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ABSTRACT

This paper considers the problem of controlling discretestlin-
ear systems from specifications given as formulas of syintalgt
co-safe linear temporal logic over linear predicates irsthée vari-
ables of the system. A systematic procedure is developethéor
automatic computation of sets of initial states and feekllwan-
trollers such that all the resulting trajectories of theresponding
closed-loop system satisfy the given specifications. Theguiure
is based on the iterative construction and refinement of tomaa+
ton that enforces the satisfaction of the formula. Inteapoh and
polyhedral Lyapunov function based approaches are prdptse
compute the polytope-to-polytope controllers that label transi-
tions of the automaton. The algorithms developed in thisepap
were implemented as a software package that is availabtiofon-
load. Their application and effectiveness are demonstifatetwo
challenging case studies.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search-Sontrol theory D.2.4 [Software Engineering: Soft-
ware/Program Verification+Formal methods

Keywords

Linear temporal logic, Automata theory, Constrained aalntr
Polytope-to-polytope control, Polyhedral Lyapunov fiioies

1. INTRODUCTION

Temporal logics, such as linear temporal logic (LTL) and eom
putation tree logic (CTL), and model checking algorithfrisidve
been primarily used for specifying and verifying the cotness
of software and hardware systems. In recent years, due io the
expressivity and resemblance to natural language, temfuga
ics have gained increasing popularity as specificationdaggs in
other areas such as dynamical system5I[2—6], biology! [7&+8],
robotics [T0EI4]. These new application areas also havehamp
sized the need for formal synthesis, where the goal is torgeme
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control strategy for a dynamical system from a specificagjimen
as a temporal logic formula. Recent efforts resulted inbaigo-
rithms for continuous and discrete-time linear systemmfspec-
ifications given as LTL formulas[3] 6], motion planning anshe
trol strategies for robotic systems from specificationegiin u-
calculus [11], CTL[12], LTL [13], and fragments of LTL sucls a
GR(1) [8[10] and syntactically co-safe LTIL[14].

In this paper, we consider the following problem: given a&ite-
time linear system and a syntactically co-safe LTL form{d&][
over linear predicates in the states of the system, find afget-o0
tial states, if possible, the largest, for which there exstcon-
trol strategy such that all the trajectories of the closmapl sys-
tem satisfy the formula. The syntactically co-safe fraghudi.TL
is rich enough to express a wide spectrum of finite-time prope
ties of dynamical systems, such as finite-time reachalfity tar-
get with obstacle avoidance (“go #v and avoidB andC for all
times before reaching), enabling conditions (“do not go t®
unlessk was visited before”), and temporal logic combinations
of the above. For example, the syntactically co-safe LTImfiala
“(=0Z T)N (=T Z (R1VRp))” requires convergence to target
regionT through region$:; or R, while avoiding obstacl®©.

Central to our “language-guided” approach to the abovelpnob
is the construction and refinement of an automaton thaictstne
search for initial states and control strategies in such w that
the satisfaction of the specifications is guaranteed ainadis. The
states of the automaton correspond to polytopic subsete atate-
space. lts transitions are labeled by state-feedbackaltars that
drive the states of the original system from one polytopentiifzer.
We propose techniques based on vertex interpolation arydheol
dral Lyapunov functions (LFs) for the construction of thesa-
trollers. The refinement procedure iteratively partitiaghe state
regions, modifies the automaton, and updates the set dfligdt-
isfying states by performing a search and a backward redithab
analysis on the graph of the automaton. The automaton @atain
at the end of the iteration process provides a control gjyatieat
solves the initial problem.

The contribution of this work is twofold. First, we provide a
computational framework in which the exploration of theteta
space is “guided” by the specification. This is in contrashwiist-
ing related workd (5, 16], in which an abstraction is firststwacted
through the design of polytope-to-polytope feedback aiietrs,
and then controlled by solving a temporal logic game on the ab
straction. By combining the abstraction and the automastwrtrol
processes, the method proposed in this paper avoids regfiting
state-space that do not contain satisfying initial stedes, is, as a
result, more efficient. In addition, it naturally inducesitarative
refinement and enlargement of the set of initial conditionisich
was not possible in[16] and was not formula-guided’in [6].



Second, this paper provides an extension of previous sesalt
obstacle avoidancé [1I7=19] in certain directions. For gxtait
provides a systematic way to explore the feasible stateesfram
“rich” temporal logic specifications that are not limited going
to a target while avoiding a set of obstacles. Furthermormoes
not necessarily involve paths characterized by unions eflap-
ping polytopes and the existence of artificial closed-logpilé-
ria. Also, as a byproduct, the approach developed in thiipap
provides an upper bound for the time necessary to satisfiethe
poral logic specifications by all the trajectories origingtfrom the
constructed set of initial states.

The remainder of the paper is organized as follows. We re-

view some notions necessary throughout the paper in[$ec: 2 be

fore formulating the problem and outlining the approach éc.B3.
The iterative construction of the abstraction is preseirisec[4.
The LP-based algorithms for solving polytope-to-polytapatrol
problems are described in SE€¢. 5. The main theorem is stated i
Sec[®, while illustrative examples are shown in $éc. 7. @enc
sions are summarized in SE¢t. 8.

2. NOTATION AND PRELIMINARIES

In this section, we introduce the notation and provide soavkb
ground on temporal logic and automata theory. For &&gnt(.7),
Co(.), #<, and 27 stand for its interior, convex hull, cardi-
nality, and power set, respectively. Fdrc R and. C R", let
A7 = {Ax|x € L}. We useR, Ry, Z, andZ,. to denote the
sets of real numbers, non-negative reals, integer numéedsyon-
negative integers. Fon,n € Z.., we useR" andR™" to denote
the set of column vectors and matrices witindmx n real entries.
In € R™N stands for then x n identity matrix. For a matrix, Aj,
andA,j denote its-th row andj-th column, respectively. Given a
vectorx € R", ||x|| denotes itgp-norm (the value op will be clear
from the context).

A polyhedron (polyhedral set) ilR" is the intersection of a fi-
nite number of open and/or closed half-spaces. A polytope is
compact polyhedron. We usé&(£?) to denote the set of vertices
of a polytopeZ?. Both the¥ -representation (Go"'(£?))) and the
s -representation{k € R" | Hx < hs}, where matrixd 5 and
vectorhy have suitable dimensions) [20] of a polytoge will be
used throughout the paper.

