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21.1 Introduction

As a result of technological advances in control techniques for single vehicles
and the explosion in computation and communication capabilities, the inte-
rest in cooperative robotics has dramatically increased in the last few years.
The research in the field of control and coordination for multiple robots is
currently progressing in areas like automated highway systems [34], formation
flight control [2], unmanned underwater vehicles [29], satellite clustering [22],
exploration [7], surveillance [15], search and rescue, mapping of unknown or
partially known environments, distributed manipulation [21], and transporta-
tion of large objects [31].

There are roughly three approaches to multivehicle coordination reported
in literature: leader following, behavioral methods, and virtual structure tech-
niques. In leader following, some robots are designated as leaders, while others
are followers [10]. In behavior-based control [1] several desired behaviors are
prescribed for each agent, the final control being derived by weighting the
relative importance of each behavior. In the virtual structure approach, the
entire formation is treated as a rigid body [13, 19, 24]. Desired motion is as-
signed to the virtual structure that traces out trajectories for each member of
the formation to follow.

Virtual structures, as rigid bodies, evolve on the Lie group of all trans-
lations and orientations in 3D, SE(3). The problem of finding a smooth in-
terpolating curve is well understood in Euclidean spaces [14], but it is not
clear how these techniques can be generalized to curved spaces. There are two
main issues that need to be addressed. First, it is desired that the compu-
tational scheme be independent of the description of the space and invariant
with respect to the choice of the coordinate systems used to describe the mo-
tion. Second, the smoothness properties and the optimality of the trajectories
need to be considered. Shoemake [28] proposed a scheme for interpolating ro-
tations with Bezier curves based on the spherical analog of the de Casteljau
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algorithm. This idea was extended by Park and Ravani [25] to spatial motions.
Another class of methods is based on the representation of Bezier curves with
Bernstein polynomials. Ge and Ravani [16] used the dual unit quaternion rep-
resentation of SE(3) and subsequently applied Euclidean methods to inter-
polate in this space. Srinivasan [30] and Jütler [18] propose the use of spatial
rational B-splines for interpolation. Marthinsen [20] suggests the use of Her-
mite interpolation and the use of truncated inverse of the differential of the
exponential mapping and the truncated Baker–Campbell–Hausdorff formula
to simplify the construction of interpolation polynomials. The advantage of
these methods is that they produce rational curves. It is worth noting that
all these works (with the exception of [25]) use a particular parameterization
of the group and do not discuss the invariance of their methods. In contrast,
Noakes et al. [23] derived the necessary conditions for cubic splines on general
manifolds without using a coordinate chart. These results are extended in [9]
to the dynamic interpolation problem. Necessary conditions for higher-order
splines are derived in Camarinha et al. [8]. A coordinate-free formulation of the
variational approach was used to generate shortest paths and minimum accel-
eration and jerk trajectories on SO(3) and SE(3) in [36]. However, analytical
solutions are available only in the simplest of cases, and the procedure for sol-
ving optimal motions, in general, is computationally intensive. If optimality is
sacrificed, it is possible to generate bi-invariant trajectories for interpolation
and approximation using the exponential map on the Lie algebra [35]. While
the solutions are of closed form, the resulting trajectories have no optimality
properties.

Most of the existing works on motion planning and control of virtual struc-
tures use formation graphs, whose nodes capture the individual agent kine-
matics or dynamics, and edges represent interagent constraints that must be
satisfied [10, 32, 33]. The notions of graph rigidity, minimally rigid graphs, and
node augmentation are studied and applied to formations by Olfati-Saber and
Murray [24] and Eren and Morse [13]. Stabilization of a formation at a given
rigid configuration is formulated in terms of a structural potential function
[24] or a formation function [12]. An alternative to constructing structural
potential functions induced by formation graphs and a relaxation to the rigi-
dity constraint is to use biologically inspired artificial potential functions, as
Leonard and Fiorelli suggest in [19]. Along different lines, a geometric formu-
lation of feasibility on formation graphs is given by Tabuada et al. [32].

We first describe a method to generate smooth trajectories for a rigid body
with specified boundary conditions. The method involves two key steps: (1)
the generation of optimal trajectories in GA+(n), a subgroup of the affine
group in IRn; (2) the projection of the trajectories onto SE(3), the Lie group
of rigid body displacements. The overall procedure is invariant with respect
to both the local coordinates on the manifold and the choice of the inertial
frame. The benefits of the method are threefold. First, it is possible to ap-
ply any of the variety of well-known, efficient techniques to generate optimal
curves on GA+(n). Second, the method yields approximations to optimal so-
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lutions for general choices of Riemannian metrics on SE(3). Third, from a
computational point of view, the method we propose is less expensive than
traditional methods.

These results are then extended to generate motion plans for fully actuated
robots required to maintain a rigid structure. The fundamental idea is based
on the definition of a kinetic energy metric in the configuration space of the
team. We decompose the kinetic energy into two terms: the first corresponds
to the motion of a rigid structure, and the second to motions that violate the
rigidity constraint. The first set of motions can be associated to orbits of the
Euclidean group, SE(3) or SE(2). The second corresponds to velocity vectors
that are orthogonal to the first. The kinetic energy metric is “shaped” by
assigning different weights to each contribution. This idea of a “decomposition”
and a subsequent “modification” is related to the methodology of controlled
Lagrangians described in [6]. The geodesic flow for this modified metric is
derived, and trajectories of the individual robots are generated. When the
weights are biased toward the rigid body motion, the obtained trajectories
correspond to optimal rigid body motions in 3D space (SE(3)) or in the
plane (SE(2)). Other choices of weights lead to the special cases of the robots
moving toward each other or each individual robot traversing its own optimal
path.

The remainder of this chapter is organized as follows. Section 21.2 is a short
overview of the differential geometry tools that are used in this work. Section
21.3 describes a computationally efficient, left-invariant method for generating
smooth trajectories for a moving rigid body with specified boundary condi-
tions. Smooth trajectories for a set of mobile robots satisfying constraints on
relative positions are generated in Sect. 21.4. The paper concludes with final
remarks and directions of future work in Sect. 21.5.

21.2 The Geometry of Rigid Body Motion

This section is a short review of the mathematical tools that are used in this
chapter. The reader interested in a more detailed description is referred to
[11].

21.2.1 Matrix Lie Groups and Rigid Motion

Let GL+(n) denote the set of all n×n real matrices with positive determinant:

GL+(n) =
{
M |M ∈ R

n×n, detM > 0
}
. (21.1)

SO(n) is a subset of GL+, defined as

SO(n) =
{
R |R ∈ GL+(n), RRT = I

}
. (21.2)
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Let

GA+(n) =
{
B |B =

[
M d
0 1

]
, M ∈ GL+(n), d ∈ IRn

}
, (21.3)

and
SE(n) =

{
A |A =

[
R d
0 1

]
, R ∈ SO(n), d ∈ IRn

}
. (21.4)

GL+(n), SO(n), GA+(n), and SE(n) have the structure of a group under
matrix multiplication. Moreover, matrix multiplication and inversion are both
smooth operations, which make all GL+(n), SO(n), GA+(n), and SE(n) Lie
groups [11].

