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ABSTRACT
Motivation: A phenotype mechanism is classically derived through
the study of a set of mutants and comparison of their biochemical
capabilities. One method of comparing mutant capabilities is to charac-
terize producible and knocked out metabolites. However such an effect
is difficult to manually assess, especially for a large biochemical net-
work and a complex media. Current algorithmic approaches towards
analyzing metabolic networks either do not address this specific
property or are computationally infeasible on the genome-scale.
Results: We have developed a novel genome-scale computational
approach that identifies the full set of biochemical species that are
knocked out from the metabolome following a gene deletion. Results
from this approach are combined with data from in vivo mutant screens
to examine the essentiality of metabolite production for a pheno-
type. This approach can also be a useful tool for metabolic network
annotation validation and refinement in newly sequenced organisms.
Combining an in silico genome-scale model of Escherichia coli meta-
bolism with in vivo survival data, we uncover possible essential roles
for several cell membranes, cell walls, and quinone species. We also
identify specific biomass components whose production appears to
be non-essential for survival, contrary to the assumptions of previous
models.
Availability: Programs are available upon request from the authors in
the form of Matlab script files.
Contact: imielns@mail.med.upenn.edu
Supplementary information: http://www.cis.upenn.edu/biocomp/
manuscripts/bioinformatics_bti245/supp-info.html

1 INTRODUCTION
Recent years have witnessed the sequencing and annotation of over
100 microbial genomes and the development of techniques that allow
high throughput mapping of genotypes to phenotypes (Bernal et al.,
2001; Bochner, 2003). Interpretation of this data is best approached
through a formal framework that facilitates building of hypotheses
on a systems-level scale (Karp, 2001). A genome-scale metabolic
model serves such a purpose, providing a general description of the
current state of knowledge regarding the genetics and biochemistry
of metabolism in an organism (Covert et al., 2001). Analysis of such
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a model may yield predictions regarding in vivo cellular behaviors
and insight into the complex relationship between cell components
and systems-level cellular phenotypes.

One fundamental question we may ask regarding the capabilities
of a metabolic network is whether it contains the reactions necessary
to form a product from a given set of media substrates (Schuster et al.,
2000). Though for small networks this question may be answered by
manual inspection, such an approach is impractical for large net-
works. Alternatively, an algorithmic search for the existence of a
path using graph analysis is misleading since most paths in a graph
representation of a metabolic network are not in fact biochemical
pathways (Arita, 2004). Another approach may be to consult descrip-
tions of biosynthetic pathways in textbooks or databases; however,
these manual annotations typically do not encompass the full set of
pathways that are valid in a large network. The latter may be com-
prehensively revealed through algorithmic enumeration approaches
such as extreme pathway or elementary flux mode analyses (Schilling
et al., 1999b; Schuster et al., 2000). Unfortunately due to their signi-
ficant computational complexity these methods are difficult to apply
to genome-scale metabolic models (Schilling et al., 2000b,c; Papin
et al., 2003, 2004).

In this paper we propose a simple mathematical criterion for
determining metabolite producibility, which we define as the ability
of a metabolic network to sustain the production of a chemical spe-
cies given a media and a genotype. Using the stoichiometry matrix
and flux constraints, we apply this criterion to each species in the
metabolome to generate the producible set of metabolites for a given
media and genotype combination. Comparison of producible meta-
bolite sets between mutant and wild-type in silico strains reveals the
set of metabolite knockouts resulting from a gene deletion. Com-
pilation of these results for a large set of mutants yields a gene to
metabolite knockout map.

Given these in silico predictions, we can employ in vivo data to
investigate the essentiality of individual metabolites for a phenotype.
An essential role for a metabolite in a phenotype is suggested if the
knockout of the metabolite correlates consistently with the abolish-
ment of the phenotype. Conversely, a metabolite is non-essential for
a phenotype if the phenotype persists despite the knockout of that
metabolite. Using our method, the existence of a metabolite knockout
can be predicted from the in silico analysis of a genome-scale meta-
bolic model for a mutant. Such predictions can be used as a means
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Characterizing metabolite essentiality

of comparing the metabolic capabilities of in vivo strains that differ
in a phenotype. These results can then be used to suggest meta-
bolites that are essential and non-essential for a phenotype. These
essentiality characterizations can be evaluated for consistency with
previous biological understanding and used to formulate novel mech-
anisms for cell-level phenotypes. This approach can be an especially
useful application of genome-scale metabolic modeling towards the
interpretation of results from a large-scale genotype to phenotype
screen.