In this work, the control specifications are given as forrawdé
syntactically co-safe linear temporal logic (scLTL).

Definition 2.1 [21] A scLTL formula over a set of atomic propo-
sitionsP is inductively defined as follows:

® = p|-p|PVPIDAD|IDP Y D] O DO P, 1)

wherep is an atomic proposition; (negation),v (disjunction),A
(conjunction) are Boolean operators, aqd (“next”), % (“un-
til"), and < (“eventually”) are temporal operators.

The semantics of scLTL formulas is defined over infinite words
over 7 as follows:

Definition 2.2 The satisfaction of a scLTL formul® at position
i € Z, of a wordw over 2, denoted byw; = ®, is recursively
defined as follows: lw; = pif pew;, 2) wi =-pif pgw, 3)
Wi f= @1V @2 if Wi [= 1 orwi = P2, Wi |= O Pif wipg = D,
5 W [= @1 % @, if there existsj > i such thatwj |= ®, and for
alli <k< jwg E®q,and § wj = & @ if there existsj > i such
thatw; |= .

A word w satisfies a scLTL formulab, written asw = @, if
Wo |: @.

An important property of scLTL formulas is that, even though
they have infinite-time semantics, their satisfaction iargateed
in finite time. Explicitly, for any scLTL formula® over P, any
satisfying infinite word over 2 contains a satisfying finite prefix.
We use%s to denote the set of all (finite) prefixes of all satisfying
infinite words.

Definition 2.3 A deterministic finite state automaton (FSA) is a
tuple & = (Q,%,— .7, Qo,F) whereQ is a finite set of states;

is a set of symbolsQy C Q is a set of initial statesr C Q is a
set of final states and> ,C Q x Z x Qis a deterministic transition
relation.

An accepting rurr, of an automaton on a finite wordw =
WoW1 ... Wy overX is a sequence of states = Qo0 . .. gg-1 Such
thatqo € Qp, 94+1 € F and(qj,wi,qi+1) €— . foralli=0,...,d.
The set of all words corresponding to all of the acceptingsroh
</ is called the language accepted.dsyand is denoted a¥’,, .

For any scLTL® formula overP, there exists a FSA7 with in-
put alphabet ? that accepts the prefixes of all the satisfying words,
i.e., % [21]. There are algorithmic procedures and off-the-shelf
tools, such ascheckd22], for the construction of such an automa-
ton.

Definition 2.4 A finite state generator automaton is a tupte=
(Q,—,I,1,Q0,F) whereQ is a finite set of states;»,,C Qx Q
is a non-deterministic transition relatiohn,is a set of output sym-
bols,7: Q — I is an output functionQy C Qs a set of initial states
andF C Qis a set of final states.

An accepting rurr, of a finite state generator automaton is a
sequence of states, = qopQz - - - g such thaigy € Qop, qq € F and
(0,0i+1) €~ foralli=0,...,d—1. An accepting rum,, pro-
duces a wordv = wows ... Wy overl” such thatr(g;) = w;, for all
i=0,...,d. The output language”,, of a finite state generator
automatons is the set of all words that are generated by accepting
runs of.es.

3. PROBLEM FORMULATION

Consider a discrete-time linear control system of the form

@)

whereA € R™" andB € R™™M describe the system dynamics and
Xk € X c R" andug € U ¢ R™ are the state and applied control at
timek € Z., respectively.

Let P = {pi}i—o,.. | for somel > 1 be a set of atomic proposi-
tions given as linear inequalities BRI'. Each atomic propositiop;
induces a half-space

Xk+1:AXk+BLk, XkEX, UkEU,

[pi] == {xeR"| ¢ x+d <0}, ¢ eR",d € R. (3)

Atrajectoryxgx; ... of system[(R) produces a woRJP; ... where
P C Pis the set of atomic propositions satisfiecdyi.e.,R = {p;j |
3j €{0,...,1},x € [pj]}. The specifications are given as scLTL
formulas over the set of predicatBs A system trajectory satisfies
a specification if the word produced by the trajectory satisthe
corresponding formula. The main problem considered inghjger
can be formulated as follows:

Problem 3.1 Given a scLTL formula® over a set of linear pred-
icatesP and a dynamical system as defined in Efh. (2), construct
a set of initial stateXp and a feedback control strategy such that
all the words produced by the closed-loop trajectoriesiaiing

in X satisfy formula®d.



We propose a solution to the above problem by relating the con
trol synthesis problem with a finite state generator automébdef.
(2.4)), whose states correspond to polyhedral subsetseo$yts-
tem state-space and whose transitions are mapped to sdbmfik
controllers. This automaton will be constructed as the dfishe
automaton that accepts the language satisfying fordulés states
will be refined until feasible polytope-to-polytope corfpooblems
are obtained. This approach reduces the controller syisthag of
Prob[3.1 to solving a finite number of polytope-to-polytaoatrol
problems.

The proposed solutions to polytope-to-polytope contradim-
thesis will supply a worst case time bound such that evejgdra
tory originating from the source polytope reaches the tgogéy-
tope within the provided time bound. These bounds can badurt
used to compute an upper time bound for a given initial stateh
that the trajectory starting from this state satisfies trezigation
within the computed time bound.

4. AUTOMATON GENERATION
AND REFINEMENT

In this section, we present algorithms for the constructod
refinement of the dual automaton that corresponds to a deséte
of LTL specifications.

4.1 FSA and dual automaton

All words that satisfy the specification formui are accepted
by a FSA«/ = (Q,2°,—.,,Qo,F). The dual automators® =
(QP,—P.rP. 1P QR FP) is constructed as a finite state genera-
tor automaton by interchanging the states and the transitbthe
automatone’. As the transitions of# become states af’P, ele-
ments from ¥ label the states and define polyhedral sets within the
state-space of systefm (2).