GL+(n) and GA+(n) are subgroups of the general linear group GL(n)
(the set of all nonsingular n × n matrices) and of the affine group GA(n) =
GL(n)× IRn, respectively. SO(n) is referred to as the special orthogonal group
or the rotation group on IRn. The special Euclidean group SE(n) is the set of
all rigid displacements in IRn.

Special consideration will be given to SO(3) and SE(3). Consider a rigid
body moving in free space. Assume any inertial reference frame {F} fixed in
space and a frame {M} fixed to the body at point O′ ( Fig. 21.1). At each
instance the configuration (position and orientation) of the rigid body can be
described by a homogeneous transformation matrix, A ∈ SE(3), correspon-
ding to the displacement from frame {F} to frame {M}.
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Fig. 21.1. The inertial (fixed) frame and the moving frame attached to the rigid
body

On any Lie group the tangent space at the group identity has the structure
of a Lie algebra. The Lie algebras of SO(3) and SE(3), denoted by so(3) and
se(3), respectively, are given by:
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so(3) =
{
ω̂ | ω̂ ∈ IR3×3, ω̂T = −ω̂

}
, (21.5)

se(3) =
{
S =

[
ω̂ v
0 0

]
| ω̂ ∈ so(3), v ∈ IR3

}
, (21.6)

whereˆis the skew-symmetric operator.
Given a curve

A(t) : [−a, a]→ SE(3), A(t) =
[
R(t) d(t)

0 1

]
,

an element S(t) of the Lie algebra se(3) can be identified with the tangent
vector Ȧ(t) at an arbitrary point t by:

S(t) = A−1(t)Ȧ(t) =
[
ω̂(t) RTḋ
0 0

]
, (21.7)

where ω̂(t) = R(t)TṘ(t) is the corresponding element from so(3).
A curve on SE(3) physically represents a motion of the rigid body. If

{ω(t), v(t)} is the vector pair corresponding to S(t), then ω physically corres-
ponds to the angular velocity of the rigid body, while v is the linear velocity
of the origin O′ of the frame {M}, both expressed in the frame {M}. In
kinematics, elements of this form are called twists, and se(3) thus corresponds
to the space of twists. The twist S(t) computed from Eq. (21.7) does not
depend on the choice of the inertial frame {F} and is therefore called left
invariant.

The standard basis for the vector space so(3) is:

Lo
1 = ê1, L

o
2 = ê2, L

o
3 = ê3, (21.8)

where
e1 =

[
1 0 0

]T
, e2 =

[
0 1 0

]T
, e3 =

[
0 0 1

]T
.

Lo
1, Lo

2, and Lo
3 represent instantaneous rotations about the Cartesian axes

x, y, and z, respectively. The components of a ω̂ ∈ so(3) in this basis are given
precisely by the angular velocity vector ω.

The standard basis for se(3) is:

L1 =
[
Lo

1 0
0 0

]
L2 =

[
Lo

2 0
0 0

]
L3 =

[
Lo

3 0
0 0

]

L4 =
[

0 e1

0 0

]
L5 =

[
0 e2

0 0

]
L6 =

[
0 e3

0 0

] (21.9)

The twists L4, L5, and L6 represent instantaneous translations along the
Cartesian axes x, y, and z, respectively. The components of a twist S ∈ se(3)
in this basis are given precisely by the velocity vector pair s := {ω, v} ∈ IR6.
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21.2.2 Riemannian Metrics on Lie Groups

If a smoothly varying, positive definite, bilinear, symmetric form < ., . > is
defined on the tangent space at each point on the manifold, such a form is
called a Riemannian metric and the manifold is Riemannian [11]. On an n-
dimensional manifold, the metric is locally characterized by a n×n matrix of
C∞ functions g̃ij =< Xi, Xj >, where Xi are basis vector fields. If the basis
vector fields can be defined globally, then the matrix [g̃ij ] completely defines
the metric.

On SE(3) (on any Lie group), an inner product on the Lie algebra can
be extended to a Riemannian metric over the manifold using left (or right)
translation. To see this, consider the inner product of two elements S1, S2 ∈
se(3) defined by

< S1, S2 >I= sT1G̃s2, (21.10)

where s1 and s2 are the 6 × 1 vectors of components of S1 and S2 with
respect to some basis, and G is a positive definite matrix. If V1 and V2 are
tangent vectors at an arbitrary group element A ∈ SE(3), the inner product
< V1, V2 >A in the tangent space TASE(3) can be defined by:

< V1, V2 >A=< A−1V1, A
−1V2 >I . (21.11)

The metric satisfying the above equation is said to be left invariant [11]. Right
invariance is defined similarly. A metric is bi-invariant if it is both left and
right invariant.

21.2.3 Geodesics and Minimum Acceleration Curves

Any motion of a rigid body is described by a smooth curve A(t) ∈ SE(3).
The velocity is the tangent vector to the curve V (t) = dA

dt (t).
An affine connection on SE(3) is a map that assigns to each pair of C∞

vector fields X and Y on SE(3) another C∞ vector field ∇XY , which is
bilinear in X and Y and, for any smooth real function f on SE(3) satisfies
∇fXY = f∇XY and ∇XfY = f∇XY + X(f)Y .

The Christoffel symbols Γ i
jk of the connection at a point A ∈ SE(3) are

defined by ∇L̄j
L̄k = Γ i

jkL̄i, where L̄1, . . . , L̄6 is the basis in TASE(3) and the
summation is understood.

If A(t) is a curve and X is a vector field, the covariant derivative of X along
A is defined by DX/dt = ∇Ȧ(t)X . Vector field X is said to be autoparallel
along A if DX/dt = 0. A curve A is a geodesic if Ȧ is autoparallel along A.
An equivalent characterization of a geodesic is the following set of equations:

äi + Γ i
jk ȧ

j ȧk = 0, (21.12)

where ai, i = 1, . . . , 6 is an arbitrary set of local coordinates on SE(3).
Geodesics are also minimum length curves. The length of a curve A(t) between
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the points A(a) and A(b) is defined to be L(A) =
∫ b

a < V, V >
1
2 dt, where

V = dA(t)
dt . It can be shown [11] that if there exists a curve that minimizes

the functional L, this curve also minimizes the so-called energy functional:

E(A) =
∫ b

a

< V, V > dt. (21.13)

For a manifold with a Riemannian (or pseudo-Riemannian) metric, there
exists a unique symmetric connection that is compatible with the metric [11].
Given a connection, the acceleration and higher derivatives of the velocity
can be defined. The acceleration A(t) is the covariant derivative of the veloc-
ity along the curve A = D

dt

(
dA
dt

)
= ∇V V . Minimum acceleration curves are

defined as curves minimizing the square of the L2 norm of the acceleration:

A(A) =
∫ b

a

< ∇V V,∇V V > dt, (21.14)

where V (t) = dA(t)
dt , A(t) is a curve on the manifold, and ∇ is the unique

symmetric connection compatible with the given metric. The initial and final
point as well as the initial and final velocity for the motion are prescribed.

