumption in our method is that the
functions that describe regulatory relations must be continuous, nonnegative and monotonic.
This assumption is very general, as it is satisfied by virtually all existing regulatory models. Our
method is based on refuting all regulation hypotheses that cannot meet this assumption. This
procedure takes the form of a Linear Programming (LP) feasibility problem. We also present
two conditions where the regulation hypotheses are irrefutable.

1. INTRODUCTION

Gene-gene interactions form the core of regulatory func-
tions in cellular activities. The expression levels of various
genes modulate cellular functions such as metabolism,
cell division, programmable cell death (apoptosis), and
intercellular signaling. The availability of high throughput
measurement techniques presents biologists with a large
quantity of data, organized as genome wide snapshots
of gene expression activities. Expression levels are typ-
ically measured as transcript concentrations with DNA
microarray (c.f. Bonneau et al. [2006], Faith et al. [2007]).
One of the biggest challenges in systems biology is to
identify the interaction topology between the genes based
on the expression activities data. In short, this problem is
often referred to as identification or reverse engineering of
genetic regulatory networks (GRNs).

With the availability of such gene expression measure-
ments, the network can in principle be reconstructed by
inverting the data (c.f. Sontag et al. [2004]). However, as
the measurement is noisy, special care needs to be taken to
avoid inundating the reconstructed network with spurious
interconnections. This concern gives rise to sparse identifi-
cation or parsimonious identification that aims at getting a
network model with as few connections as possible without
losing the fitness to the data (c.f. Yeung et al. [2002],
Gardner et al. [2003], Bonneau et al. [2006]).

Within the systems and control community, identification
of GRNs in general and sparse identification of GRNs in
particular are quite active research areas. For example,
de Jong et al developed a method for identification of
GRNs using the structure of piecewise affine dynamical
systems (c.f. Drulhe et al. [2008], Porreca et al. [2008]).
Papachristodoulou et al developed a model for identifica-
tion of sparse networks using Hill functions to describe
the dynamics of gene-gene interaction (c.f. August and
Papachristodoulou [2009]). Earlier work by the first author
also aimed at identifying sparse networks based on genetic
perturbation data, assuming that the dynamics can be
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described (locally) as a linear system (c.f. Zavlanos et al.
[2008], Julius et al. [2009]).

The method presented in this paper is different from
the above references, in the sense that although we still
use the dynamical system formulation, we do not rely
on the structure of the underlying regulatory dynamics
(e.g. linear, polynomial, Hill functions, etc.). The only
assumption that we make is that the interaction dynamics
can be represented as nonnegative monotonic functions.
The network structure is built by identifying the set of
regulators for each gene. The regulators of a gene X are
the genes that directly 1 regulate the expression activity
of X. Another point of departure from our previous work
(c.f. Zavlanos et al. [2008], Julius et al. [2009]) is that the
current method is essentially used for model invalidation,
rather than model identification. In parallel with the de-
velopment of the results in this paper, a recent work by
Porreca et al (c.f. Porreca et al. [2010]) is published. They
proposed a two-staged process in identifying a continuous-
time differential equation model for GRNs. In the first
stage, network topologies that are inconsistent with the
data are rejected. This first stage is very similar to our ap-
proach, in the sense that it separates the issues of network
topology and the functional/parametric representation of
the dynamics. This paper differs from Porreca et al. [2010]
in that, (i) we propose a discrete-time model structure that
is directly derived from the time series data, (ii) we prove
that the conditions that we use to reject some network
topologies are both necessary and sufficient (see Theorem
2), while in Porreca et al. [2010], no such result is derived,
(iii) we present some theoretical analysis on irrefutable
models and data.

The main result of this paper is as follows. For any pro-
posed set of regulators, we derive a necessary and sufficient
condition for the data to be compatible with the regula-
tors. This condition is formulated as a Linear Program-
ming (LP) feasibility problem, which is computationally
tractable. By verifying the compatibility of the regulators
set with the data, we can invalidate some of the model
structures. Another nice feature of our method is that it

1 Note that by directly we mean without going through other

genes in the network under study. Therefore, this is not necessarily

a statement about the binding of transcription factors to certain

promoters.
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is highly parallelizable. Indeed, the calculation of the set
of regulators for each gene is independent from another,
and therefore can be executed in parallel, e.g. on different
processors. We also analyze some irrefutability results for
certain network topologies and time series data. This result
can be used in, e.g. determining whether the data is rich
enough to separate different model structures.