Definition 4.1 Given a FSA« = (Q,Z,—./,Qo,F), its dual au-
tomaton is a tuplez® = (QP,—P, P 1P QF, FP) where

={(g,0,9) | (9,0,q) €=},
=P ={(a.0.9),(d,0".d") | (0,0,d).(d,0.9") €=},

o — 2P
®© :Q°—=rP P((go.q)) =0,
QY ={(d0,0,0) |do € Qo}.

FP ={(a.0.q)|q eF}.

Informally, the states of the dual automatefP are the transitions
of the automatony. A transition is defined between two states of
/P if the corresponding transitions are connected by a staté.in
The set of output symbols o ° is the same as the set of symbols
of «7. For a state of7P, the output function produces the symbol
that enables the transition isf. The set of initial stateQp of =P

is the set of all transitions that leave an initial state4n Similarly,
the set of final stateBP of P is the set of transitions that end in a
final state ofe7. The construction of7P guarantees that any word
produced byP is accepted by7:

Proposition 4.2 The output language of the dual automata?
coincides with the language accepted by the automaton.e.,
Loy =Loyp.

The proof of Propl_4]2 follows directly from the definitionkthe
automata and is omitted for brevity.

4.1.1 Automaton Representation

A FSA &/ that accepts the language of a scLTL formdlaver
P is constructed with the toaicheck22]. This tool labels each
transition of the produced FSA with a disjunctive normalnfior
(DNF) C; VG V...V Cq, Where eaclC; is a conjunctive clause
overP. This is a compact representation of the corresponding FSA
in which each transition is labeled by a conjunctive clause.

In what follows, we use”q C X to denote the set of states of
system [(R) that satisfy the Boolean formula of a dual automat
stateg. Given a DNF formuld =Cy VG, V... VCy, ¢ :=[pi,]N
...N[pi.] denotes the set of states of systéin (2) that sa@sfy
pi, A...Api, whereij; €0,....1,¥j €1,....candZp := U, 7
denotes the set of states of systéin (2) that safisfy

While constructing the dual automaton, each of the conjuact
clauses is used as a separate transition, which ensuresltbat-
responding subsets of the state-space are polyhedra. eBedor
structing the dual automaton each DNF form@jav Co Vv ...V Cy
is simplified by applying the following rules:

e Empty set elimination: ds eliminated if the corresponding
region is empty, i.e.”c, = 0. The symbols that satisfy such
clauses can not be generated by the system trajectories.

e Subset elimination: ds eliminated if its corresponding set
is a subset of the set correspondindg2o j # 1, i.e., Z¢, C
Z¢,. The system states that sati€fyalso satisfyC; which
enables the same transition.

Even though these simplifications change the language of the
dual automaton, it can be easily seen that the set of comeamp
satisfying trajectories of systeffq (2) is preserved.

Example 4.3 A simple example is used to explain the construction
routines. Consider the following scLTL formula:

®1=(PoAPLAP2) % (PLAP2/AP3APa) (4)

over P = {po, p1, P2, P3, Pa}, Whereco = [-1,1] ", dg = 0, ¢ =
1,17, dy=4,c=[0,1T,dp=-01,c3=[-1,0T,d3 = -3,

¢4 =[1,0]7, dg = 5. The trajectories that satisfj; evolve in the
region [po] N [p1] N [p2] until they reach the target regidip;] N

[p2] N [p3] N [pa]. The regions defined by this set of predicates are
given in Fig[d. The compact representation of a FSA thatece
the language satisfying formutey is shown in Figl 2. For example,
the transition from the state labeled with “0” to the stateelad
with “1”, which is labeled by(ps A p3 A p2 A p1), corresponds to

two transitions labeled bypo, p1, P2, P3, P4} and{p1, P2, P3, P4},
respectively.

P1

~Po

Dy |
Po Pa\pa

N

Figure 1: Half-spaces generated by the linear predicates in

Eqn. @).

P2 P3|P3
P2 ‘

The compact representations of dual automata construdtad w
and without simplifying the DNF formulas are shown in Hig. 3,
where a state label corresponds to the subset§ eftich can be
produced bytP in that state. The simplification deleté¢sps A
p2 A p1 A po) from the self transition of the state labeled with “0”
in Fig.[3, since the set of states that satisfies this clausezy.

An accepting rump = goas ... qq of 7P defines a sequence of
polyhedral sets?q, 7y, ... Pq,. Any trajectoryxgx; ...Xq of the



(=pa Ap2 Ap1 Apo)V

(174 A =p3 Ap2 Ap1 A po)
(pa Apa Ap2 Apr)
@)L
Figure 2: Compact representation of a FSA that accepts the

language satisfying formula®, in Eqn. (@). The initial states
are filled with grey and the final state is marked with a double

circle.
XX

@)

Figure 3: Dual automata for the FSA from Fig.[2: (a) with-
out Boolean simplification; (b) with Boolean simplification T
stands for the Boolean constant true.

original system[(R) with € P, i =0
cation by Prod_412.

We say that a transitiofg,q) of /P is enabledif there ex-
ists an admissible control law that achieves the transitorall
X € #4. Two conditions are introduced for constructing admis-
sible controllers according to existence of a self traositf the
source stat@. When (qg,q) e—P, a controllerenablesa transi-
tion (q,d') if the corresponding closed-loop trajectories origingtin
in Zq reach#y in finite time and remain withing?q until they
reachZy. When(q,q) ¢—DP, a transition(q, ) is only enabled
if there exists a controller such that the resulting cloexqh tra-
jectory originating iny reaches?y at the next discrete-time in-
stant. For every transition of/P, if a controller that enables the
transition can be constructed, then every resulting cisep tra-
jectory originating iquerg Pq, Will satisfy the specifications by
Prop[4:2. However, existence of such controllers is notantaed
for all the states of systerl(2) withi.

Prob[31 aims at finding a subsetXffor which the polytope-
to-polytope control problems induced by scLTL specificasi@re
feasible. To this end, first, the dual automaton is prunednegic-
ing the feasibility of transitions and states for the givgstem [(2).
Second, an iterative partitioning procedure based on a ic@nb
tion of backward and forward reachability will be appliedtt®
automaton states, which correspond to polytopic subseéfs of

4.1.2 Initial Pruning

The feasibility of the transitions of the dual automaton istfi
checked by considering the particular dynamics of sysiéna(a
the setU where the control input takes valueBos{.#?) denotes
the set of states that can be reached frghn one discrete-time in-
stant under the dynamids] (2). For a transitiqr/), if Pos{2%4) N
P4 = 0, then this transition is considerédeasible since there is
no admissible controller that enables this transition. ZandU
are polytopesPos{(4?) can be computed as follows:

Pos{#?) = Co({Ax+Bu|xe ¥ (Z),uc ¥ (U)}).