21.2.4 The Kinetic Energy Metric

A metric that is attractive for trajectory planning can be obtained by consi-
dering the dynamic properties of the rigid body. The kinetic energy of a rigid
body is a scalar that does not depend on the choice of the inertial reference
frame. It thus defines a left-invariant metric . If the body-fixed reference frame
is attached at the centroid the matrix G̃ as in Eq. (21.10)

G̃ =
1
2

[
G 0
0 mI

]
, (21.15)

where m is the mass of the rigid body, and G is the inertia matrix of the body
about the body frame {M}. If {ω, v} ∈ se(3) is the vector pair associated
with some velocity vector V , the norm of the vector V assumes the familiar
expression of the kinetic energy:

< V, V >=
1
2
ωTGω +

1
2
mvTv. (21.16)

In [36] it was proved that a geodesic A(t) on SE(3) equipped with metric
(21.15) is described by

dω
dt

= −G−1(ω × (Gω)), (21.17)

d̈ = 0. (21.18)
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If G = αI, an analytical expression for the geodesic passing through

A(0) = (R(0), d(0)), A(1) = (R(1), d(1)) (21.19)

at t = 0 and t = 1, respectively, is given by [36]

A(t) = (R(t), d(t)) ∈ SE(3), (21.20)

where

R(t) = R(0) exp(ω̂0t), (21.21)
ω̂0 = log(R(0)TR(1)), (21.22)

and
d(t) = (d(1)− d(0))t + d(0) (21.23)

In the case when G �= αI, there is no closed-form expression for the corres-
ponding geodesic, and numerical methods should be employed.

If G = αI, the differential equations to be satisfied by a minimum accel-
eration curve are [36]:

ω(3) + ω × ω̈ = 0 (21.24)
d(4) = 0, (21.25)

As observed in [23], Eq. (21.24) can be integrated to obtain ω(2) + ω × ω̇ =
constant. However, this equation cannot be further integrated analytically for
arbitrary boundary conditions. In [36] it is shown that for special choice of the
initial and final velocities, minimum acceleration curves are reparameterized
geodesics. If G �= αI in metric (21.15), the differential equations to be satisfied
by the minimum acceleration curves are difficult to derive and are not suited
for numerical integration.

21.3 An SVD-Based Method for Interpolation on SE(3)

In this section it is shown that there is a simple way of defining a left- or right-
invariant metric on SO(n) (SE(n)) by introducing an appropriate constant
metric in GL+(n) (GA+(n)). Defining a metric (i.e., the kinetic energy) at the
Lie algebra so(n) (or se(n)) and extending it through left (right) translations is
equivalent to inheriting the appropriate metric at each point from the ambient
manifold.

21.3.1 Riemannian Metrics on SO(n) and SE(n)

3.1.1 A Metric in GL+(n)

Let W be a symmetric positive definite n× n matrix. For any M ∈ GL+(n)
and any X,Y ∈ TMGL+(n), define
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< X, Y >GL+= Tr(XTYW ) = Tr(WXTY ) = Tr(YWXT). (21.26)

By definition, form (21.26) is the same at all points in GL+(n). It is easy to
see that Eq. (21.26) is a Riemmanian metric on GL+(n) when W is symmetric
and positive definite. The following interesting result is proved in [4]:

Proposition 1. The metric given by Eq. (21.26) defined on GL+(n) is left
invariant when restricted to SO(n). The restriction on SO(n) is bi-invariant
if W = αI, α > 0, where I is the n× n identity matrix.

Remark 1. If right invariance on SO(n) is desired (and left invariance is not
needed), we can define

<< X, Y >>GL+= Tr(XY TW ) = Tr(Y TWX) = Tr(WXY T).

Similarly, metric <<,>>GL+ will be right invariant on SO(n) for W sym-
metric and positive definite and bi-invariant if W = αI.

3.1.2 The Induced Metric on SO(3)

Let R ∈ SO(3), X,Y ∈ TRSO(3), and Rx(t), Ry(t) the corresponding local
flows so that

X = Ṙx(t), Y = Ṙy(t), Rx(t) = Ry(t) = R.

The metric inherited from GL+(3) can be written as:

< X, Y >SO=< X, Y >GL+= Tr(ṘT
x (t)Ṙy(t)W ) =

= Tr(ṘT
x(t)RRTṘy(t)W ) = Tr(ω̂T

xω̂yW ),

where ω̂x = Rx(t)TṘx(t) and ω̂y = Ry(t)TṘy(t) are the corresponding twists
from the Lie algebra so(3). If we write the above relation using the vector
form of the twists, some elementary algebra leads to:

< X, Y >SO= ωT
xGωy, (21.27)

where
G = Tr(W )I3 −W (21.28)

is the matrix of the metric on SO(3) as defined by Eq. (21.10). A different
but equivalent way of arriving at the expression of G as in Eq. (21.28) would
be defining the metric in so(3) i.e., at identity of SO(3)) as being the one
inherited from TIGL+(3): gij = Tr(Lo

i
TLo

jW ), i, j = 1, 2, 3 (Lo
1, L

o
2, L

o
3 is

the basis in so(3)). Left-translating this metric throughout the manifold is
equivalent to inheriting the metric at each three-dimensional tangent space of
SO(3) from the corresponding nine-dimensional tangent space of GL+(3).

Using Eq. (21.28), it is easy to verify that the metric W on GL+(3) and
the induced metric G on SO(3) share the following properties:
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• G is symmetric if and only if W is symmetric.
• If W is positive definite, then G is positive definite.
• If G is positive definite, then W is positive definite if and only if the

eigenvalues of G satisfy the triangle inequality.

In the particular case when W = αI, α > 0, from Eq. (21.28), we have G =
2αI, which is the standard bi-invariant metric on SO(3). This is consistent
with the second assertion in Proposition 1. For α = 1, metric (21.26) induces
the well-known Frobenius matrix norm on GL+(3) [17].

