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ABSTRACT
This paper considers the problem of controlling discrete-time lin-
ear systems from specifications given as formulas of syntactically
co-safe linear temporal logic over linear predicates in thestate vari-
ables of the system. A systematic procedure is developed forthe
automatic computation of sets of initial states and feedback con-
trollers such that all the resulting trajectories of the corresponding
closed-loop system satisfy the given specifications. The procedure
is based on the iterative construction and refinement of an automa-
ton that enforces the satisfaction of the formula. Interpolation and
polyhedral Lyapunov function based approaches are proposed to
compute the polytope-to-polytope controllers that label the transi-
tions of the automaton. The algorithms developed in this paper
were implemented as a software package that is available fordown-
load. Their application and effectiveness are demonstrated for two
challenging case studies.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Control theory; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Formal methods

Keywords
Linear temporal logic, Automata theory, Constrained control,
Polytope-to-polytope control, Polyhedral Lyapunov functions

1. INTRODUCTION
Temporal logics, such as linear temporal logic (LTL) and com-

putation tree logic (CTL), and model checking algorithms [1] have
been primarily used for specifying and verifying the correctness
of software and hardware systems. In recent years, due to their
expressivity and resemblance to natural language, temporal log-
ics have gained increasing popularity as specification languages in
other areas such as dynamical systems [2–6], biology [7–9],and
robotics [10–14]. These new application areas also have empha-
sized the need for formal synthesis, where the goal is to generate a
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control strategy for a dynamical system from a specificationgiven
as a temporal logic formula. Recent efforts resulted in control algo-
rithms for continuous and discrete-time linear systems from spec-
ifications given as LTL formulas [3, 6], motion planning and con-
trol strategies for robotic systems from specifications given in µ-
calculus [11], CTL [12], LTL [13], and fragments of LTL such as
GR(1) [5,10] and syntactically co-safe LTL [14].

In this paper, we consider the following problem: given a discrete-
time linear system and a syntactically co-safe LTL formula [15]
over linear predicates in the states of the system, find a set of ini-
tial states, if possible, the largest, for which there exists a con-
trol strategy such that all the trajectories of the closed-loop sys-
tem satisfy the formula. The syntactically co-safe fragment of LTL
is rich enough to express a wide spectrum of finite-time proper-
ties of dynamical systems, such as finite-time reachabilityof a tar-
get with obstacle avoidance (“go toA and avoidB andC for all
times before reachingA”), enabling conditions (“do not go toD
unlessE was visited before”), and temporal logic combinations
of the above. For example, the syntactically co-safe LTL formula
“(¬O U T)∧ (¬T U (R1 ∨R2))” requires convergence to target
regionT through regionsR1 or R2 while avoiding obstacleO.

Central to our “language-guided” approach to the above problem
is the construction and refinement of an automaton that restricts the
search for initial states and control strategies in such a way that
the satisfaction of the specifications is guaranteed at all times. The
states of the automaton correspond to polytopic subsets of the state-
space. Its transitions are labeled by state-feedback controllers that
drive the states of the original system from one polytope to another.
We propose techniques based on vertex interpolation and polyhe-
dral Lyapunov functions (LFs) for the construction of thesecon-
trollers. The refinement procedure iteratively partitionsthe state
regions, modifies the automaton, and updates the set of initial sat-
isfying states by performing a search and a backward reachability
analysis on the graph of the automaton. The automaton obtained
at the end of the iteration process provides a control strategy that
solves the initial problem.

The contribution of this work is twofold. First, we provide a
computational framework in which the exploration of the state-
space is “guided” by the specification. This is in contrast with exist-
ing related works [6,16], in which an abstraction is first constructed
through the design of polytope-to-polytope feedback controllers,
and then controlled by solving a temporal logic game on the ab-
straction. By combining the abstraction and the automaton control
processes, the method proposed in this paper avoids regionsof the
state-space that do not contain satisfying initial states,and is, as a
result, more efficient. In addition, it naturally induces aniterative
refinement and enlargement of the set of initial conditions,which
was not possible in [16] and was not formula-guided in [6].