We demonstrate an application of this method toward furthering
the understanding of Escherichia coli survival in the context of a
recent genome-scale metabolic model. Analyzing the production
capabilities of a large set of mutants, we are able to generate hypo-
theses regarding the essentiality of metabolites for survival. We also
demonstrate how our producibility results can be used to reveal spe-
cific inconsistencies between the metabolic network annotation and
the biomass model of survival.

2 METHODS AND IMPLEMENTATION

2.1 Mathematical formulation
2.1.1 Metabolic network representation We represent a metabolic
network of n metabolites and m reactions in an n × m stoichiometry matrix
S (Clarke, 1988; Heinrich et al., 1996). We use x to represent the vector
of species concentrations and v to represent the vector of fluxes through all
reactions in the system. We represent reversible reactions as two irreversible
reactions in S and restrict all fluxes to be non-negative. Reactions are further
constrained to be inactive or active by a vector of upper bounds u which is
computed using the genotype and media composition.

In our formalism, the columns of S correspond to all known reactions of
small molecule biochemistry occurring inside the cell, including transport
and core metabolism. It does not include macromolecular processes such as
protein synthesis, DNA replication and lipid synthesis or the dilution flux
brought about by cell division.

2.1.2 Quasi-steady state assumption In the cell, the rate of change
of each metabolite concentration ẋi is determined by two factors: production
from the metabolic network Siv (where Si corresponds to the i-th row of S)
and consumption by other cellular processes ci . Formally, ẋ = Sv−c, where
c represents the concentration rate vector corresponding to consumption of
intracellular metabolites by cellular processes outside of metabolism.

Metabolic reactions are known to occur at a rapid rate with respect to
slower environmental changes, cell division and transcriptional regulation.
As a result, when modeling on slower time scales, one can assume intra-
cellular metabolite concentrations to be at steady state. According to this
assumption, the flux vector v will obey the following set of linear equalities
and inequalities:

Sv − c = 0, 0 ≤ v ≤ u (1)

Since certain metabolites may be produced in net by macromolecular and
other cellular processes, certain components of c may be potentially negative.
(Note that in our formulation, a negative value for a component ci represents
‘negative consumption’ or production of a metabolite by other cellular pro-
cesses.) For example, during a catabolic state, there may be net production of
amino acids by proteolytic processes. However, given biologically reasonable
assumptions regarding the physiology of a given cellular state, we can identify
the portion of our system corresponding to metabolite indices P ⊆ {1, . . . , n}
that does not contain sources outside of the metabolic network, i.e. for which
ci ≥ 0.

In particular, during growth, intracellular metabolites such as amino acids
and deoxyribonucleotides undergo net consumption by macromolecular pro-
cesses which form proteins and DNA. Additionally, the diluting effect of cell
division acts as a sink for all metabolites present at a non-zero intracellu-
lar concentration. Thus, it is biologically reasonable to assume that during

the anabolic state of growth most components of c are constrained to values
≥0, i.e. they do not possess sources outside of small molecule metabolism.
The few exceptions may be protein species that serve carrier roles in meta-
bolic reactions (e.g. acyl carrier protein, thioredoxin) and are products of
macromolecular processes. We can further restrict v to obey the following
constraints:

Sv = c, 0 ≤ v ≤ u, cp ≥ 0, p ∈ P . (2)

2.1.3 Producibility and knockout criteria Given these constraints,
we would like to test the ability of the metabolic network to catalyze the net
production of a metabolite i. We refer to this property as the producibility
of metabolite i. Formally, we test the existence of a flux configuration v

satisfying:
0 ≤ v ≤ u, Siv > 0, Spv ≥ 0, p ∈ P , (3)

where Si represents the i-th row of S.
Producibility can be interpreted as a statement regarding the ability of

the metabolic network to meet a consumption demand by cellular processes
outside of metabolism. Since producibility only refers to the feasibility of a
particular network behavior, the most informative result is when this condi-
tion fails. For example, if a metabolite i is not producible, we can positively
assert that there exists no feasible flux configuration that would meet a pos-
itive consumption demand for that metabolite [i.e. the set of v satisfying
ci > 0 and Equation (2) would be empty]; in particular, the setting of growth
institutes such a consumption demand for each intracellular metabolite due
to the diluting effect of cellular volume expansion. Non-producibility in this
setting asserts that a non-zero intracellular concentration of the correspond-
ing metabolite is unsustainable at steady state, given the assumptions of the
model.

One effect of a gene deletion is to disable synthetic pathways that lead to
the production of a metabolite. This results in infeasibility of production in the
mutant for a metabolite that was producible in the wild-type. In this manner,
we can demonstrate the existence of a metabolite knockout following an in
silico gene deletion. Applying the producibility criteria to each metabolite for
the mutant and wild-type strains allows the association of a gene knockout
with a set of metabolite knockouts, resulting in a metabolite knockout profile
for a mutant and a gene to metabolite knockout map for a set of mutants.