.,d satisfies the specifi-

®)

Alg. [[l summarizes the pruning procedure. Once the infeasibl
transitions are removed as in lipk 1, the following feagipilests

are performed. A state and all of its adjacent transitioaslaeteted
either if it does not have an outgoing transition and it isadinal
state or if it does not have an incoming transition and it isaro
initial state (line.6). Removing such states and transitidoes not
reduce the solution space since such states cannot be pamy of
satisfying trajectory.

Algorithm 1 Initial Pruning of <P

1. =P:==P\{(q.q) | Pos(#4) N 2y =0}

2: Q:=Q°

3: while Q# 0do

4: forall geQ do

5. Q:=Q\lg}

6: if (¢ FP AND {d | (9,9) €+P} =0) OR (q¢ QF AND
{d \(q Q) €=°} =0) then

7 Q°\ {a}

8: Q QUUT | (@q) €=Ul | (d,a) e-P))

o: —P:==P\({(a,d) | (a, q)eﬂD}U{( ,0) | (d,a) e=P})

10: end if

11: endfor

12: end while

4.2 Automaton Refinement

Alg.[dlguarantees that a non-empty polyhedral subset oft@sou
polytope #4 is one-step controllable to the target polytoggy
corresponding to the transitidia, o). However, this does not im-
ply the feasibility of the corresponding polytope-to-polye con-
trol problem. An iterative algorithm is developed to refihe poly-
tope #4 and hence, the corresponding state of the dual automaton,
whenever the feasibility test fails. Alf] 2 refines the auiton at
each iteration by partitioning the states for which theresdaot ex-
ist an admissible sequence of control actions with resjpe@zch-
ing a final state. The algorithm does not affect the statey®f s
tem [2) that can reach a final state region and as such, itsés
monotonically increasing, with respect to set inclusi@t o states
of system[(R) for which there exists an admissible contraltetyy.

For a transition(q, o) €—P, the set of states ¥, that can
reachZy in one step is calledlbeacon We useZq to denote the
beacon corresponding to transitiGmq'), which can be obtained as
Baq = PqNPre(Py), where

Pre(#) = {xe€X|3ue U, Ax+Bue 2}, VZCR". (6)

If &7 andU are polytopes, theRre(2?) can be computed via or-
thogonal projection. Given a controller that enables asiteom
(9,q), the costl((g,q')) of transition(q, ¢ ) is defined as the worst-
case time bound such that every trajectory originating’ijreaches
Pq. The costlP(q) of a statey is defined as the shortest path cost
from g to a final state on the graph of the automaton weighted with
transition costs.

The refinement algorithm uses three subroutir@&sortestPath
Partitioning and FeasibilityTestq,q'). The ShortestPattproce-
dure computes a shortest path cost for every statg®iusing Di-
jkstra’s algorithm[[23]. ThePartitioning procedure, which will be
presented in detail in the next subsection, partitions & s&gion
and modifiese® accordingly.

TheFeasibilityTestg, q' ) procedure checks if there exists a con-
troller that enablesq, ') and returns the cos{(q,q')) of the tran-
sition. The computational aspects of this procedure arsepied
in Sec[®. The cost is set to infinity when no feasible corgrdk
found. Wheng has a self transition, the procedure checks if there
exists a controller that steers all trajectories origimgtin &7 to
the beacon ofq,qd'), i.e., HBqq. in finite time without leaving the
set #q. Notice that to solve theZy-to-Zy problem it suffices



to solve theZy-to-%qyq problem, since a trajectory originating in
P4 will reach Z¢ without leaving#2q only through the beacon
Pqq- By definition, there exists an admissible control action fo
all x € Byq such thatZ?y is reached in one step. tf does not
have a self transition, the transitiqg,q') is only enabled when
Py = PBqq, SinceHyq is the largest set of states i#fq that can
reachZy in one step.

Algorithm 2 Refinement ofer®

1: forall (g,q)e—pdo
2: J((g,q)) := FeasibilityTestq,q')
3: end for
4: JP := ShortestPatt),FP)
5: CandidateSet {(q;,q;) | (qi,qj) €—P,IP(qi) = »,IP(q;) # o}
6: while CandidateSet- 0 do
7 (0s,Q4) = mingeq.){(gi,9;) | (g, ;) € CandidateSet
8
9
10
11

[P, J] := Partitioning(<7 P, s, (ds, da))

JP := ShortestPatt, FP)

CandidateSet= {(q;,q;) | (ai,q;) €—P,I"(q;) =
. end while

,J7(q;) # w0}

At each iteration of the refinement algorithm, the transitosts
and shortest path costs are updated, and the set of candlidts
for partitioning is constructed as follows. A stagethat has an
infinite cost P (q;) = ) and a transition(¢j,q;) €—P) to a state
that has a finite cosﬂf’(q,—) < ) is chosen as a candidate state for
partitioning (linesh anf10). Then, a stateis selected from the
set of candidate states for partitioning by consideringtité costs
in line[@. The algorithm stops when there are no transitioosf
infinite cost states to finite cost states, i.e., when thefsstralidate
states for partitioning is empty.

4.2.1 Partitioning

A stateq is partitioned into a set of statégs,...,qq} via a poly-
topic partition of 4. The transitions of the new states are inher-
ited from the statg and new states are set as start statqgng
to preserve the automaton language. The partitioning proees
summarized in Ald.BB.