Second, this paper provides an extension of previous results on
obstacle avoidance [17–19] in certain directions. For example, it
provides a systematic way to explore the feasible state-space from
“rich” temporal logic specifications that are not limited togoing
to a target while avoiding a set of obstacles. Furthermore, it does
not necessarily involve paths characterized by unions of overlap-
ping polytopes and the existence of artificial closed-loop equilib-
ria. Also, as a byproduct, the approach developed in this paper
provides an upper bound for the time necessary to satisfy thetem-
poral logic specifications by all the trajectories originating from the
constructed set of initial states.

The remainder of the paper is organized as follows. We re-
view some notions necessary throughout the paper in Sec. 2 be-
fore formulating the problem and outlining the approach in Sec. 3.
The iterative construction of the abstraction is presentedin Sec. 4.
The LP-based algorithms for solving polytope-to-polytopecontrol
problems are described in Sec. 5. The main theorem is stated in
Sec. 6, while illustrative examples are shown in Sec. 7. Conclu-
sions are summarized in Sec. 8.

2. NOTATION AND PRELIMINARIES
In this section, we introduce the notation and provide some back-

ground on temporal logic and automata theory. For a setS , int(S ),
Co(S ), #S , and 2S stand for its interior, convex hull, cardi-
nality, and power set, respectively. Forλ ∈ R andS ⊂ R

n, let
λS := {λx|x ∈ S }. We useR, R+, Z, andZ+ to denote the
sets of real numbers, non-negative reals, integer numbers,and non-
negative integers. Form,n ∈ Z+, we useRn andRm×n to denote
the set of column vectors and matrices withn andm×n real entries.
In ∈ Rn×n stands for then×n identity matrix. For a matrixA, Ai•
andA• j denote itsi-th row and j-th column, respectively. Given a
vectorx∈ Rn, ‖x‖ denotes itsp-norm (the value ofp will be clear
from the context).

A polyhedron (polyhedral set) inRn is the intersection of a fi-
nite number of open and/or closed half-spaces. A polytope isa
compact polyhedron. We useV (P) to denote the set of vertices
of a polytopeP . Both theV -representation (Co(V (P))) and the
H -representation ({x ∈ Rn | HPx ≤ hP}, where matrixHP and
vectorhP have suitable dimensions) [20] of a polytopeP will be
used throughout the paper.

In this work, the control specifications are given as formulas of
syntactically co-safe linear temporal logic (scLTL).

Definition 2.1 [21] A scLTL formula over a set of atomic propo-
sitionsP is inductively defined as follows:

Φ := p|¬p|Φ∨Φ|Φ∧Φ|Φ U Φ| © Φ| ♦ Φ, (1)

wherep is an atomic proposition,¬ (negation),∨ (disjunction),∧
(conjunction) are Boolean operators, and© (“next”), U (“un-
til”), and ♦ (“eventually”) are temporal operators.

The semantics of scLTL formulas is defined over infinite words
over 2P as follows:

Definition 2.2 The satisfaction of a scLTL formulaΦ at position
i ∈ Z+ of a word w over 2P, denoted bywi |= Φ, is recursively
defined as follows: 1) wi |= p if p∈ wi , 2) wi |= ¬p if p 6∈ wi , 3)
wi |= Φ1∨Φ2 if wi |= Φ1 or wi |= Φ2, 4) wi |= © Φ if wi+1 |= Φ,
5) wi |= Φ1 U Φ2 if there existsj ≥ i such thatw j |= Φ2 and for
all i ≤ k < j wk |= Φ1, and 6) wi |= ♦ Φ if there existsj ≥ i such
thatw j |= Φ.

A word w satisfies a scLTL formulaΦ, written asw |= Φ, if
w0 |= Φ.

An important property of scLTL formulas is that, even though
they have infinite-time semantics, their satisfaction is guaranteed
in finite time. Explicitly, for any scLTL formulaΦ over P, any
satisfying infinite word over 2P contains a satisfying finite prefix.
We useLΦ to denote the set of all (finite) prefixes of all satisfying
infinite words.

Definition 2.3 A deterministic finite state automaton (FSA) is a
tuple A = (Q,Σ,→A ,Q0,F) whereQ is a finite set of states,Σ
is a set of symbols,Q0 ⊆ Q is a set of initial states,F ⊆ Q is a
set of final states and→A ⊆ Q×Σ×Q is a deterministic transition
relation.