2.2 Implementation
2.2.1 Genome-scale metabolic model Reaction information from the
published genome-scale metabolic model of E.coli iJR904 was used to con-
struct a 618×1176 stoichiometry matrix (Reed et al., 2003). Flux constraints
were computed using genotype, reaction reversibility and nutrient media
composition information. Given a genotype, reactions were labeled active
or inactive according to the gene-protein-reaction (GPR) association file,
kindly provided by B. Palsson. Inactive reactions were modeled by con-
straining the corresponding flux to zero. Transport reactions were additionally
labeled inactive if the corresponding extracellular metabolite was not present
in the media. However, when modeling rich media, we assumed the availab-
ility of all known extracellular metabolites. Abbreviations and full names of
metabolites mentioned in this study are listed in Table 1.

2.2.2 Producibility algorithm The producibility of each intracellular
metabolite in each in silico strain was tested by implementing the above
flux constraints for each media and genotype combination and checking the
existence of a v satisfying Equation (3) using the Matlab optimization toolbox
(Mathworks). The set of metabolites corresponding to P in Equation (3) is
provided as Supplementary Data. Producible metabolite sets in the wild-type
and 895 single-gene mutant strains were compared to generate metabolite
knockout profiles. The latter were compiled into a sparse matrix, subsets of
which were chosen for visualization.

2.2.3 In vivo data Essential gene data for mutants were obtained from
the Profiling of E.coli Chromosome (PEC) database (http://www.shigen.nig.
ac.jp/ecoli/pec/index.jsp), which annotates E.coli genes as essential or non-
essential according to evidence from the literature. Genes characterized
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Table 1. Full names of metabolites whose abbreviations are used in this study

Abbreviation Full name

12dgr 1,2-Diacylglycerol (E.coli)
2dmmq8 2-Demethylmenaquinone 8
2dmmql8 2-Demethylmenaquinol 8
2me4p 2-C-methyl-d-erythritol 4-phosphate
2mecdp 2-C-methyl-d-erythritol 2,4-cyclodiphosphate
2ombzl 2-Octaprenyl-6-methoxy-1,4-benzoquinol
2omhmbl 2-Octaprenyl-3-methyl-5-hydroxy-6-methoxy-

1,4-benzoquinol
2ommbl 2-Octaprenyl3-methyl-6-methoxy-1,4-

benzoquinol
2omph 2-Octaprenyl-6-methoxyphenol
3hmrsACP R-3-Hydroxy-myristoyl-ACP
5mthf 5-Methyltetrahydrofolate
accoa Acetyl-CoA
acgam1p N-Acetyl-d-glucosamine 1-phosphate
actACP Acetoacetyl-ACP
adp ADP
agpg Acyl-glycerophosphoglycerol (E.coli)
amet S-Adenosyl-l-methionine
atp ATP
cdpdag1 CDPdiacylglycerol (E.coli)
clpn Cardiolipin (E.coli)
coa Coenzyme A
ctp CTP
datp dATP
db4p 3,4-Dihydroxy-2-butanone 4-phosphate
dctp dCTP
ddcaACP Dodecanoyl-ACP (n-C12:0ACP)
dgtp dGTP
dmpp Dimethylallyl diphosphate
dtdp dTDP
dttp dTTP
dxyl5p l-Deoxy-d-xylulose 5-phosphate
fad FAD
frdp Farnesyl diphosphate
gam1p d-Glucosamine l-phosphate
gdp GDP
glu-D d-Glutamate
glutrna l-Glutamyl-tRNA(Glu)
glycogen Glycogen
grdp Geranyl diphosphate
gtp GTP
h2mb4p 1-Hydroxy-2-methyl-2-(E)-butenyl

4-diphosphate
hdcea Hexadecenoate (n-C16:1)
hdeACP Hexadecenoyl-ACP (n-C16:1ACP)
hemeO Heme O
ipdp Isopentenyl diphosphate
kdo 3-Deoxy-d-manno-2-octulosonate
kdo2lipid4 KDO(2)-lipid IV(A)
kdo2lipid4L KDO(2)-lipid IV(A)
kdo2lipid4p KDO(2)-lipid IV(A)
kdo8p 3-Deoxy-d-manno-octulosonate 8-phosphate
kdolipid4 KDO-lipid IV(A)
lipa KDO(2)-lipid(A)
lipa_cold Cold adapted KDO(2)-lipid (A)