Algorithm 3 Partitioning ofqin {q,...,0q}

10 Q%= (Q°\{a})u{a,...,aa}

2: forall (¢,q) €—~Pdo

3 P=sP\((d.9)

4: fori=1:ddo

5: if Pos{q') N Zq # Dthen

6: —P:=P U{(q.q))

7 J((d,q)) := FeasibilityTestd', )
8: end if

9:  endfor
10: end for

11: forall (q,q) €e—P do

12: =P:==P\{(q,9)}

13: fori=1:ddo

14: it Pos{(qi) N Py # 0 then

15: —=P:==PUu{(qg,q)}

16: J((qi,q)) := FeasibilityTestq; ,d)
17: end if

18: end for

19: end for

A heuristic partitioning strategy guided by a transitigpq) is
used: the region is partitioned in two subregions using &tplpne
of the beacor’yy. Notice that beacons will always be polytopes,
asPre(#y) is a polytope for linear dynamics] is a polytope and
the intersection of two polytopes is a polytope. The hyperel
which maximizes the radius of the Chebyshev ball that camfit i

any of the resulting regions is chosen as the partitioniitgroon.
Choosing a hyperplane of the beacon ensures that only oine of t
resulting states can have a transitiomtoEven if a controller that
enables the transition i does not exist for this state, after further
partitioning the beacon becomes a state itself and theiti@nss
enabled for it. The employed maximal radius criterion iglykto
result in a less-complex partition, as opposed to itergtivemput-
ing one-step controllable sets 6y, and it is applicable to high
dimensional state-spaces.

LetwPi = (QP,—Di D, rDi,Qg‘ ,FDi) denote the dual automa-
ton after refinement iteratioin and lete7®o denote the initial dual
automaton. For a dual automatar®, the setX'o C X denotes the
union of the regions corresponding to start states of attmma ™
with finite path costs, i.e.,

Xh = U

ge{qeQp [P () <o}

Py CX. @)

Example 4.4 Consider systeni{2) with =1, B=1,, U={ue

R2 |0<up <0.2,—-0.1<up <0.2} and specification frofhEx.[Z3.
«/Po has two state§qy,gp}; both are initial states angp is a fi-

nal state. Sincd((q1,qz)) = oo, initially only gy has finite cost
and q; is a candidate state for partitioning. Using a hyperplane
of %q,q, generates the state regions and the automaton shown in
Fig.[4d and Fid_4d. ABos{ Z,) N Pq, = 0, the transitior{qs, o)

is removed. In the next iteraticop is partitioned usingZq,q, and

the algorithm terminates after this iteration, since thexists a fi-
nite cost automaton path from all states to the final statetaad
candidate set is empty. The control synthesis tools of[Se®rg
used in this example to check the costs of the transitions.

Proposition 4.5 Assumexg is non-empty. Given an arbitrary it-
erationi > 1 of Alg. 3, the seﬁgio as defined in Eqn(d) has the
following properties:

(i) There exists a sequence of admissible control actions such
that every closed-loop trajectory of systd@) originating inXj
satisfies formulap, and

(i) x5t C xi.

PROOF (i) A finite path cost for a statgg € Q(E)’i implies that
there exists an automaton ragqy ...qq with J((gj,gj+1)) < o
for all j =0,...,d -1 andJ"(do) = 393 3((qj,qj41)). As a
transition cost is assigned according to the existence efctn-
troller that enables the transition, there exists a corgegjuence
that ensures that every closed-loop trajectory origigatim Zq,
reaches?q, by following the automaton path. Considering that
removing states and transitions only reduces the languateeo
automaton, by Prof. 4.2 it follows th&t’ 0, C Zp. Since the
proposed partitioning procedure preserves the languagejawe
2o €2 o . Consequently? o, C .Zo and the resulting tra-
jectories satisfy the formula.

(ii) For anyx € X'O’l, there exists an accepting automaton run

o =Gods. .- Gd With x € Pq, andIP(qo) = Z?;é\]((qj7ql'+l)) <

o, Letqs be the state chosen for partitioning at iteratiorThen,
JP((gs)) = 0 andgs # q; for all j =0,...,d asJI”(qj) < « for
all j=0,...,d. As only the transitions adjacent tg are affected
by partitioning,q; € QP for all j =0,....d and(qj,dj+1) €D
forall j =0,...,d—1. Thereforex € Pq,, rp = o1 ...0q iS an
accepting run ofAP with finite cost and thusx e Xio. Observing

thatx € Xit)*l was chosen arbitrary completes the proadfl

INote that the automata in FIg. 2 and in iigl 6a represght. For
simplicity the final state labeled bl is not shown in Fig_@a.
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Figure 4: Automata and their corresponding polytopic statespace partitions for the iterations of Ex[4:4. The polytoes are shown
with black borders and Xj, is shown in yellow. The beacon of transition(qs,dp) is shown in blue. A transition is shown with dashed
line if a controller that enables the transition was not fourd, otherwise the transition is marked with a time bound.

The automaton refinement algorithms presented in thisaecti
generate a finite set of polytope-to-polytope control peoid. Sev-
eral tractable approaches for solving these problems amoped
in the next section.

5. POLYTOPE-TO-POLYTOPE CONTROL

Enabling a transitior{q,d) requires an admissible control law
that solves theZy-to-#y control problem. By the definition of
PAqq. this problem can be decomposed in two subproblems. The
first problem concerns the computation of a control law wigieh-
erates a closed-loop trajectory, for alt %y, that reaches?y in
one discrete-time instant. The second problem concernsdhe
struction of a control law which generates a closed-loojettary,
for all x € #q, that reachessyq in a finite number of discrete-time
instants. These synthesis problems are formally stateid nex

Problem 5.1 Let #, &2 € 2(R") with # C Pre(%?) and consider
system[(R). Construct a state-feedback control gpviR" — R™M
such that

Ax+Bg(x) € Z, g(x) € U, vxe A.

Problem 5.2 LetN € Z>1, 8, 2 € Z(R") with Z C & and con-
sider systen[{2). Construct a state-feedback controlgla®" —
R™ such that for alk € & it holds that

X0 =X,
x € Z,0x) €U, vk=0,...,N—1,

XN € B.

Notice that while Prol. 511 is always feasible singeC Pre(2?),
Prob.[5.2 needs not be feasible for any $étand corresponding
beacon%. In what follows, sufficient conditions for feasibility of
Prob[5.2 will be indicated.