The quadratic form ωTGω associated with metric (21.27) can be inter-
preted as the (rotational) kinetic energy. Consequently, 2G can be thought of
as the inertia matrix of a rigid body with respect to a certain choice of the
body frame {M}. The triangle inequality restriction on the eigenvalues of G
therefore simply states that the principal moments of inertia of a rigid body
satisfy the triangle inequality, which, by definition, is true for any rigid body.
Therefore, for an arbitrarily shaped rigid body with inertia matrix 2G, we can
formulate a (positive definite) metric (21.26) in the ambient manifold GL+(3)
with matrix

W =
1
2
Tr(G)I3 −G. (21.29)

Thus Eq. (21.29) gives us a formula for constructing an ambient metric space
that is compatible with the given metric structure of SO(3).

3.1.3 A Metric in GA+(n)

Let
W̃ =

[
W a
aT w

]
(21.30)

be a symmetric positive definite (n+1)×(n+1) matrix, where W is the matrix
of metric (21.26), a ∈ IRn, and w ∈ IR. Let X and Y be two vectors from the
tangent space at an arbitrary point of GA+(n) (X and Y are (n+1)× (n+1)
matrices with all entries of the last row equal to zero). A quadratic form

< X, Y >GA+= Tr(XTY W̃ ) (21.31)

is symmetric and positive definite if and only if W̃ is symmetric and positive
definite.

3.1.4 The Induced Metric in SE(3)

We can get a left-invariant metric on SE(n) by letting SE(n) inherit the
metric < . >GA+ given by Eq. (21.31) from GA+(n).

Let A be an arbitrary element from SE(3). Let X,Y be two vectors from
TASE(3), and Ax(t), Ay(t) the corresponding local flows so that

X = Ȧx(t), Y = Ȧy(t), Ax(t) = Ay(t) = A.
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Let
Ai(t) =

[
Ri(t) di(t)

0 1

]
, i ∈ {x, y}

and the corresponding twists at time t:

Si = A−1
i (t)Ȧi(t) =

[
ω̂i vi

0 0

]
, i ∈ {x, y}.

The metric inherited from GA+(3) can be written as:

< X, Y >SE=< X, Y >GA+= Tr(ȦT
x (t)Ȧy(t)W̃ ) = Tr(ST

xA
TASyW̃ ).

Now using the orthogonality of the rotational part of A and the special form
of the twist matrices, a straightforward calculation leads to the result:

< X, Y >SE= Tr(ST
xSyW̃ ) = Tr(ω̂T

xω̂yW ) + Tr(ω̂T
xvya

T) + vT
x ω̂ya + vTxvyw

If G is the matrix of the metric in SO(3) induced by GL+(3), then

< X, Y >SE=
[
ωT

x vTx
]
G̃

[
ωy

vy

]
, G̃ =

[
G â
−â wI3

]
, (21.32)

and G is given by Eq. (21.28).
The metric given by Eq. (21.32) is left invariant since the matrix G̃ of

this metric in the left invariant basis vector field is constant. Also, if W̃ is
symmetric and positive definite, then G̃ given by Eq. (21.32) is symmetric
and positive definite.

The quadratic form sTG̃s associated with metric (21.32) can be interpreted
as being the kinetic energy of a moving (rotating and translating) rigid body,
where w is twice the mass m of the rigid body. If the body fixed frame {M}
is placed at the centroid of the body, then a = 0. Moreover, if {M} is aligned
with the principal axes of the body, then G = 1

2H , where H is the diagonal
inertia matrix of the body. In the most general case, when the frame {M} is
displaced by some (R0, d0) from the centroid and the orientation parallel with
the principal axes, we have [36]:

G = RT
0HR0 −mRT

0d̂0R0, a = −mR0d0.

21.3.2 Projection on SO(n)

We can use the norm induced by metric (21.26) to define the distance between
elements in GL+(3). Using this distance, for a given M ∈ GL+(3), we define
the projection of M on SO(3) as being the closest R ∈ SO(3) with respect to
the metric from Eq. (21.26). The solution of the projection problem is derived
for the general case of GL+(n) [4]:
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Proposition 2. Let M ∈ GL+(n) and U,Σ, V the singular value decomposi-
tion of MW (i.e., MW = UΣV T). Then the projection of M on SO(n) with
respect to metric (21.26) is given by R = UV T.

It is easy to see that the distance between M and R in metric (21.26) is
given by Tr(W−1V Σ2V T) + Tr(W ) − 2Tr(Σ). For the particular case when
W = I3, the distance becomes

∑n
i=1(σi − 1)2, which is the standard way of

describing how far a matrix is from being orthogonal.
The question we ask is what happens with the solution to the projection

problem when the manifold GL+(n) is acted upon by the group SO(n). The
answer is given below and the proof in [4].

Proposition 3. The solution to the projection problem on SO(n) is left in-
variant under actions of elements from SO(n). If W = αI3, the solution is
bi-invariant.

For the case W = I, it is worthwhile to note that other projection methods
do not exhibit bi-invariance. For instance, it is customary to find the projection
R ∈ SO(n) by applying a Gram–Schmidt procedure (QR decomposition). In
this case it is easy to see that the solution is left invariant, but in general it
is not right invariant.

21.3.3 Projection on SE(n)

Similar to the previous section, if a metric of the form given in Eq. (21.31)
is defined on GA+(n) with the matrix of the metric given by Eq. (21.30), we
can find the corresponding projection on SE(n). We consider the case a = 0,
which corresponds to a body frame {M} fixed at the centroid of the body.

Proposition 4. Let B ∈ GA+(n) with the following block partition:

B =
[
B1 B2

0 1

]
, B1 ∈ GL+(n), B2 ∈ IRn,

and U,Σ, V be the singular value decomposition of B1W . Then the projection
of B on SE(n) is given by

A =
[
UV T B2

0 1

]
∈ SE(n).

The proof is given in [4]. Similar to the SO(n) case, the projection on SE(n)
exhibits interesting invariance properties.

Proposition 5. The solution to the projection problem on SE(n) is left in-
variant under actions of elements from SE(n). In the special case when
W = αI, the projection is bi-invariant under rotations.
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21.3.4 The Projection Method

Based on the results we presented so far, we can outline a method to generate
an interpolating curve A(t) ∈ SE(3), t ∈ [0, 1] while satisfying the boundary
conditions:

A(0), A(1), Ȧ(0), Ȧ(1), . . . , A(m)(0), A(m)(1),

where the superscript (·)(m) denotes the mth derivative. The projection pro-
cedure consists of two steps:

• Step 1: Generating the optimal curve B(t) in the ambient manifold
GA+(3) that satisfies the boundary conditions, and

• Step 2: Projecting B(t) from step 1 onto A(t) ∈ SE(3).