Table 1. Continued

Abbreviation Full name

lipidA 2,3-Bis(3-hydroxytetradecanoyl)-d-glucosaminyl-
1,6-beta-d-2,3-bis(3-hydroxytetradecanoyl)-beta-
d-glucosaminyl 1-phosphate

lipidAds Lipid A disaccharide
lipidX 2,3-Bis(3-hydroxytetradecanoyl)-beta-d-

glucosaminyl 1-phosphate
lps lipopolysaccharide (E.coli)
malACP Malonyl-[acyl-carrier protein]
mql8 Menaquinol 8
mqn8 Menaquinone 8
mthgxl Methylglyoxal
nad Nicotinamide adenine dinucleotide
nadh Nicotinamide adenine dinucleotide-reduced
nadp Nicotinamide adenine dinucleotide phosphate
nadph Nicotinamide adenine dinucleotide

phosphate-reduced
ocdcea Octadecencate (n-C18:1)
octeACP Octadecenoyl-ACP (n-C18:1ACP)
pa Phosphatidate (E.coli)
pap Adenosine 3′,5′-bisphosphate
pe Phosphatidylethanolamine (E.coli)
peptido Peptidoglycan subunit of E.coli
pg Phospatidylglycerol (E.coli)
pgp Phosphatidylglycerophosphate (E.coli)
prpp 5-Phospho-alpha-d-ribose 1-diphosphate
ps Phosphatidylserine (E.coli)
q8 Ubiquinone-8
q8h2 Ubiquinol-8
sucarg N2-Succinyl-l-arginine
succoa Succinyl-CoA
tdeACP Tetradecenoyl-ACP (n-C14:1ACP)
thmpp Thiamine diphosphate
ttdcea Tetradecenoate (n-C14:1)
u23ga UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine
u3aga UDP-3-O-(3-hydroxytetradecanoyl)-N-

acetylglucosamine
u3hga UDP-3-O-(3-hydroxytetradecanoyl)-d-glucosamine
uaagmda Undecaprenyl-diphospho-N-acetylmuramoyl-

(N-acetylglucosamine)-l-ala-d-glu-meso-2,
6-diaminopimelcyl-d-ala-d-ala

uagmda Undecaprenyl-diphospho-N-acetylmuramoyl-
l-alanyl-d-glutamyl-meso-2,6-diaminopimeloyl-d-
alanyl-d-alanine

uama UDP-N-acetylmuramoyl-l-alanine
uamag UDP-N-acetylmuramoyl-l-alanyl-d-glutamate
udcpdp Undecaprenyl diphosphate
udcpp Undecaprenyl phosphate
udpg UDPglucose
ugmd UDP-N-acetylmuramoyl-l-alanyl-d-gamma-

glutamyl-meso-2,6-diaminopimelate
ugmda UDP-N-acetylmuramoyl-l-alanyl-d-glutamyl-meso-

2,6-diaminopimeloyl-d-alanyl-d-alanine
unaga Undecaprenyl diphospho N-acetyl-glucosamine
utp UTP

Adapted from Reed et al. (2003).
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as essential and non-essential by the PEC were represented as lethal and
non-lethal, respectively, in our in silico rich media growth conditions. In
addition to the PEC data, we incorporated essentiality results obtained from
the genome-wide transposon mutagenesis study performed by Gerdes et al.
(2003). In the case of conflicts between the two datasets, the results from
the PEC database were used, since these were obtained from individual stud-
ies. Essential and non-essential genes obtained from the PEC and Gerdes
et al. were mapped to the iJR904 E.coli genome-scale model via Blattner
identification numbers.

2.2.4 Data mining We implemented and applied a variant of the a
priori algorithm to discover associations between the in silico results and
in vivo data (Agrawal et al., 1993). The algorithm was used to discover
combinations of metabolite knockouts that associate with mutant lethality.
Further details regarding the algorithm and implementation are provided in
the Supplementary Methods.

3 RESULTS

3.1 Wild-type production capabilities
Our analysis shows that the wild-type in silico network is capable
of sustaining the production of 558 of 618 intracellular metabolites
in rich media. The producibility classifications are provided as Sup-
plementary Results. Among the 60 metabolites not producible in the
wild-type are betaine aldehyde, 3-dehydro-l-gulonate and arbutin-6
phosphate. These species have previously been annotated as ‘dead
ends’ in the network, since they are employed as only substrate
or product in each reaction in which they participate (Reed et al.,
2003). However many species, including 8-amino-7-oxononanoate
and carnitinyl-CoA, are not producible in rich media despite par-
ticipating in multiple reactions as substrates and products. Though
these species are technically not dead ends in the network, their
non-producibility implies that they contain one or more chemical
moieties that are not supplied by a single transport flux in the model.
As a result, there exists no feasible flux configuration in the network
that catalyzes their production from the nutrients.