2. MATHEMATICAL MODELS FOR GENE-GENE
INTERACTION

We assume that we are working with a GRN with G genes.
Also, we assume that we have a sequence of expression
activities of the G genes, which are given at (N + 1) time
points. We denote the data as xi,j , 1 ≤ i ≤ G, 0 ≤ j ≤ N,
which stands for the expression activity of Gene i at time j.
We also define the (time) differential expression activities
qi,j , 1 ≤ i ≤ G, 0 ≤ j ≤ N − 1, as

qi,j , xi,j+1 − xi,j . (1)

To capture the interaction between genes, we adopt the
following discrete-time dynamical system model:

qi,j = −λixi,j +
∑

k∈GR

i

fi,k(xk,j), (2)

where λi ≥ 0 is the decay parameter of Gene i, GR
i ⊆

{1, . . . , G} is the set of regulators of Gene i, and fi,k is the
function that describes the regulatory role of Gene k on
Gene i. All these parameters are unknown and need to be
identified.

Note that Eqn. (2) can be seen as a (first order, Euler)
discrete approximation of a continuous-time differential
equation for xi, where we use a constant sampling period
∆t = tj+1 − tj , j = 1, 2, . . . , and we denote tj by j for
simplicity. It is important to note that we do not assume
that the set of Eqn. (2) are only valid locally around an
equilibrium point, as is the case in the majority of gene
reconstruction methods based on “small” perturbation.

The set of regulators GR
i can be decomposed into two

disjoint sets

GR
i = GR+

i ∪ GR−
i , (3)

where GR+
i and GR−

i are the set of activators and repres-
sors of Gene i, respectively. The number of regulators of a
gene is called the in-degree of the gene, which is obvious
from the graph-theoretic interpretation of the interaction
network.

We adopt the following assumption for the regulatory
function fi,k(·).

Assumption 1: The functions fi,k(·) are continuous,
nonnegative and monotone, for all i ∈ {1, . . . , G} and
k ∈ GR

i .

When fi,k(·) is monotonically increasing, the interpreta-
tion is that Gene k is an activator of Gene i. On the other
hand, when fi,k(·) is monotonically decreasing, Gene k is
a repressor of Gene i.

Remark 1. The assumption that f is continuous, nonneg-
ative and monotone is very general. Virtually all phe-
nomenological regulation models that have been proposed

{}

{1} {2} {3} {G}

{1, 2} {2, 3}

{1, 2, 3}

{1, 3}

Search direction

Fig. 1. The lattice structure of the power set of {1, . . . , G}.
The arrows indicate set inclusion, and the direction
of the breadth-first search is given by the dashed red
line.

to represent gene-gene interaction (see references in Sec-
tion 1) are captured in this broad class of functions.

Hereafter, we shall refer to continuous, nonnegative and
monotone functions as CNM functions, for brevity. Sim-
ilarly, the increasing and decreasing types of CNM func-
tions will be referred to as CNM+ and CNM- functions,
respectively.

3. SPARSITY CONSIDERATION

We characterize the sparsity of a genetic regulatory net-
work by the in-degree of the nodes (genes) in the network.
Biologically, this means that we characterize the sparsity
of the network by the number of regulators for each gene.
Notice that the sum of the in-degrees of all nodes is the
number of interconnections of the network. Therefore, this
characterization is in line with our prior work on spar-
sity optimization (c.f. Zavlanos et al. [2008], Julius et al.
[2009]).

The smallest set of regulators for each gene is possibly not
unique. Consider an example where we can explain the
dynamics of the expression activity of Gene X by using
the expression activity of Gene Y, or Gene Z. In this case,
both {Y} and {Z} are the smallest sets of regulators for
X. In this work, we consider the minimality of the set of
regulators in the sense of the partial ordering generated
by set inclusion. Therefore, a set of regulators GR

i is
considered smaller than another set GR′

i if GR
i ⊂ GR′

i .
For each gene, we identify the minimal sets of regulators
by performing breadth-first search on the lattice structure
of the power set of {1, . . . , G}, which is induced by the set
inclusion relation (see Figure 1).

While traversing the lattice, we verify each set whether it
qualifies as a set of regulators for the gene of interest. A
more detailed description of the verification algorithm is
given in Section 4. Although in the worst case, this method
requires us to verify all the subsets of {1, . . . , G} to identify
the minimal sets of regulators, in practice we do not have
to search the entire lattice. This is because:

• If a subset G′ ⊂ {1, . . . , G} is verified as a set of
regulators, any upper bound (i.e. any superset) of G′
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is also a set of regulators. This is because the zero
function satisfies Assumption 1.