An accepting runrA of an automatonA on a finite wordw =
w0w1 . . .wd overΣ is a sequence of statesrA = q0q1 . . .qd+1 such
thatq0 ∈ Q0, qd+1 ∈ F and(qi ,wi ,qi+1) ∈→A for all i = 0, . . . ,d.
The set of all words corresponding to all of the accepting runs of
A is called the language accepted byA and is denoted asLA .

For any scLTLΦ formula overP, there exists a FSAA with in-
put alphabet 2P that accepts the prefixes of all the satisfying words,
i.e., LΦ [21]. There are algorithmic procedures and off-the-shelf
tools, such asscheck2[22], for the construction of such an automa-
ton.

Definition 2.4 A finite state generator automaton is a tupleA =
(Q,→A ,Γ,τ,Q0,F) whereQ is a finite set of states,→A ⊆ Q×Q
is a non-deterministic transition relation,Γ is a set of output sym-
bols,τ : Q→Γ is an output function,Q0 ⊆Q is a set of initial states
andF ⊆ Q is a set of final states.

An accepting runrA of a finite state generator automaton is a
sequence of statesrA = q0q1 . . .qd such thatq0 ∈ Q0, qd ∈ F and
(qi ,qi+1) ∈→A for all i = 0, . . . ,d−1. An accepting runrA pro-
duces a wordw= w0w1 . . .wd overΓ such thatτ(qi) = wi , for all
i = 0, . . . ,d. The output languageLA of a finite state generator
automatonA is the set of all words that are generated by accepting
runs ofA .

3. PROBLEM FORMULATION
Consider a discrete-time linear control system of the form

xk+1 = Axk+Buk, xk ∈ X, uk ∈ U, (2)

whereA∈ Rn×n andB∈ Rn×m describe the system dynamics and
xk ∈ X ⊂ Rn anduk ∈ U ⊂ Rm are the state and applied control at
time k∈ Z+, respectively.

Let P = {pi}i=0,...,l for somel ≥ 1 be a set of atomic proposi-
tions given as linear inequalities inRn. Each atomic propositionpi
induces a half-space

[pi ] := {x∈ R
n | c⊤i x+di ≤ 0}, ci ∈ R

n
,di ∈ R. (3)

A trajectoryx0x1 . . . of system (2) produces a wordP0P1 . . .where
Pi ⊆P is the set of atomic propositions satisfied byxi , i.e.,Pi = {p j |
∃ j ∈ {0, . . . , l},xi ∈ [p j ]}. The specifications are given as scLTL
formulas over the set of predicatesP. A system trajectory satisfies
a specification if the word produced by the trajectory satisfies the
corresponding formula. The main problem considered in thispaper
can be formulated as follows:

Problem 3.1 Given a scLTL formulaΦ over a set of linear pred-
icatesP and a dynamical system as defined in Eqn. (2), construct
a set of initial statesX0 and a feedback control strategy such that
all the words produced by the closed-loop trajectories originating
in X0 satisfy formulaΦ.



We propose a solution to the above problem by relating the con-
trol synthesis problem with a finite state generator automaton (Def.
(2.4)), whose states correspond to polyhedral subsets of the sys-
tem state-space and whose transitions are mapped to state feedback
controllers. This automaton will be constructed as the dualof the
automaton that accepts the language satisfying formulaΦ. Its states
will be refined until feasible polytope-to-polytope control problems
are obtained. This approach reduces the controller synthesis part of
Prob. 3.1 to solving a finite number of polytope-to-polytopecontrol
problems.

The proposed solutions to polytope-to-polytope controller syn-
thesis will supply a worst case time bound such that every trajec-
tory originating from the source polytope reaches the target poly-
tope within the provided time bound. These bounds can be further
used to compute an upper time bound for a given initial state,such
that the trajectory starting from this state satisfies the specification
within the computed time bound.

4. AUTOMATON GENERATION
AND REFINEMENT

In this section, we present algorithms for the constructionand
refinement of the dual automaton that corresponds to a desired set
of LTL specifications.