Since we expect these species to actually be present in the
in vivo wild-type metabolome, we interpret their non-producibility
as an aspect of incompleteness in the metabolic network annota-
tion. Therefore, we do not use these findings to impose additional
flux constraints on the network but evaluate mutant production cap-
abilities in reference to the wild-type model in its full catalytic
capacity.

3.2 Gene deletion results
Data obtained from the PEC database and Gerdes et al. pro-
vide in vivo survival results for deletions of 895 of the 904 genes
contained in the IJR904 in silico genome-scale metabolic model of
E.coli (Gerdes et al., 2003; Reed et al., 2003). Of these mutants, 80
correspond to essential genes and 815 correspond to non-essential
genes. We combined the latter in vivo data with the corresponding
in silico metabolite knockout profiles to address the essentiality of
individual metabolites for survival. The full set of gene to metabol-
ite knockout results and in vivo lethality designation is provided as
Supplementary Figure 1 and Supplementary Table 1.

3.3 Production of some biomass components appears
non-essential for rich media survival

Flux balance analysis (FBA), a major approach towards analyzing
genome-scale metabolic models, uses in silico biomass production
to simulate in vivo growth and survival (Varma et al., 1994; Schilling

et al., 1999a). In this approach, biomass production is modeled as
flux through a reaction representing the consumption of intracellular
metabolites by macromolecular processes. The feasible and optimal
values of this flux are studied in the context of various nutrient con-
ditions and genetic perturbations to generate predictions of in vivo
behavior. This approach has yielded successful predictions regard-
ing wild-type and mutant in vivo growth and survival in E.coli and
Saccharomyces cereviseae in the context of various media (Edwards
et al., 2000, 2001; Ibarra et al., 2002; Segre et al., 2002; Famili et al.,
2003; Covert et al., 2004).

A necessary condition for survival in flux balance models of E.coli
is the ability of the metabolic network to synthesize each of the
biomass components. We examined the consistency of this assertion
with in vivo survival data and our in silico knockout results. We found
that only 40 (49%) of the 81 mutants that knock out one or more
biomass metabolites are lethal in vivo. These results suggest that
either the production of these biomass metabolites is non-essential
for survival or that the metabolic network annotation is incomplete
with respect to pathways facilitating their production. A gene to
metabolite knockout map for these mutants and the corresponding
biomass metabolites are shown in Figure 1.

Examples of viable mutants which knock out one or more bio-
mass metabolites are fabF, coaA, cls, psd, glgA, glgC, rfaG,
lpxL and ribF. Biomass metabolites knocked out by deletion of
non-essential genes include glycogen, cardiolipin, succinyl- and
acetyl-coA, phosphatidylglycerol, peptidoglycan subunit of E.coli,
phosphatidylserine, phosphatidylethanolamine and LPS. Many of
the latter metabolites are components of the cell membrane and cell
wall, whose integrity is clearly essential for cell survival. However,
our results suggest that the production of some of these metabolites
is not essential for the integrity of the cell wall and cell membrane.

Deletion of the non-essential gene ndk (nucleotide diphosphate
kinase) had widespread effects on the production capabilities of the in
silico network. The set of 99 metabolites predicted by our algorithm
to be knocked out by ndk included Coenzyme A, CTP, UTP and
several deoxyribonucleotide triphosphates. Given the clear essenti-
ality of these species as substrates for energy transduction and DNA
synthesis, our results suggest that ndk deletion should be lethal. The
observed inconsistency with in vivo data suggests that there may
exist other reactions not included in the model that complement the
deficiency in the in silico mutant.

In addition to the existence of viable mutants that knock out bio-
mass metabolites, we find many lethal mutants that fail to knock out
any biomass metabolites. Knockouts of 39 of the 80 of the essential
metabolic genes fail to knock out a single biomass metabolite. Eight
of these fail to knock out a single reaction (due to the presence of
isozymes catalyzing the identical reaction), rendering these mutants
identical to the wild-type, while 11 fail to knock out any metabolites
despite knocking out one or more reactions. In addition to the above,
we find 20 lethal mutants that knock out one or more metabolites
despite not knocking out metabolites in the biomass set.