Firstly, let us present a vertex interpolation-based smhuto
Prob[51. Lef{Vi}i_; #v () denote the set of vertices of and
let {u}i_; H#Y(B) denote a corresponding set of control actions.
Consnder the foIIowmg set of linear inequalities in the ishtes

{Uhics #r(2):
Ha(AV +BU) < hy,
HUUi ShU

®)

A solution to [8) can be obtaineaff-line by solving a feasibility
LP. It is trivial to deduce that the control law

#y (B)

©)

where)Aj € R, 0 < Aj < 1, are such thax = zl 1 )\v' solves
Prob.[5.1. The evaluation of the control law (9) requiossline

calculation of the coefficient§Ai}i_y . 4y(), which amounts to
solving a system of linear equations and can also be foreuikas
a feasibility LP.

Alternatively, an explicit piecewise affine (PWA) form ¢f-)
can be obtained by a simplicial partition.@f. Then, the evaluation
of g requires solvingn-line a point location problem, which con-
sists of checking a finite number of linear inequalities. haligh
efficient ways to solve point location problems exist, defieg on
the complexity of the partition (number of simplices), trem lo-
cation problem may be more computationally expensive thioue
lating the coefficient$Ai }i_1 4y () on-line Yet another explicit
PWA solution to ProleIl can be obtaining via direct syrithes
a PWA control law defined over an arbitrary polytopic paotitiof
A, which can still be formulated as a LP. While this approacly ma
lead to a less complex point location problem, however,ilidég
is not necessarily guaranteed for an arbitrary partition.

Next, two approaches are proposed to solve Prob. 5.2, &ex
interpolation and polyhedral LFs.

Vertex interpolationLet {V'}i_; 4y () be the vertices of”

and let{u'};_ 1,47 () denote a corresponding set of finite se-
guences of control actions, whenk:= {uk}k_ _____ n—1 forallic

Zi-1,. gy () andN € Z>1. For each/ € ¥ () define the follow-
ing set of linear equality and inequality constraints inv¥heables

{UWicz s i)
o=,
X1 =A% +BY, vk=0,...,
HaX <hg, Hyd, <hg, Yk=0,...,

A solution to the set of problemE_{{10) can be searcheaffoline
by solving repeatedly a corresponding set of feasibilitg ERrting
with N =1, for alli = 1,...,#7(2?), and increasindN until a
feasible solution is obtained for all LPs and the same vafus.o
Let N* > 1 denote the minimall for which a feasible solution was
found. Then, it is straightforward to establish that for any &2,
the control law

#(P)
= AU, =0,...,N" =1, (12)
2
wherexg = xandA; € R, 0< Aj < 1, are such that= Z _ ))\ v,

solves Prold.5]2 and yields closed-loop trajectories ﬂfmthﬁ in
at mostN* discrete-time instants.

Evaluation of the control lavg of (I1]) at timek = O requires
on-line calculation of the coefficient§Ai}i_;  4y(), whichis a
LP, while at everjk =1,...,N* —1 the analytlc expression dfis



implemented. However, a faster convergencegtoan be obtained
by takingAi € R, 0< A; < 1, such thak = zfz/l(y) )\ixij,,, where

j*:=argmaxj € {0,...,N"} | xe Co({X }i_1. 4y ()}

Then, the resulting closed-loop trajectories will reaghin at most
N* — j* discrete-time instants.

Similarly as in the case of the control lalal (9), simpliciatden-
positions of2? can be employed to obtain an explicit PWA form of
the control lawg(x), k=0,...,N* — 1, both for its standard and
faster variants presented above.

Remark 5.3 In general, existence of a finite, commiirsuch that
all LPs [10) are feasible is not guaranteed. If a certain uppand

on N is reached, theff-line synthesis procedure is stopped and
Alg. Bl is employed to further partition the sg?. In the “worst”
case, the partitioning converges to the maximal contrt@labbset

of &7 with respect to#, which ultimately recovers the “one-step
controllable sets” partition of the state-space. Howeifes, so-
lution is found for a finiteN, there is no need to further partition
22, which can result in a significant complexity reduction, @is i
illustrated for the case studies presented in Sec. 7.

Sufficient conditions for feasibility of the LPE({10) can be-o
tained as follows. Consider the set

Ep:={ecint(PB) | U : x*=AC+BU}.

If £% # 0 and the Minkowski function of the polytop# is a local
control Lyapunov functior{[24] for systerl(2), there alwayssts a
Ni > 1 such that the LPET10) are feasible forial 1,... . #7 ().
Then interpolation becomes feasible as control sequericual
length can be obtained via augmentation with a suitablercbat-
tion us!', which corresponds to som@' € &5. Notice that the same
assumptions were employed[in[19], where only obstacledavaie
specifications were considered and polyhedral LFs weremragl

In this respect, the proposed vertex interpolation sahufiar
solving Prob[ 5.2 can be regarded as a relaxation of stamakzrd
polation synthesis methods, where existence of a closguldqui-
librium is assumed.

Polyhedral LFsHowever, if&5 # 0, a simpler explicit PWA so-
lution to Prob[5.P can be obtained via polyhedral LFs, sag, e
[19,25], as follows. Let(x) := max—1,. wWa.(Xx—x%), where
w > n+ 1 is the number of lines of the matrik, andx® € &4, de-
note the Minkowski function of the polytop#’. Next, consider the

constructed as follows:
G = {x€ P|We —Wje)(x—%%) >0, j=1,..., WU {x°}.

Notice thatUi—o . w% = & and in(4}) Nint(%}) = 0 for all i #
j. Letp € R with 0 < p < 1 denote a desired convergence rate.
Consider the PWA control law

g(x) :=Kix+a if xe% (12)
and the following feasibility LP in the variables;, i }i—1 . w, to
be solvedff-line:

PWe (X —X%) =W (AX+Bg(x) —x°) > 0,

vxe ¥ (6),Vi=1,...,w,
Kix+g €U, Vi=1,...,w,
(A+Ki)X+a =%, Vi=1..,w (13)

Notice thatp can be minimized to obtain an optimal convergence
rate and a differenp; can be assigned to each co#ie while (13)
remains a LP.

Proposition 5.4 Suppose that the LL3) is feasible. Then the
function.# is a Lyapunov function and” is a p-contractive set
for system(2) in closed-loop with the PWA control laf@2), with
respect to the equilibriun® € int(%).