Because the metric we defined on GA+(3) is the same at all points, the
corresponding Christoffel symbols are all zero. Consequently, the optimal
curves in the ambient manifold assume simple analytical forms. For example,
geodesics are straight lines, minimum acceleration curves are cubic polyno-
mial curves, and minimum jerk curves are fifth-order polynomial curves in
GA+(3), all parameterized by time. Therefore, in step 1 the following curve
is constructed in GA+(3):

B(t) = B0 + B1t + . . . + B2m−1t
2m−1,

where the coefficients Bi i = 1, . . . , 2m−1 are linear functions Γi of the input
data:

Bi = Γi

(
A(0), A(1), Ȧ(0), Ȧ(1), . . . , A(m)(0), A(m)(1)

)
.

Step 2 consists of a singular value decomposition (SVD) decomposition
weighted by the matrix W as described in Proposition 4 to produce the curve
A(t). Using the linearity of Γi and Proposition 5, we can prove:

Proposition 6. The projection method on SE(3) is left invariant, i.e., the
generated trajectories are independent of the choice of the inertial frame {F}.

Because of the linearity on the boundary conditions of the curve in the
ambient manifold, the first step is always bi-invariant, i.e., invariant to ar-
bitrary displacements in both the inertial frame {F} and the body frame
{M}. The invariance properties of the overall method are, therefore, dictated
by the second step. According to Proposition 5, the procedure is bi-invariant
with respect only to rotations of {F} in the particular case of W = αI. In the
most general case, i.e., for arbitrary choices of W , the method is left invariant
to arbitrary displacements of the inertial frame.

21.3.5 Geodesics and Minimum Acceleration Curves

Consider a rigid body with inertial properties described by inertia matrix G
(in a frame placed at the centroid) and mass m. As shown in Sect. 21.2.4, the
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kinetic energy of the body can be written in terms of a product metric given in
Eq. (21.15). Given two boundary conditions for the pose A(0) = (R(0), d(0))
at t = 0 and A(1) = (R(1), d(1)) at t = 1, the translational part of the geodesic
interpolant is simply the linear interpolant. The rotational part is constructed
by numerically solving a boundary value problem consisting of end values R(0)
and R(1) and the system of differential equations (21.17) augmented by the
expressions of the time derivatives of some chosen coordinates on SO(3) (ex-
ponential coordinates, Euler angles, quaternions) [3]. The relaxation or the
shooting method are among the most popular [26]. For G = αI, the interpo-
lating minimum acceleration curve for the same position end conditions and
velocity boundary conditions Ṙ(0), ḋ(0), Ṙ(1), ḋ(1) has a cubic translational
part. The interpolating rotation can be found by solving a boundary value
problem consisting of R(0), Ṙ(0), R(1), Ṙ(1) and 12 differential equations:
Eq. (21.24) and the derivatives of the parameterization.

If the projection method described above is used, an approximate geodesic
for the metric given in Eq. (21.15) and the same boundary conditions is given
by

d(t) = d(0) + (d(1)− d(0))t, R(t) = U(t)V T(t),

with U and V determined from the weighted SVD

M(t)W = U(t)Σ(t)V T(t),

where
M(t) = R(0) + (R(1)−R(0))t, W =

1
2
Tr(G)I3 −G.

Similarly, an approximate minimum acceleration curve can be constructed as

d(t) = d0 + d1t + d2t
2 + d3t

3, R(t) = U(t)V T(t),

where

d0 = d(0), d1 = ḋ(0), d2 = −3d(0) + 3d(1)− 2ḋ(0)− ḋ(1),

d3 = 2d(0)− 2d(1) + ḋ(0) + ḋ(1),

M(t) = M0 + M1t + M2t
2 + M3t

3,

M0 = R(0), M1 = Ṙ(0), M2 = −3R(0) + 3R(1)− 2Ṙ(0)− Ṙ(1),

M3 = 2R(0)− 2R(1) + Ṙ(0) + Ṙ(1)

For geodesics on SO(3) with Euclidean metric, we prove [4] that the pro-
jection of the geodesic from GL+(3) and the true geodesic on SO(3) follow
the same path but with different parameterizations. However, one can repa-
rameterize the geodesic from GL+(3) so that it projects to the exact geodesic
on SO(3). We also show that uniqueness of projected geodesics and mini-
mum acceleration curves is guaranteed under reasonable assumptions on the
amount of rotation and the magnitude of the end velocities. In [3], we show
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that, from a computational point of view, it is much less expensive to ge-
nerate interpolating motion using the projection method as opposed to the
relaxation method. Specifically, if M is the number of uniformly distributed
time points in [0, 1], then the number of flops required by the projection
method in GL+(n) is of order O(n3M). On the other hand, the number of
flops required by the relaxation method for generating solution at M mesh
points of a system of N differential equations with boundary conditions is of
order O(M3N3). For example, generating geodesics on SO(3) at M = 100
time points involves millions of flops by the relaxation method, while only
thousands by the projection method.

21.3.6 Simulation Results

In this section, we generate motion for a homogeneous parallelepipedic rigid
body We assume that the body frame {M} is placed at the center of mass
and aligned with the principal axes of the body. Let a, b, and c be the lengths
of the body along its x, y, and z axes respectively, and m the mass of the
body. For visualization, a small square is drawn on one of its faces and the
center of the parallelepiped is shown starred.

The matrix G of metric <,>SO is given by

G =

⎡⎣ m
24 (b2 + c2) 0 0

0 m
24 (a2 + c2) 0

0 0 m
24 (a2 + b2)

⎤⎦ . (21.33)

True and projected minimum acceleration motions for a cubic rigid body
with a = b = c = 2 and m = 12 are given in Fig. 21.2 for comparison. Note
that for this case G = αI with α = 4. Geodesics for the same boundary
conditions and a parallelepipedic body with a = c = 2, b = 10 and m = 12
are given in Fig. 21.3.

As seen in Figs. 21.2 and 21.3, even though the total displacement between
the initial and final positions on SO(3) is large (rotation angle of π

√
14/6),

there is no noticeable difference between the true and the projected motions.

21.4 Optimal Motion Generation for Groups of Robots

This section presents a method for generating smooth trajectories for a set
of mobile robots satisfying constraints on relative positions. It is shown that,
given two end configurations of the set of robots, by tuning one parameter,
the user can choose an interpolating trajectory from a continuum of curves
varying from the trajectory corresponding to maintaining a rigid formation to
trajectories that allow the formation to change and the robots to reconfigure
while moving.
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Fig. 21.2. a,b. Minimum acceleration motion for a cube in free space: a relaxation
method, b projection method
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Fig. 21.3. a,b. Geodesics for a parallelepipedic body: a relaxation method, b pro-
jection method

21.4.1 Problem Statement and Notation

Consider N robots moving (rotating and translating) in 3D space with respect
to an inertial frame {F}. We choose a reference point on each robot at its
center of mass Oi. A moving frame {Mi} is attached to each robot at Oi (see
Fig. 21.4).