• In most gene regulatory networks found in nature, the
in-degree of most genes is small.

4. MAIN RESULT

Given the expression activity data xi,j , 1 ≤ i ≤ G,
0 ≤ j ≤ N, we first compute its (temporal) differential
expression qi,j , 1 ≤ i ≤ G, 0 ≤ j ≤ N − 1 (see (1)).
Then, for each i ∈ {1, . . . , G} we perform the ascending
sort operation on the first N − 1 time points of xi,· to
yield x̂i,·. That is, there exists a bijection σi : {0, . . . , N −
1} → {0, . . . , N − 1}, such that:

xi,j = x̂i,σi(j), (4)

and for any j < j′,

x̂i,j ≤ x̂i,j′ . (5)

Thus, simply speaking, the bijection σi tells us how the
elements of xi,· are permuted by the sort operation.

Now, consider any gene in the network, say, Gene k ∈
{1, . . . , G}. We want to verify the following hypothesis.

Hypothesis 1: A subset GR
k ⊆ {1, . . . , G} is a set of

regulators for Gene k.

Following the discussion in Section 2, we can see that this
hypothesis is equivalent to the statement that the data
satisfy

qk,j = −λkxk,j +
∑

m∈GR

k

fk,m(xm,j), (6)

for some λk ≥ 0 and CNM functions fk,m(·) for m ∈ GR
k .

Next, we define the variables ∆k
m,j , m ∈ GR

k , 0 ≤ j ≤ N−
2, as follows.

∆k
m,j , fk,m(x̂m,j+1) − fk,m(x̂m,j). (7)

Notice that with these new variables, we have

fk,m(xm,j) = fk,m(x̂m,σk(j)),

= fk,m(x̂m,0) +

σk(j)−1
∑

l=0

∆k
m,l. (8)

In order to verify the hypothesis, we use the following
theorem.

Theorem 2. There exist λk ≥ 0 and CNM+ functions
fk,m(·) for m ∈ GR

k such that (6) holds if and only if the
following Linear Programming (LP) set of constraints are
feasible.

qk,j = −λkxk,j +
∑

m∈GR

k



fk,m(x̂m,0) +

σk(j)−1
∑

l=0

∆k
m,l



 ,

∀j ∈ {0, . . . , N − 1},















(9)

∆k
m,l ≥ 0, ∀m ∈ GR

k , ∀l ∈ {0, . . . , N − 2}, (10)

λk ≥ 0, (11)

fk,m(x̂m,0) ≥ 0, m ∈ GR
k (12)

fk,m(x̂m,0) +

N−2
∑

l=0

∆k
m,l ≥ 0, m ∈ GR

k , (13)

fk,m(x)

x

x̂m,0 x̂m,1 x̂m,N−1

fk,m(x̂m,0)

∆k
m,0

∆k
m,N−2

Fig. 2. Constructing a continuous monotonically increasing
function fk,m(x) that is compatible with a feasible
solution of the LP problem.

with fk,m(x̂m,0), ∆k
m,l, and λk as the optimization vari-

ables.

Proof. (only if) We notice that (9) is obtained by substi-
tuting (8) into (6). Suppose that there exist λk ≥ 0 and
CNM+ functions fk,m(·) for m ∈ GR

k such that (6) holds,
then the fact that constraints (9) and (11) can be met is
trivial. Constraint (10) can be met because of definition
(7) and the fact that fk,m(·) is monotonically increasing.
Next, notice that the left hand side of (13) is equal to
fk,m(x̂m,N−1). Therefore, constraints (12) and (13) can be
met because of the fact that fk,m(·) is nonnegative.

(if) Suppose that the LP constraints are feasible, for some
fk,m(x̂m,0), ∆k

m,l, and λk. We only need to show the

existence of CNM+ functions fk,m(·) for m ∈ GR
k that are

consistent with these variables, i.e. (8) is satisfied. This
can be done quite easily, for example by constructing the
functions fk,m(·) for m ∈ GR

k as piecewise affine functions
connecting the data, as illustrated in Figure 2.