4.1 FSA and dual automaton
All words that satisfy the specification formulaΦ are accepted

by a FSAA = (Q,2P
,→A ,Q0,F). The dual automatonA D =

(QD,→D,ΓD,τD,QD
0 ,F

D) is constructed as a finite state genera-
tor automaton by interchanging the states and the transitions of the
automatonA . As the transitions ofA become states ofA D, ele-
ments from 2P label the states and define polyhedral sets within the
state-space of system (2).

Definition 4.1 Given a FSAA = (Q,Σ,→A ,Q0,F), its dual au-
tomaton is a tupleA D = (QD,→D,ΓD,τD,QD

0 ,F
D) where

QD = {(q,σ ,q′) | (q,σ ,q′) ∈→A },

→D = {((q,σ ,q′),(q′,σ ′
,q′′)) | (q,σ ,q′),(q′,σ ,q′′) ∈→A },

ΓD = 2P
,

τD : QD → ΓD
, τD((q,σ ,q′)) = σ ,

QD
0 = {(q0,σ ,q) | q0 ∈ Q0},

FD = {(q,σ ,q′) | q′ ∈ F}.

Informally, the states of the dual automatonA D are the transitions
of the automatonA . A transition is defined between two states of
A D if the corresponding transitions are connected by a state inA .
The set of output symbols ofA D is the same as the set of symbols
of A . For a state ofA D, the output function produces the symbol
that enables the transition inA . The set of initial statesQD

0 of A D

is the set of all transitions that leave an initial state inA . Similarly,
the set of final statesFD of A D is the set of transitions that end in a
final state ofA . The construction ofA D guarantees that any word
produced byA D is accepted byA :

Proposition 4.2 The output language of the dual automatonA D

coincides with the language accepted by the automatonA , i.e.,
LA = LA D .

The proof of Prop. 4.2 follows directly from the definitions of the
automata and is omitted for brevity.

4.1.1 Automaton Representation
A FSA A that accepts the language of a scLTL formulaΦ over

P is constructed with the toolscheck2[22]. This tool labels each
transition of the produced FSA with a disjunctive normal form
(DNF) C1 ∨C2 ∨ . . .∨Cd, where eachCi is a conjunctive clause
overP. This is a compact representation of the corresponding FSA
in which each transition is labeled by a conjunctive clause.

In what follows, we usePq ⊆ X to denote the set of states of
system (2) that satisfy the Boolean formula of a dual automaton
stateq. Given a DNF formulaD=C1∨C2∨ . . .∨Cd, PCi := [pi1]∩
. . .∩ [pic] denotes the set of states of system (2) that satisfyCi =

pi1 ∧ . . .∧ pic wherei j ∈ 0, . . . , l ,∀ j ∈ 1, . . . ,c andPD := ∪d
i=1PCi

denotes the set of states of system (2) that satisfyD.
While constructing the dual automaton, each of the conjunctive

clauses is used as a separate transition, which ensures thatall cor-
responding subsets of the state-space are polyhedra. Before con-
structing the dual automaton each DNF formulaC1∨C2∨ . . .∨Cd
is simplified by applying the following rules:

• Empty set elimination: Ci is eliminated if the corresponding
region is empty, i.e.,PCi = /0. The symbols that satisfy such
clauses can not be generated by the system trajectories.

• Subset elimination: Ci is eliminated if its corresponding set
is a subset of the set corresponding toCj , j 6= i, i.e.,PCi ⊆
PCj . The system states that satisfyCi also satisfyCj which
enables the same transition.

Even though these simplifications change the language of the
dual automaton, it can be easily seen that the set of corresponding
satisfying trajectories of system (2) is preserved.

Example 4.3 A simple example is used to explain the construction
routines. Consider the following scLTL formula:

Φ1 = (p0∧ p1∧ p2) U (p1∧ p2∧ p3∧ p4) (4)

over P = {p0, p1, p2, p3, p4}, wherec0 = [−1,1]⊤, d0 = 0, c1 =
[1,1]⊤, d1 = 4, c2 = [0,1]⊤, d2 = −0.1, c3 = [−1,0]⊤, d3 = −3,
c4 = [1,0]⊤, d4 = 5. The trajectories that satisfyΦ1 evolve in the
region [p0]∩ [p1]∩ [p2] until they reach the target region[p1]∩
[p2]∩ [p3]∩ [p4]. The regions defined by this set of predicates are
given in Fig. 1. The compact representation of a FSA that accepts
the language satisfying formulaΦ1 is shown in Fig. 2. For example,
the transition from the state labeled with “0” to the state labeled
with “1”, which is labeled by(p4 ∧ p3∧ p2∧ p1), corresponds to
two transitions labeled by{p0, p1, p2, p3, p4} and{p1, p2, p3, p4},
respectively.