Robot i has mass mi and matrix of inertia Hi with respect to frame {Mi}.
Let Ri ∈ SO(3) denote the rotation of {Mi} in {F} and qi ∈ IR3 the position
vector of Oi in {F}. Let ωi denote the expression in {Mi} of the angular
velocity of {Mi} with respect to {F}. The formation is defined by the reference
points Oi. The moving formation is called rigid if the relative distance between
any of the points Oi is maintained constant. Sometimes it is also useful to
define a formation frame {M}, attached at some virtual point O′ and with
pose (R, d) ∈ SE(3) in {F}. Let q0

i denote the position vectors of Oi in {M}.
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Fig. 21.4. A set of N = 3 robots

The configuration space is the 6N -dimensional manifold, SE(3)×, . . . ,
×SE(3), given by the poses of each robot. Given two configurations at times
t = 0 and t = 1 respectively, the goal is to generate smooth interpolating
motion for each robot so that the total kinetic energy is minimized.

The kinetic energy T of the system of robots is the sum of the individual
energies. Since the frames {Mi} were placed at the centroids Oi of the robots,
T can be written as the sum of the total rotational energy Tr and the total
translational energy Tt in the form:

T = Tr + Tt, Tr =
1
2

N∑
i=1

(ωT
i Hiωi), Tt =

1
2

N∑
i=1

(miq̇
T
i q̇i). (21.34)

Since our definition of a formation only involves the reference points Oi, a
formation requirement will only constrain the qi’s from the above equation.
Therefore, as a result of the decomposition in Eq. (21.34), minimizing the total
energy is equivalent to solving N + 1 independent optimization subproblems:

min
σi

∫ 1

0

ωT
iHiωidt, i = 1, . . . , N, (21.35)

min
qi=1,...,N

∫ 1

0

Ttdt (21.36)

where σi is some parameterization of the rotation of {Mi} in {F}, i.e., some
local coordinates on SO(3). The solutions to Eq. (21.35) are given by N
geodesics on SO(3) with left-invariant metrics with matrices Hi. A relaxation
method [26] or the projection method described in Section 21.3 can be used
to generate the solution. An example is given in Sect. 21.4.4.

The main focus in this section is solving the problem given by Eq. (21.36)
while satisfying constraints on the positions of the reference points Oi that
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may be imposed by the requirements on the task. Thus the configuration space
we are interested in is just the 3N -dimensional Q = {q|q = (q1, . . . , qN )} that
collects all the position vectors of the chosen reference points. Maintaining a
rigid formation (a virtual structure) imposes constraints on the configuration
space, Q, and these constraints may be relaxed as necessary.

21.4.2 The Rigidity Constraint: Virtual Structures

The group of N robots is said to form a virtual structure if the relative dis-
tance between any of the reference points Oi is maintained constant. Let
q = [qT1, . . . , q

T
N ]T denote an arbitrary point in Q. For an arbitrary pair of

reference points with position vectors qi and qj , i, j = 1, . . . , N , i < j, the
constraints can be written as:

(qi − qj)T(qi − qj) = constant, (21.37)

or, by differentiation:

(qi − qj)Tq̇i − (qi − qj)Tq̇j = 0.

By lifting this constraint to the configuration manifold Q, the coordinates of
the corresponding differential one form can be written as a 1×3N row vector:

ωij =
[
0 . . . 0 (qi − qj)T 0 . . . 0 −(qi − qj)T 0 . . . 0

]
.

The nonzero 1× 3 blocks in the above matrix are in positions i and j, respec-
tively. If we consider all (N − 1)N/2 possible constraints, we can construct
the codistribution ωR as the span of all the corresponding covectors:

ωR = span {ωij , i, j = 1, . . . , N, i < n} .

It is obvious that not all the (N − 1)N/2 covectors (constraints) are in-
dependent. To insure rigidity, it is necessary and sufficient to impose 2N − 3
constraints of the type (21.37) in plane, while in 3D the number is 3N − 6.
By simple inspection, it is easy to prove that the annihilating distribution of
ωR (ωR(∆R) = 0) is:

∆R = Range(A(q)), A(q) =

⎡⎣ −q̂1 I3
. . . . . .
−q̂N I3

⎤⎦ . (21.38)

Therefore, by lifting each constraint to the configuration manifold Q, the
virtual structure (rigidity) constraint can be written as

q̇ ∈ ∆R(q). (21.39)

If qi are not all contained in any proper hyperplane of IRd (d = 2, 3), it can
be proved [27] that the distribution ∆R is regular, and, therefore integrable,
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since involutivity is always guaranteed. The distribution ∆R(q) determines a
foliation of Q with leaves given by orbits of SE(3). Indeed, assume q(0) = q0

and q̇(0) ∈ ∆R(q0). Then, the rigidity constraint in Eq. (21.39) is satisfied for
all t ≥ 0 if and only if

qi(t) = d(t) + R(t)q0
i , i = 1, . . . , N, (21.40)

where (R(t), d(t)) is a trajectory of the left-invariant control system

ġ(t) = gS (21.41)

starting from R(0) = I3, d(0) = 0.
Note that, under the rigidity assumption in Eq. (21.39), the coordinates

r of the expansion of q̇ ∈ ∆R(q) along the columns of A(q), i.e., q̇ = A(q)r,
are exactly the components of the left-invariant twist of a virtual structure
formed by (q1, . . . , qN ) and {F} at that instant.

Also, if Eq. (21.39) is satisfied, then s from Eq. (21.41) is the left-invariant
twist of a moving rigid structure formed by (q0

1 , . . . , q
0
N ) and {M} and for

which the mobile frame {M} was coincident with {F} at t = 0. The pose of
the moving frame {M} in {F} is g = (R, d). Moreover, we have

q̇i = R[−q̂0
i I]s. (21.42)

It follows that motion planning (control) problems for a set of N robots in
3D required to maintain a rigid formation can be reduced to motion planning
(control) problems for a left-invariant control system on SE(3).

21.4.3 Motion Decomposition: Rigid vs. Nonrigid

We first define a metric <,> in the position configuration space, which is the
same at all points q ∈ Q:

< V 1
q , V 2

q >= V 1
q
T
MV 2

q , (21.43)

Vq = q̇ ∈ TqQ, M =
1
2
diag{m1I3, . . . ,mNI3}.

Metric (21.43) is called the kinetic energy metric because its induced norm
(V 1

q = V 2
q = q̇) assumes the familiar expression of the kinetic energy of the

system 1/2
∑N

i=1 miq̇
T
i q̇i. If no restrictions are imposed on Q, the geodesic

between q(0) = q0 and q(1) = q1 for metric (21.43) is obviously a straight line
uniformly parameterized in time interpolating between q0 and q1 in Q.