The lack of an observed in silico effect on biomass production
in these mutants stems from the existence of other pathways in the
model that are capable of complementing the lost metabolic func-
tion. Such pathways and isozymes may be potentially suppressed in
vivo via transcriptional regulation and other epigenetic mechanisms.
Though such effects are not currently accounted for in our model,
they could be implemented by applying additional flux constraints
in the manner of Covert et al. (2001). The implementation of these
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Fig. 1. Gene to metabolite knockout map representing the results of the in silico analysis for 81 single gene deletion mutants that knock out one or more
biomass metabolites in rich media. The presence of a square in row i and column j represents the knockout of metabolite i by the gene deletion j . Only biomass
metabolites knocked out by one or more gene deletions are included. Squares are empty or filled depending on whether the in vivo mutant is viable or lethal
according to published experimental data. According to experimental results in the literature, 40 of the 81 mutants shown are viable in vivo. This is contrary to
the assumption that these metabolites are essential for survival. Metabolite notation is taken from Reed et al. (2003).

constraints may cause additional metabolite knockouts to emerge for
some of the above mutants.

The observed inconsistencies may also arise from incorrect in vivo
lethality designations for these mutants. This may occur if pheno-
typing experiments do not observe the mutant through a course
of prolonged adaptive evolution, during which an initially slow-
growing strain may greatly increase its growth rate and emerge as
viable (Fong et al., 2004).

A final alternative explanation stems from the possibility that
essential metabolites may exist outside of the biomass set. We explore
this possibility in the following section through the application of a
data mining approach.

3.4 Data mining suggests essential metabolite sets
Using our in silico metabolite knockout results, we seek sets of
metabolites suggested to be essential by in vivo survival data. For a
metabolite to be essential, its knockout should consistently correlate
with in vivo lethality. Figure 2 shows a gene to metabolite knockout
map for metabolites whose knockout associates with lethality in
>80% of mutants.

This figure shows several species whose knockout associates
exclusively with lethality, including 2-C-methyl-d-erythritol 4-
phosphate (2me4p), KDO (kdo), thiamine diphosphate (thmpp) and
ACGAM 1-phosphate (acgam1p). In addition to the latter, there
are several species whose knockout associate with lethality in all
but one case. For example, the metabolite undecaprenyl-diphospho-
N-acetylmuramoyl-(N-acetylglucosamine)-l-ala-d-glu-meso-2, 6-
diaminopimeloyl-d-ala-d-ala (uaagmda) is knocked out in 21 in
silico mutants, of which 20 are lethal in vivo. uaagmda is a com-
ponent of the cell wall, a structure that is clearly essential for E.coli
survival. However, its specific essentiality with respect to cell wall
integrity has not been fully investigated. The sole exception to this
and other associations is ndk, whose deletion is non-lethal in rich
media. However, as discussed above, the metabolite knockout pro-
file of the ndk mutant suggests that some of the in vivo biochemical
function of this gene may be complemented by reactions not included

in the model. If so, the effect of ndk deletion would be overestimated
in the in silico genome-scale metabolic model and ndk may not serve
as a true exception to these associations.

Though individual metabolites may have the property of being
essential, more complex associations may exist between metabol-
ite production and survival. For example, if two metabolites share
an essential moiety it may be necessary to produce only one of
the pair to allow survival. As a result, lethality will result only
if both of these species are knocked out. To reveal such complex
associations between metabolite knockout and lethality we applied
a standard machine learning approach called association rules of
data mining (Agrawal et al., 1993). The analysis generated several
significant rules linking the in silico knock out of a Boolean com-
bination of metabolites to in vivo lethality. The metabolite knockout
combinations and the corresponding gene deletions are depicted in
Supplementary Figure 2.

One such rule associates the knockout of tetradecenoate (ttdcea) or
hexadecenoate (hdcea) and 1,2-diacylglycerol (12dgr) or phosphatid-
ate (pa) with in vivo lethality. This rule is supported by 12 mutants
that correspond to genes in the fab, acc and pls gene clusters, all
of which are essential for survival. However, individual knockout
of ttdcea, hdcea, 12dgr or pa does not associate exclusively with
lethality (Fig. 3). Unlike a simple biomass requirement, such a rule
represents the potential flexibility of metabolite requirements for sur-
vival or any other phenotype, which may not hinge on the production
of a single metabolite but the production of metabolite combinations.

Another complex association links the in silico knockout of
Heme O (hemeO) and any one of several quinone derivatives (i.e.
menaquinol) to in vivo lethality in nine out of ten cases. As above,
the sole exception to this association was ndk. Interestingly, gene
deletions which knock out quinone species but not hemeO were
viable in 11 of the 12 cases. Similarly, knockout of hemeO without
the knockout of quinone species was viable in 9 of the 12 cases.
However the knockout of both of these species strongly associates
with lethality (Fig. 3). The quinones and heme compounds, though
involved in the respiratory apparatus and cellular red-ox balance, are
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Fig. 2. Gene to metabolite knockout map representing the results of the analysis for 67 metabolites whose in silico knockout associates with in vivo lethality
in >80% of mutants. The presence of a square in row i and column j represents the knockout of metabolite i by the gene deletion j . Each row contains all
single-gene deletion mutants that result in the knock out of the corresponding metabolite and for which in vivo survival data exists. Squares are empty or filled
depending on whether the in vivo mutant is viable or lethal according to published experimental data. These results suggest potential novel essential roles for
metabolites such as uaagmda and 2-C-methyl-d-erythritol 4-phosphate, which are knocked out almost exclusively by lethal genes. Production of these species
is not considered essential by previous FBA-based models of survival. Metabolite notation is taken from Reed et al. (2003).

not commonly thought to be essential for cellular survival. However,
analysis of their in silico effect on the network suggests that their
knockout is a potential mechanism for the lethality of a large set of
essential genes.