Theorem 2 provides us with a necessary and sufficient
condition for a subhypothesis that we want to verify,
namely the fact that GR

k is a set of regulators for Gene
k, and that all genes in GR

k are activators. For a different
activator-repressor configuration, it is easy to see that the
sign constraint given by (10) can be modified accordingly.
Consequently, to verify Hypothesis 1 above, we need to

solve 2|G
R

k | LP feasibility problems, each corresponding to
an activator-repressor partition of GR

k .

In summary, the method that we develop in this paper is
presented in Algorithm 1.

5. NUMERICAL IMPLEMENTATION AND
EXAMPLE

In the numerical implementation, we modify the algorithm
above as follows. Instead of checking the feasibility of the
LP problem in Theorem 2, we minimize the magnitude of
the slack variables to obtain a feasible solution. That is, we
introduce the slack variables ε∆

m,j , m ∈ GR
k , 0 ≤ j ≤ N−2,

εf
m, m ∈ GR

k and formulate a Linear Quadratic (LQ)
programming problem.
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Algorithm 1 Computation of the sparsest gene network
based on gene expression data time-series

Require: Time-series data of gene expression activities
xi,j .

1: Compute the time differential expression data qi,j .

2: for all k ∈ G , {1, . . . , G} do
3: Compute the lattice of the subsets of G as in Figure

1. Label every subset with ’unverified’.
4: repeat
5: Take a subset of GR

k ⊂ G with label ’unverified’.
6: for all possible activator-repressor partitioning of

GR
k do

7: Use Theorem 2 to verify whether GR
k is a set of

regulators for Gene k.
8: end for
9: if GR

k is a set of regulators for Gene k then

10: Label GR
k and all of its upper bounds in the

lattice with ’pass’.
11: else
12: Label GR

k with ’fail’.
13: end if
14: until all subsets are labeled with ’pass’ or ’fail’.
15: The possible sets of regulators for Gene k are all

subsets labelled with ’pass’. The minimal sets of
regulators are the minimal elements (in the sense
of set inclusion) of this set.

16: end for

min ‖ε‖F , subject to

qk,j = −λkxk,j +
∑

m∈GR

k



fk,m(x̂m,0) +

σk(j)−1
∑

l=0

∆k
m,l



 ,

∀j ∈ {0, . . . , N − 1},















∆k
m,l + ε∆

m,l ≥ 0, ∀m ∈ GR
k , ∀l ∈ {0, . . . , N − 2},

λk ≥ 0,

fk,m(x̂m,0) + εf
m ≥ 0, m ∈ GR

k ,

(

fk,m(x̂m,0) + εf
m

)

+

N−2
∑

l=0

(

∆k
m,l + ε∆

m,l

)

≥ 0, m ∈ GR
k ,

with fk,m(x̂m,0), ∆k
m,l, ε∆

m,l, εf
m and λk as the optimization

variables. The symbol ε :=

[

εf

ε∆

]

and ‖·‖F denotes

Frobenius norm. The optimum of the LQ problem can
therefore be considered as the distance of fk,·(x̂·,0) and
∆k

·,· from being a feasible solution to the LP constraints.
For example, if the original LP constraints in Theorem
2 are feasible, then we can set ε = 0, and thus the LQ
problem above will attain its global minimum at 0. On
the other hand, the further fk,·(x̂·,0) and ∆k

·,· are from
being a feasible solution, the higher the optimal solution
for the LQ problem.

5.1 Numerical Example

As a proof of concept, we test our algorithm on an in silico
data set. The data set is obtained from a mathematical
model of the synthetic gene network known as the repres-
silator. The repressilator is a synthetic oscillator network
that was originally conceived and constructed by Elowitz
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Fig. 3. The time-series data of gene expression activities.

and Leibler (see Elowitz and Leibler [2000]). The network
consists of three genes in a repressive cycle.

A mathematical model of the dynamics of the repressilator
that includes both the transcription regulation and trans-
lation dynamics is given as follows (see e.g. Alon [2007]).

dx1

dt
=

100

1 + 8y3
2

− 50x1,
dy1

dt
= x1 − y1,

dx2

dt
=

100

1 + 8y3
3

− 50x2,
dy2

dt
= x2 − y2,

dx3

dt
=

100

1 + 8y3
1

− 50x3,
dy3

dt
= x3 − y3.



























(14)

Here, the symbols x1,2,3 denote the concentrations of the
mRNA transcripts of Genes 1, 2, and 3, respectively. The
symbols y1,2,3 denote the protein concentrations of the re-
spective genes. For simplicity, the parameters of the model
are chosen symmetrically. In choosing these parameters,
we follow the biological/experimental knowledge that the
mRNA decay is much faster than protein decay (see Alon
[2007]).