At each point q in the configuration space Q, ∆R(q) locally describes the
set of all rigid body motion directions. The orthogonal complement to ∆R(q),
∆NR(q), will be the set of all directions violating the rigid body constraints. 3

3 In [6], the tangent space at q to the orbit of SE(3) is called the vertical space at
q, Verq , and its orthogonal complement is the horizontal space at q ∈ Q, Horq.
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For an arbitrary tangent vector Vq ∈ TqQ, let RVq denote the projection onto
∆R and NRVq denote the projection onto ∆NR.

Using the metric in Eq. (21.43), the orthogonal complement of the “rigid”
distribution ∆R(q) is the “nonrigid” distribution

∆NR(q) = Null(A(q)TM). (21.44)

Let B(q) denote a matrix whose columns are a basis of ∆NR(q).
Let ψ denote the components of the projection in this basis: NRVq =

B(q)ψ. Therefore, the velocity at point q can be written as:

Vq = RVq + NRVq = A(q)r + B(q)ψ. (21.45)

Then, for any V 1
q , V 2

q ∈ TqQ, we have:

< V 1
q , V 2

q >= V 1
q
T
MV 2

q =< NRV 1
q ,NRV 2

q > + < RV 1
q ,RV 2

q >

because both ATMB and BTMA are zero from Eq. (21.44). Also, note that

r = (ATMA)−1ATMV, ψ = (BTMB)−1BTMV, (21.46)

where the explicit dependence of A and B on q was omitted for simplicity.
Therefore, the translational kinetic energy (which is the square of the norm
induced by metric (21.43)) becomes:

Tt(q, q̇) = q̇TMq̇ = rTATMAr + ψTBTMBψ. (21.47)

In (21.47), rTATMAr captures the energy of the motion of the system of
particles as a rigid body, while the remaining part ψTBTMBψ is the energy
of the motion that violates the rigid body restrictions. For example, in the
obvious case of a system of N = 2 particles, the first part corresponds to the
motion of the two particles connected by a rigid massless rod, while the second
part would correspond to motion along the line connecting the two bodies.

21.4.4 Motion Generation for Rigid Formations

In this section, we will assume that the robots are required to move in rigid
formation, i.e., the distances between any two reference points Oi are pre-
served, or, equivalently, the reference points form a rigid polyhedron.

In our geometric framework, the rigid body requirement means restricting
the trajectory q(t) ∈ Q to be a SE(3)-orbit, or equivalently, NRq̇ = 0 or
q̇ ∈ ∆R(q), for all q.

In this case, one can imagine a body frame {M} moving with the virtual
structure determined by the Oi’s. Initially (t = 0), the frame {M} is coincident
with {F} and q(0) = q0. The position vector of Oi in {M} is constant during
this motion and equal to q0

i .
Using Eq. (21.42), the kinetic energy Tt becomes:
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Tt = sTMs, M = A(q0)TMA(q0), (21.48)

where s ∈ se(3) is the instantaneous twist of the virtual structure.
Therefore, if the set of robots is required to move while maintaining a

constant shape q0, the optimization problem is reduced from dimension 6N
to dimension 3N + 6, and consists of solving for N geodesics on SO(3) with
metrics Hi (individual rotations) and one geodesic on the SE(3) of the virtual
structure with left invariant metricM as in Eq. (21.48).

4.4.1 Example: Five Identical Robots in 3D Space

For illustration, we consider five identical parallelepipedic robots with dimen-
sions a, b, c and masses mi = m, i = 1, . . . , 5 required to move in formation
while minimizing energy. The virtual structure is a pyramid with a square base
of side l and height h. The body frames and the formation frame are placed
at the center of mass and aligned with the principal axis. As outlined in the
previous section, generating optimal motion for this group of robots reduces
to generating five geodesics on the SO(3) of each robot with left-invariant
metric Hi = G as in Eq. (21.33), i = 1, . . . , 5 and one geodesic on the SE(3)
of the virtual structure endowed with a left-invariant metric with matrix

G̃ =
m

2

⎡⎢⎢⎣
2l2 0 0 0
0 l2 + 4h2

3 0 0
0 0 l2 + 4h2

3 0
0 0 0 3I3

⎤⎥⎥⎦
The resulting motion is presented in Fig. 21.5 for numerical values a = c = 2,
b = 10, m = 12, h = 20, and l = 10. The projection method presented in Sect.
21.3 was used to generate the interpolating motions.

21.4.5 Motion Generation by Kinetic Energy Shaping

By shaping the kinetic energy , we mean smoothly changing the corresponding
metric (21.43) at TqQ so that motion along some specific directions is allowed
while motion along some other directions is penalized. The new metric will no
longer be constant: the Christoffel symbols of the corresponding symmetric
connection will be nonzero. The associated geodesic flow gives optimal motion.

In this work, the original metric (21.43) is shaped by putting different
weights on the terms corresponding to the rigid and nonrigid motions:

< V 1
q , V 2

q >α= α < NRV 1
q ,NRV 2

q > +(1− α) < RV 1
q ,RV 2

q > . (21.49)

Using Eq. (21.46) to go back to the original coordinates, we get the modified
metric in the form:

< V 1
q , V 2

q >α= V 1
q
T
Mα(q)V 2

q , (21.50)
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Fig. 21.5. Optimal motion for five identical robots required to maintain a rigid
formation

where the new matrix of the metric is now dependent on the artificially intro-
duced parameter α and the point on the manifold q ∈ Q:

Mα(q) = αMA(ATMA)−TATM + (1− α)MB(BTMB)−TBTM. (21.51)

The influence of the parameter α can be best seen by examining the signi-
ficance of α taking on the values of 0, 0.5, and 1. As α tends to 0, the preferred
motions will be ones where robots cluster together through much of the dura-
tion of the trajectory, thus minimizing the rigid body energy consumption. As
α approaches 0.5, the motions degenerate toward uncoordinated, independent
motions. As α tends to 1, the preferred motions are ones where the robots
stay in rigid formation through most of the trajectory, thus minimizing the
energy associated with deforming the formation.

We use the geodesic flow of metric (21.50) to produce smooth interpolating
motion between two given configurations:

q0 = q(0), q1 = q(1) ∈ IR3N . (21.52)

To simplify the notation, let xi, i = 1, . . . , 3N denote the coordinates qi ∈ IR3,
i = 1, . . . , N on the configuration manifold Q. In this coordinates, the geodesic
flow is described by the following differential equations [11]:

ẍi +
∑
j,k

Γ i
jkẋj ẋk = 0, i = 1, . . . , 3N, (21.53)

where Γ k
ij are the Christoffel symbols of the unique symmetric connection

associated to metric (21.50):
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Γ k
ij =

1
2

∑
h

(
∂mhj

∂xi
+

∂mih

∂xj
− ∂mij

∂xh

)
mhk, (21.54)

for mij and mij elements of Mα and M−1
α , respectively.