There are 31 lethal gene deletion mutants that do not form the
support of any association generated by our analysis. Of these, 19 fail
to knock out any metabolites in silico and are discussed above. The
remaining 12 gene mutants knock out one or more metabolites but
nevertheless do not form the support of any association. This arises
because metabolites knocked out by these gene deletions are also
knocked out by the deletion of some non-essential gene. As a result,
it is impossible to associate the lethality of these mutants with the
knockout of a potentially essential metabolite set. The lack of such an
essential metabolomic effect may stem from the overestimation of the

set of feasible metabolic states, suggesting the inclusion of reactions
in silico that are inactive in vivo. Causes for the latter include incorrect
annotation in the gene to reaction map and the exclusion of gene
regulation. Another reason for the lack of mechanism in this set of
mutants may arise from uncharacterized non-biosynthetic roles for
the corresponding genes. Such roles may include participation in the
breakdown of a lethal metabolite or a regulatory effect outside of
metabolism, both of which would not be captured by our approach.
Finally, the mechanism of lethality in some of these 31 mutants may
be mediated by subtle quantitative aspects of metabolite production,
such as failure to achieve a critical rate of production or a specific
steady-state concentration range. Since our analysis does not include
kinetic parameters, such a mechanism would not be resolved by our
approach.
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Fig. 3. Diagram of the gene deletion mutants underlying the support of two
complex lethality associations. Arrows link genes to metabolites knocked out
as a result of their deletion in rich media. The knockout of any single gene
in a rectangular box results in the knockout of all metabolites in the rounded
boxes pointed to by the arrows. Genes marked in bold are essential while genes
marked in light gray are non-essential in vivo. (a) Evidence behind the asso-
ciation linking the knockout of phosphatiditic acid (pa) or 1,2-diacylglycerol
(12dgr) and tetradecenoate (ttdcea) or hexadecenoate (hdcea) to lethality. All
the 100% of mutants in the dataset that knock out this metabolite combination
are lethal, while mutants that only knock out one of these pairs are viable. (b)
Illustrates support for the association linking the knockout of quinone species
and hemeO to lethality. A total of 90% of mutants knocking out this com-
bination of metabolites are lethal, with ndk as the sole exception. In contrast,
there are numerous examples of viable mutants that only knock out either
quinone components or hemeO, suggesting that these two sets of metabolites
may serve complementary essential functions in rich media survival.

4 DISCUSSION

4.1 Revisiting metabolite roles
An important goal of systems level metabolic analysis is to expand
the understanding of the roles of metabolites in cellular phenotypes.
Traditionally, small-molecule metabolism is portrayed in terms of its

Fig. 4. Path-based graph theoretic notions of connectivity are not well suited
to capture the subtle biochemical property of producibility. Shown in (a)
and (b) are two paths in the coaD (pantetheine-phosphate adenylyltrans-
ferase) mutant metabolic network that link nutrients to the metabolic species
CoA (Coenzyme A). According to our algorithm, CoA is knocked out fol-
lowing the deletion of coaD in rich media. However, despite the lack of
a biosynthetic pathway leading to the production of CoA in this mutant,
there exist many paths that join nutrients to this species in a graph rep-
resentation of the metabolic network. Graphs were visualized using Pajek
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

role in generating energy currency and biomass. Though the object-
ives are undoubtedly important in cellular function, it is likely they
do not comprise the totality of the metabolic network’s biosynthetic
role. In addition to forming biomass and energy substrates, the meta-
bolic network is responsible for the synthesis of all molecules that
constitute the steady-state metabolome. Though dilute in compar-
ison to biomass, the set of small-molecule species is remarkably
diverse numbering in the hundreds or even thousands. Though some
of these species may serve only as intermediates in biochemical
processes, others may play essential catalytic and/or homeostatic
roles in cellular functions. In addition, some species may have previ-
ously uncharacterized roles as substrates for macromolecular cellular
processes. The discovery of such roles can be approached through
comparison of results from in vivo experiments with in silico pre-
dictions of metabolic network behavior. In particular, our method
of enumerating producible and knocked out metabolites in a given
media and genotype allows such hypotheses to be generated and
tested.