The proof of Prod. 54 is a straightforward application ofrT:Hll.6
from [25] and it is omitted for brevity.

Letting k" := argmin(k > 1 | pk,@ C %}, one obtains that all
trajectories of systeni}(2) in closed-loop with{12) thattsia .22
reachZ in at mosk* discrete-time instants. Thus, the PWA control
law (12) solves Prob.5.2. Than-lineevaluation of[(IP) reduces to
a point location problem that can be solved in logarithnmitetidue
to the specific conic partition.

6. COMPLETE CONTROL STRATEGY

The proposed control strategy that solves Frob. 3.1 is ceatho
of a finite state generator automateff and a magvl from tran-
sitions of 27 to state feedback controllers. The automatsh =
(QF,—C,1¢,1€,Q§,FC) is constructed from the dual automaton
/PR = (QPR, —Pr Pr 1Dr QD% FDr) and it results from AlgCR
as follows:

Q® ={qe Q= |I"(q) <},

=C ={(a.9)3((a.q)) <, (q.q) e-r},

rC :rDR7

©© Q=T %) ={p|[pInZq#0}

Qf =pnac,

FC =FDr, (14)

The state feedback controllers assignedvbgre constructed as
described in Se€l5. Existence of these controllers areagtesd,
since<C has only finite cost transitions.

Given a state € P, of system[(2) for someg € Qg, there ex-
ists an accepting rur: = dods .. . gg of «#C. The run corresponds
to a control sequendd,. = M((qo,q1)),---,M((dg4—1,0q))- Start-
ing from xg € P, the state feedback controll®f((do,d1)) is
applied to systen{{2) until the trajectory reacti®g,. Then, the
applied feedback controller switchesNt((q1,0)). This process
continues until the trajectory reachgdy, while M((gq—1,0d4)) is
applied.

The union of the regions corresponding to the initial staies
automatonwzC defines the set of initial system stafég, such that
closed-loop trajectories originating Xy satisfy formula®:

qeQ§

For a given accepting rurc = goQs ...qq of <€, the time re-
quired to satisfy the specification for trajectories oraing in g,
is upper bounded by~ J((i, Gi-1)) whenMy, =M((do,d1)). .-,
M((aq_1,0q)) is applied. If the control sequences are chosen ac-
cording to shortest paths for eaghe< Qg, the time required to sat-
isfy the specification starting from any stagee Xg of system[(R)
is upper bounded by M- JP(qo). Moreover, the control se-
guences can also be chosen to minimize the number of cantroll
switches. In this case, the number of maximum controlletchveis
for the trajectories originating iy is bounded by MK e (o),

whereJ(gp) is the minimal length of an accepting runefC start-
ing from qp.

The following theorem states that when the refinement alyori
terminates, the proposed solution to Pfob] 3.1 is correttcam-
plete.

(15)



Theorem 6.1 Suppose Ald.12 terminates, then any closed-loop tra-
jectory that originates ifKq satisfies the formule® and any trajec-
tory of system(2) that produces a wond € %y originates irXg.

PROOF The proof that all the trajectories of the closed loop sys-
tem satisfy the formula follows immediately from Prép.J4ibce
Xo = XR.

To show that any satisfying trajectory originatesXig, assume
by contradiction that there exisp ¢ Xp such thatgx; ...Xq is a
satisfying trajectory of systeril(2), i.6%P;...Py € Z». Then by
Prop[4.2, there exists an accepting rgn= dods - . . dq Of the ini-
tial dual automatonz®o such that, € Pq, ¥k=0,...,d. Therun
rp induces a unique refined dual automaton rgn= qyqj ... g
whereq andgy coincide orgj is obtained fronmy through parti-
tioning andxy € @q{( C Py forallk=0,....d.

Let r’DR = Og0s, - --Os, b€ obtained by eliminating consecutive
duplicates inrpr. Then, for each =0,...,d' - 1,5 < 5,1 and
Xy € 32’% forallk=s,5+1,...,5.1—1. Then,xy & Xp indi-
cates thatl®(qs,) = . Hence, eithePos( P, ) N Pq,,, =0 or
J((0s,0s.,)) = o for somei =0,...,d". Lets be the maximal
index wherePos{ Zq, ) N Pq, , =0 0orJ((ds,0s.,)) = . There-
fore, J((s,,Gs,,)) < ©, Vk=i+1,....d —1 andJP(qs,) < =,
vk=i+1,...,d". As Alg.[2 terminates, it holds that

Pos{ 2q)( ) { U

JP(qf) <o, (q.q ) €—0°

Wq/} -0 (16)

for all g with JP(q) = co. ConsequentlyPos{ Zq, ) N Pq, | =
0. Asxs,,—1 € Pq, andxs,, € Py, ,, there is no controli € U
that satisfiests,, = Axs,,—1+Bu. Thereforexgx;...xq is not a
trajectory of systen{{2) and thus, we reached a contradictib]

Remark 6.2 As shown in Prop_415, Ald.]2 establishes a set iter-
ation which produces a monotonically increasing, with eesgo

set inclusion, sequence of sets described by unions of quept
Thm.[6.1 states that when this iteration converges in finite t
then the maximal set of satisfying states has been obtaifibig.

is possible whenever the maximal set is a polytope or a union o
polytopes. As this is not necessarily the case for any spatiifin,

in practice, to guarantee finite time termination, an aréfistop-
ping criterion can be used, such as, e.g., the size of therratfi
satisfying states of systei] (2).

Remark 6.3 The complexity of the proposed solution can be an-
alyzed in two aspects: off-line and on-line parts. The caxipy

of the off-line part essentially depends on the number o&itens
required to reach the stopping criterion of Alg. 2. At eaaat
tion, Alg.[2 involves shortest path computation, basic pebjral
operations and linear programming. The on-line part dedftstive
generation of the control input for systefd (2) and invohiegsar
programming.

7. IMPLEMENTATION

AND CASE STUDIES

The proposed computational framework was implemented as a
Matlab software package, which is freely downloadable from
hyness. bu. edu/ sof t war el The toolbox takes as input a
scLTL formula over a set of linear predicates, the matricesa o
discrete-time linear system, and the control constraettsasd pro-
duces a solution to Prdb._38.1 in the form of a set of initialegand
a state-feedback control strategy. The tool, which ssheck22]

for the construction of the FSA and MPT |26] for polyhedrakop
ations, also allows for displaying the set of initial stad@sl simu-
lating the trajectories of the closed-loop system for 2D Drsgate-
spaces.