The ODE (14) represents the topology where Gene 1 is
repressed by Gene 2, Gene 2 is repressed by Gene 3, and
Gene 3 is repressed by Gene 1.

Using the standard forward Euler method to solve the
ODE, we obtain the 3D trajectory of the mRNA transcript
concentrations. These trajectories are then sampled to
generate a time-series of gene expression activity data. To
model measurement noise, we add uncorrelated Gaussian
noise on each sample. A time plot showing these samples
with error bars indicating their respective standard devi-
ations are shown in Figure 3.

We apply the algorithm presented in the previous section
on this data set. To test the robustness of the algorithm
against noise, we randomly generate 20 data sets and apply
the algorithm on each of data sets. We implement the
algorithm in MATLAB, with the cvx toolbox used for
solving the LQ problem (see Boyd and Grant [2005]). The
calculation is run on a standard laptop computer (Intel
Core2 Duo P8600 2.4GHz with 3GB RAM). Each data set
takes less than 5 seconds to process. The solutions to the
LQ problem above for various regulator sets for Gene 1 is
shown in Table 1.
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Fig. 4. (Top) The regulatory effect of Gene 2 on Gene 1,
computed for one of the 20 datasets. (Bottom) The
regulatory effect of Gene 3 on Gene 1, computed for
the same dataset.

Reg. Set ‖ε‖F Reg. Set ‖ε‖F

(-1) 1.77 ± 0.22 (+2,+3) 0.15 ± 0.048
(-2) 0.24 ± 0.11 (+2,-3) 0.31 ± 0.039
(+2) 0.70 ± 0.12 (-2,+3) 0.030 ± 0.037
(-3) 0.88 ± 0.18 (-2,-3) 0.074 ± 0.047
(+3) 0.55 ± 0.20 (-1,+2,+3) 0.091 ± 0.032

(-1,+2) 0.36 ± 0.040 (-1,+2,-3) 0.23 ± 0.022
(-1,-2) 0.057 ± 0.044 (-1,-2,+3) 0.012 ± 0.022
(-1,+3) 0.18 ± 0.058 (-1,-2,-3) 0.025 ± 0.023
(-1,-3) 0.38 ± 0.052

Table 1. The solutions to the LQ problem for various
regulator sets of Gene 1.

In the table above, the notation for the regulator sets can
be explained as follows. The set (-1) means the Gene 1
acts as a repressor. The set (-1,-2,+3) means Gene 1 and
2 act as repressors, while Gene 3 acts as an activator, and
so on. Notice that we do not verify any regulator set with
Gene 1 itself as an activator. The reasoning behind it is
explained in the next section.

Some observation from the data:

• As is generally true with any noisy data, larger
regulator sets allow for better fit of the data. This
is due to overfitting, where the algorithm uses the
extra degrees of freedom to explain the noise.

• Among the regulator sets with one member, the algo-
rithm correctly pick Gene 2 as the repressor of Gene 1.
The next best fit (by a factor of more than 2) is Gene
3 as the activator of Gene 1. This is because Gene 3
is an indirect activator of Gene 1 (through Gene 2).
However, since we are interested in direct regulation
relationships, the algorithm correctly discounts this
hypothesis. See Figure 4 (top) where we plot the
regulatory effect of Gene 2 on Gene 1 (represented
by x2 vs f1,2(x2)), in three different regulator sets,
computed for one of the 20 data sets. The function
f1,2(x2) in (-1,-2) and (-1,-2,-3) are very close. It drops
a little in (-1,-2,+3), which is allowed by the presence
of indirect regulation by Gene 3, as seen in Figure 4
(bottom).
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1
)

 

 

(−1,−2)

(−1,−2,−3)

(−1,−2,+3)

Fig. 5. The regulation of Gene 1 by itself, computed from
one of the 20 datasets.

• The top 4 overall best fits (by a factor of more than
2 compared to the rest) share the common element,
i.e. Gene 2 as repressor. Three of them share the
element of Gene 1 as a repressor. This is probably
due to the fact that the linear decay assumption is
not perfectly accurate. Therefore, the algorithm uses
Gene 1 as an autorepressor to fix the decay model.
See Figure 5, where we plot the effect of Gene 1 on
its own dynamics (i.e. x1 vs −λ1x1 + f1,1(x1)). It can
be seen that from the three different regulator sets,
the algorithm predicts that the effect is mostly linear.