4.2 Relationship to previous approaches
4.2.1 Graph analysis of paths Graph analysis of paths in a
metabolic network overestimates real biochemical connectivity by
considering all pairs of species on the opposite sides of a reaction
that is to be connected (Arita, 2004). However, true biochemical
connectedness of two species implies the sharing of moieties and a
substrate–product relationship in the context of a biochemical path-
way (Arita, 2004). Producibility asserts the existence of precisely
such a connection between the nutrient media and a metabolite in the
form of a feasible flux configuration. As a result, our approach can
reveal a loss of connectivity in mutant networks that is undetectable
by graph analytic techniques.

For example, CoA (Coenzyme A) is not producible in rich media
in the in silico coaD (pantetheine-phosphate adenylyltransferase)
deletion strain; however, one can connect nutrient media to CoA in
the graph representation of this mutant metabolic network via several
paths, examples of which are shown in Figure 4. This effect would
not be captured using a simple path based criteria, such as the method
used by Lemke et al. (2004) to assess the metabolomic damage of
enzyme removal. Our results suggest that the notion of producibility

2014

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/9/2008/408927 by guest on 28 D
ecem

ber 2023

http://vlado.fmf.uni-lj.si/pub/networks/pajek/


Characterizing metabolite essentiality

may serve as a better indicator of metabolic network robustness than
path-based parameters such as graph diameter, giant component size
or damage.

4.2.2 Network-based pathway analysis methods Our method of
identifying producible metabolites is related to previous approaches
for enumerating metabolic capabilities, namely elementary flux
mode or extreme pathway analysis (Schilling et al., 2000a; Schuster
et al., 2000). Extreme pathways (EP) and elementary fluxes modes
(EFM) correspond to feasible steady-state flux vectors that obey a
non-decomposability property. In a system equipped with an output
channel for each metabolite, producibility of a metabolite corres-
ponds to the existence of an EP/EFM that has non-zero flux through
the respective output channels. Thus, by generating the full set of
EFM/EP for such a network, one could theoretically determine the
existence or non-existence of such a vector.

Though possible, application of EFM/EP towards determining
producibility is not practical for genome-scale application. Since
the computational complexity of the EP/EFM search algorithm
increases exponentially with respect to the number of reactions in
the system, direct application to a genome-scale metabolic model is
currently intractable (Schilling et al., 2000c). This difficulty has been
addressed through manual division of the network into subsystems
and computation of extreme pathways for each partition (Schilling
et al., 2000c, 2002). However the producibility of a metabolite would
not immediately follow from these results, since the set of EP/EFM
generated is a subset of all possibilities and varies with alternate
subsystem decompositions (Schuster et al., 2002).

The computational advantage of our approach lies in that it directly
seeks to determine the existence of a single feasible flux config-
uration rather than attempting to enumerate all possibilities. As a
result, it offers a practical and automated approach for determining
producibility for a large number of potential metabolic outputs.

4.2.3 Optimization approaches Our method differs from previ-
ous genome-scale modeling techniques such as FBA and minim-
ization of metabolic adjustment (MOMA) in its discovery-based
approach toward the study of the metabolome. The latter methods
employ in vivo data for the purpose of testing an existing in silico
model of a phenotype; in contrast, our method employs in vivo data
to infer novel essential roles for metabolites and build a biochemical
model of a phenotype. In addition, our approach is capable of identi-
fying specific inconsistencies between the genome-scale model,
in vivo data and previous biological knowledge. An example of this is
our analysis of the effects of ndk deletion, which is non-lethal in vivo
but according to the metabolic network annotation results in the in
silico knockout of many metabolites thought to be necessary for sur-
vival. This inconsistency can be addressed by either reexamining
the biological assertion that these metabolites are essential or revis-
iting the metabolic network annotation to discover what genes may
potentially complement the observed in silico deficiency.

4.3 Future directions
Though we have chosen the well outlined phenomenon of E.coli
survival as the subject of this proof-of-concept study, promising
future applications of this method may lie in the study of emerging
pathogens. Given data from high-throughput mutant screens, this
method could yield predictions regarding the essentiality of meta-
bolites for clinically relevant phenotypes such as survival during
infection and drug resistance. This may facilitate a rational approach

towards target discovery and pharmaceutical design. In addition, our
approach shows promise for metabolic network annotation validation
and refinement in newly sequenced organisms whose metabolism has
not been as well characterized as that of E.coli. Predictions arising
from this method can also potentially be tested against in vivo meta-
bolomic measurements and the results used to drive discovery of new
reactions and re-annotation.
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