Because α = 0 and α = 1 make the metric singular, Eq. (21.54) can only
be used for 0 < α < 1.

4.5.1 Example: Two Bodies in Plane

Consider two bodies of masses m1 and m2 moving in the x-y plane. The
configuration space is Q = R4 with coordinates q = [x1, y1, x2, y2]T. The A
and B matrices describing ∆R(q) and ∆NR(q) as in Eqns. (21.38) and (21.44)
are:

A =

⎡⎢⎢⎣
−y1 1 0
x1 0 1
−y2 1 0
x2 0 1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
m2(x2−x1)
m1(y1−y2)

−m2
m1

x1−x2
y1−y2

1

⎤⎥⎥⎥⎦ .

The 64 Christoffel symbols Γ k = (Γ k
ij)ij of the connection associated with the

modified metric at q ∈ Q become:

Γ 1 =
2(1− 2α)

α

m2

m1 + m2

dx

(d2
x + d2

y)2
Γ,

Γ 2 =
2(1− 2α)

α

m2

m1 + m2

dy

(d2
x + d2

y)2
Γ,

Γ 3 = −2(1− 2α)
α

m1

m1 + m2

dx

(d2
x + d2

y)2
Γ,

Γ 4 = −2(1− 2α)
α

m1

m1 + m2

dy

(d2
x + d2

y)2
Γ,

where

Γ =

⎡⎢⎢⎣
−d2

y dxdy d2
y −dxdy

dxdy −d2
x −dxdy d2

x

d2
y −dxdy −d2

y dxdy

−dxdy d2
x dxdy −d2

x

⎤⎥⎥⎦ ,

and dx = x1 − x2, dy = y1 − y2. It can be easily seen that, as expected, all
Christoffel symbols are zero if α = 0.5. Also, the actual masses of the robots
are not relevant, only the ratio m1/m2 is important.

In this example, we assume m2 = 2m1 and the boundary conditions:

q0 =

⎡⎢⎢⎣
1
0
−0.5

0

⎤⎥⎥⎦ , q1 =

⎡⎢⎢⎢⎣
3−

√
2

2

−
√

2
2

3 +
√

2
4√

2
4

⎤⎥⎥⎥⎦ ,
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which correspond to a rigid body displacement so that we can compare our
results to the optimal motion corresponding to a rigid body.
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Fig. 21.6. Three interpolating motions for a set of two planar robots as geodesics
of a modified metric defined in the configuration space

If the structure was assumed rigid, then the optimal motion is described by
uniform rectilinear translation of the center of mass between (0, 0) and (3, 0)
and uniform rotation between 0 and 3π/4 around −z placed at the center of
mass. The corresponding trajectories of the robots are drawn in solid line in
all the pictures in Fig. 21.6. It can be easily seen that there is no difference
between the optimal motion of the virtual structure solved on SE(2) and
the geodesic flow of the modified metric with α = 0.99 (Fig. 21.6, right). If
α = 0.5, all bodies move in straight line as expected (Fig. 21.6, middle). For
α = 0.2, the bodies go toward each other first, and then split apart to attain
the final positions (Fig. 21.6, left).

4.5.2 Example: Three Bodies in Plane
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Fig. 21.7. Three interpolating motions for a set of three planar robots as geodesics
of a modified metric defined in the configuration space

The calculation of the trajectories for three bodies moving in the plane
is simplified by assuming that the robots are identical, and, without loss of
generality, we assume m1 = m2 = m3 = 1. The rigid and the nonrigid spaces
at a generic configuration
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q = [x1, y1, x2, y2, x3, y3]T ∈ Q = IR6

are given by

∆R = Range(A), A =

⎡⎢⎢⎢⎢⎢⎢⎣
−y1 1 0
x1 0 1
−y2 1 0
x2 0 1
−y3 1 0
x3 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

∆NR = Range(B), B =

⎡⎢⎢⎢⎢⎢⎢⎣

x3−x1
y1−y2

y2−y3
y1−y2

x2−x1
y1−y2

−1 0 −1
x1−x3
y1−y2

y3−y1
y1−y2

x1−x2
y1−y2

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

For simplicity, we omit the expressions of the modified metric and of the
Christoffel symbols. The simulation scenario resembles the one in Sect. 21.4.5:
the end poses correspond to a rigid structure consisting of an equilateral tri-
angle with sides equal to 1. The optimal trajectory solved on SE(2) corre-
sponds to rectilinear uniform motion of the center of mass (line between (0,0)
and (3,0) in Fig. 21.7) and uniform rotation from angle 0 to 3π/4 around
axis −z. The resulting motion of each robot is shown solid, while the actual
trajectory for the corresponding value of α is shown dashed. First note for
α = 0.99 the trajectories are basically identical with the optimal traces pro-
duced by the virtual structure, as expected. In the case α = 0.5 the bodies
move in straight line (corresponding to the unmodified metric). The tendency
to cluster as α decreases is seen for α = 0.2. Note also that because of our
choice m1 = m2 = m3, the geometry of the equilateral triangle is preserved
for all values of α, it only scales down when α decreases from 1.

21.5 Conclusion

In this chapter, we survey the problem of generating interpolating motion for
groups of robots required to maintain a rigid formation, or virtual structure.
Since energy consumption is an important issue, especially for deep space
formations, motion planning for virtual structures is often accomplished by
posing the problem as an optimization problem. For example, satellite for-
mation reconfiguration demands a fuel-optimal trajectory to preserve mission
life and is constrained by the limited thrust available. Also, it is desired that
the generated trajectories be independent of a chosen reference frame.

Virtual structures, as rigid bodies, evolve on the Lie group of all transla-
tions and orientations in 3D, SE(3). The first part of this chapter is concerned
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with optimally interpolating trajectories on SE(3). The second part investi-
gates the rigidity constraint for a team of robots and shows how individual
motion plans can be constructed so that the overall energy of the formation is
minimized. The methodology and results are organized around two main is-
sues: optimality and invariance of the generated trajectories. The price one has
to pay to achieve these is, of course, a large amount of computation. We expect
that these methods will only find applications in areas where the number of
agents is small and fuel consumption is critical, as in satellite reconfiguration.

When a large number of agents is required to be coordinated and con-
trolled, some level of abstraction is necessary, dependent on the imposed task.
The virtual structure approach, which can be seen as an abstraction, is not
appropriate in many applications, including passing of a tunnel and obsta-
cle avoidance. Preliminary results on developing a general control method for
large groups of inexpensive agents based on abstractions are presented in [5].
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