6. IRREFUTABLE REGULATION HYPOTHESES

As discussed earlier, our method is based on refuting
regulation hypotheses for each gene in the network. That
is, we reject the hypothesis about a given regulator set, if
the data set cannot be fit in the model (2) while satisfy-
ing all assumptions about the regulation functions f . In
this section, we discuss irrefutable regulation hypotheses,
which are conditions where: (i) the regulator set is such
that it cannot be refuted, regardless of the data, or (ii) the
expression activity patterns of some genes are such that
they cannot be refuted as regulators of any gene regardless
of its expression data.

6.1 Autoactivation

The hypothesis that a gene acts as its own activator, in
practice, cannot be refuted. This is because of the following
lemma.

Lemma 3. Given a finite data set consisting of gene ex-
pression data xn and time-differential expression data qn,
n ∈ {1, . . . , N} satisfying xn ≥ 0, and xi 6= xj if i 6= j.
There exist λ ≥ 0 and f a CNM+ function such that

qn = −λxn + f(xn), n ∈ {1, . . . , N}. (15)

Proof. Without any loss of generality, we assume that
(xn)n=1,...,N is an increasing sequence of numbers 2 . Pick

any λ̃ such that

λ̃ ≥ max
1≤n≤N

qn − qn−1

xn − xn−1
, (16)

where we define x0 = q0 := 0.We claim that qn + λ̃xn is
an increasing sequence. To see this, we observe that

qn + λ̃xn − qn−1− λ̃xn−1 = qn − qn−1 + λ̃ (xn − xn−1) ≥ 0.

2 Otherwise, we can always sort the data beforehand.

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

11789



Therefore, using the same argument as in the proof of
Theorem 2, we can construct a CNM+ function f such
that (15) holds.

The two assumptions that we impose in this lemma, i.e.
the nonnegativity and uniqueness of the expression data
always hold in practice. The nonnegativity property ob-
viously comes from the fact that mRNA transcript con-
centrations cannot be a negative number. The uniqueness
property always holds in practice, because in noisy mea-
surements the probability of two different measurements
yield exactly the same number is 0.

6.2 Monotonic Time Series

When the time series of the expression activities of two
genes are monotonic, they can be used as universal regu-
lators. That is, they cannot be refuted as regulators of any
gene, regardless of the expression data. This is proved in
the following lemma.

Lemma 4. Given a finite data set consisting of gene ex-
pression data of two genes x1,n and x2,n, n ∈ {1, . . . , N}.
We assume that:

• x1,n ≥ 0, x2,n ≥ 0,
• x1,i 6= x1,j , x2,i 6= x2,j if i 6= j,
• x1,n and x2,n are both monotonically increasing se-

quence.

For any gene in the network, suppose that we have the
expression data xn and the corresponding time-differential
expression data qn, n ∈ {1, . . . , N}. There exist λ ≥ 0, f1

a CNM+ function, and f2 a CNM- function such that

qn = −λxn + f1(x1,n) + f2(x2,n), n ∈ {1, . . . , N}.

Proof. Pick any λ ≥ 0. We need to find appropriate f1

and f2 such that

qn − λxn = f1(x1,n) + f2(x2,n).

Then, we use the fact that any sequence can be written as
the sum of a monotonically increasing and a monotonically
decreasing sequence to establish the existence of f1 and f2.

Notice that this lemma specifically assumes that the ex-
pression activity of Gene 1 and Gene 2 are monotonically
increasing. However, we can see that if they were both
monotonically decreasing, the same result would still hold.
This is because we can pre-sort the data to make both x1,n

and x2,n monotonically increasing.

If the expression activity of Gene 1 is monotonically in-
creasing, and Gene 2 is monotonically decreasing, we can
require that both f1 and f2 are of the same type (i.e.
CNM+ or CNM- functions). In this case, the same result
would also hold. In fact, the result above can be general-
ized by stating that any sequence of expression activities
of two genes, x1,n and x2.n, can be used as universal reg-
ulators if the sequence of ordered pairs (x1,n, x2,n) can be
permuted such that the sequence of the first elements and
the sequence of the second elements are both monotonic.

Discussion The assumptions of CNM functions are very
general. However, the assumption that the regulatory func-
tions are linear combinations of CNM functions is some-
what restrictive. In future work, we plan on generalizing

this regulation assumption to the case of general multi-
variate CNM functions.
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