7.1 Case Study 1 : Double Integrator

Obstacle avoidance for double integrators is a particulerhl-
lenging problem([18]. The discrete-time double integratgmam-
ics with sampling time of 1 second are of the form given in Eqn.

@), where
11
A=lo e

We assume that the control constraint set is giverUby {u |
—2<u<2}. The control specification is to visit regi@nor region
B, and then the target regidh while always avoiding obstaclés;
andQy, and staying inside a safe region givenX®y= {x | —10 <
X1 < 1.85—-10 < xp < 2}. The setsX,U and the obstacle®1
andO, are the same as the ones usedin [18]. All these polytopic
regions, together with the linear predicates used in thefindions,
are shown in Fid.5 (a). Using these predicates, the speaiiiczan
be written as the following scLTL formula:

D2 = ((PoA PLA P2 A P3A—(PaAPs) A=(—PsA—Pe A P7)) %
(—pg A Po A—=p1oA P11)) A (—~(—pg A Pa A=p1oA P11) % ((Ps A
—p12/A~P13) V (=Ps A =P7 A P14/ P1s))).-

The FSA that accept¥y, has 3 states and 6 transitions. The
DNF simplification deletes 2425 conjunctive clauses withpgm
state regions. The initial dual automaton has 72 states 46d 2
transitions; 3 of the states and 1921 of the transitionser®ved
via the pruning algorithm. After 183 iterations of the refimnt
algorithm, 228 of the dual automaton states have finite cbse
maximal set of initial states and a sample of satisfyingetragries
of the closed loop system are shown in Figl 6b. Every trajgcto
originating inXg satisfies the specification within 20 discrete-time
instants. The polytope-to-polytope controllers are sgsited us-
ing vertex interpolation. The computation took 10 minut@sao
iMac with a Intel Core i5 processor at8Hz with 8GB of mem-
ory.

As discussed in the paper, the upper time bound is affectéueby
choice of candidate polytopes for partitioning. In this rexde, a
transition is selected from the candidate set accordingaaost of
the target state as described in AT§. 2. Our experiments ethtat
choosing the state with the highest Chebychev ball radisisites
in a faster coverage (117 iterations). However, it also pced a
higher time bound of 28 steps.

For the double integrator dynami¢s]17), the control styatke-
veloped in this paper was also tested for a classical cospexdifi-
cation, i.e., computation of the maximal constrained agnitwari-
ant set withinX. The method converged to the actual maximal set
for the dynamicg(117) and the given s&sndU, which is an indi-
cation of the non-conservatism of the vertex interpolatizethod
that solves Prolp. 5.2.

7
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7.2 Case Study 2 : Triple Integrator

Consider a triple integrator with sampling time of 1 secamldose
dynamics are described by Eqnl (2) with
7]

1 1 05 0.16

01 1|,B=| 05
0 0 1 1

andU = {ueR| -2 <u<2}. The specification is to reach a target

region T, while always staying inside a safe s&tand avoiding

A= (18)



hyness.bu.edu/software

Figure 5: Case study 1: (a) The regions and the correspondiniinear predicates. The predicates are shown in the half plaes where
they are satisfied; (b) The set of satisfying initial state&g (yellow region) and some trajectories of the closed loop stgm (the initial

states are marked by circles).

obstacle€); andQ,, where
T={x|-05<x <05,i=1,23}
X={x|-4<x<4i=123}
01={x|05<x1<4,-4<x,<4,-4<x3<05,}
O ={x|-4<x1<-05-4<x<42<x3<4}.

These regions, which are all boxes (i.e., hyper-rectamguoéy-

trollers such that all the resulting trajectories of theresponding
closed-loop system satisfy the given specifications. Theldped
procedure is based on the iterative construction and reénewof
an automaton that enforces the satisfaction of the formunter-
polation and polyhedral Lyapunov function based approselere
proposed to compute the polytope-to-polytope controffershe
transitions of the automaton. The algorithms developetimpa-
per were implemented as a software package that is available

topes), are shown in Fii] 6 (b). Each box is represented using download. Their application and effectiveness were deinaiesl

six predicates, one for each facet, whéeg, ¢ ;,¢' ] = —Is,
i=0,6;[c’.¢l 1.6 5] =13,i1=39;d=4,i=0,...,5,d =05 =

6,...,11 andc;» = —e3, d1p = 2. The specification can be formally
stated as the following scLTL formula:

D3 = (Po/APLAP2AP3APaAPsA—(P3A =PI A PLA PaA P2 A
P11) A =(PoA—Ps A PLA PaAPr2APs)) % (Ps /A P7 A PgA P
P1oA P11)-

The FSA that accept¥yp, has 2 states and 3 transitions. The
DNF simplification deletes 21 conjunctive clauses with gngpate
regions. The initial dual automaton has 16 states and 225itra
tions, and 101 of the transitions are removed via the pruaigg-
rithm. The refinement algorithm terminates after 4790 tteres
and the refined dual automaton has 3612 states with finite Xgst
and a sample of satisfying trajectories are shown in[Hig. 6teN

that X covers 37% of the obstacle free safe region and any tra-

jectory originating inXg satisfies the specification in less than 10
steps. This computation took approximatively 5 hours ushey
same computer as in the Case Study 1.

In this experiment, the candidate states for partitionirggco-
sen according to the Chebychev ball radius. This exampleepis
a worst case scenario for the developed framework, sincé ofios
the encountered controller synthesis problems of the typk.[B.2
were infeasible, and the states were partitioned until mb#tem
became a beacon for a transition. Only 162 out of 6578 tiansit
controllers were not one-step controllers.

8. CONCLUSIONS

This paper considered the problem of controlling disctete
linear systems from specifications given as formulas of astipt
cally co-safe linear temporal logic over linear predicatehe state
variables of the system. A systematic procedure was desélfgy
the automatic computation of sets of initial states andtiaekl con-

for two challenging case studies.
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