¬p0

¬p1

¬p2

¬p3

¬p4p4

p3p2

p1

p0

Figure 1: Half-spaces generated by the linear predicates in
Eqn. (4).

The compact representations of dual automata constructed with
and without simplifying the DNF formulas are shown in Fig. 3,
where a state label corresponds to the subsets of 2P which can be
produced byτD in that state. The simplification deletes(¬p4 ∧
p2∧ p1∧ p0) from the self transition of the state labeled with “0”
in Fig. 2, since the set of states that satisfies this clause isempty.

An accepting runrD = q0q1 . . .qd of A D defines a sequence of
polyhedral setsPq0Pq1 . . .Pqd . Any trajectoryx0x1 . . .xd of the



0

1 T

(¬p4 ∧ p2 ∧ p1 ∧ p0)∨

(p4 ∧ ¬p3 ∧ p2 ∧ p1 ∧ p0)

(p4 ∧ p3 ∧ p2 ∧ p1)

Figure 2: Compact representation of a FSA that accepts the
language satisfying formulaΦ1 in Eqn. (4). The initial states
are filled with grey and the final state is marked with a double
circle.

(p4 ∧ p3 ∧ p2 ∧ p1)

(¬p4 ∧ p2 ∧ p1 ∧ p0)

(p4 ∧ ¬p3 ∧ p2 ∧ p1 ∧ p0)

T

(a)

(p4 ∧ p3 ∧ p2 ∧ p1)

(p4 ∧ ¬p3 ∧ p2 ∧ p1 ∧ p0)

T

(b)

Figure 3: Dual automata for the FSA from Fig. 2: (a) with-
out Boolean simplification; (b) with Boolean simplification. T
stands for the Boolean constant true.

original system (2) withxi ∈ Pqi , i = 0, . . . ,d satisfies the specifi-
cation by Prop. 4.2.

We say that a transition(q,q′) of A D is enabledif there ex-
ists an admissible control law that achieves the transitionfor all
x ∈ Pq. Two conditions are introduced for constructing admis-
sible controllers according to existence of a self transition of the
source stateq. When (q,q) ∈→D, a controllerenablesa transi-
tion (q,q′) if the corresponding closed-loop trajectories originating
in Pq reachPq′ in finite time and remain withinPq until they
reachPq′ . When(q,q) 6∈→D, a transition(q,q′) is only enabled
if there exists a controller such that the resulting closed-loop tra-
jectory originating inPq reachesPq′ at the next discrete-time in-
stant. For every transition ofA D, if a controller that enables the
transition can be constructed, then every resulting closed-loop tra-
jectory originating in∪q0∈QD

0
Pq0 will satisfy the specifications by

Prop. 4.2. However, existence of such controllers is not guaranteed
for all the states of system (2) withinX.

Prob. 3.1 aims at finding a subset ofX for which the polytope-
to-polytope control problems induced by scLTL specifications are
feasible. To this end, first, the dual automaton is pruned by check-
ing the feasibility of transitions and states for the given system (2).
Second, an iterative partitioning procedure based on a combina-
tion of backward and forward reachability will be applied tothe
automaton states, which correspond to polytopic subsets ofX.

4.1.2 Initial Pruning
The feasibility of the transitions of the dual automaton is first

checked by considering the particular dynamics of system (2) and
the setU where the control input takes values.Post(P) denotes
the set of states that can be reached fromP in one discrete-time in-
stant under the dynamics (2). For a transition(q,q′), if Post(Pq)∩
Pq′ = /0, then this transition is consideredinfeasible, since there is
no admissible controller that enables this transition. AsP andU
are polytopes,Post(P) can be computed as follows:

Post(P) = Co({Ax+Bu | x∈ V (P),u∈ V (U)}). (5)

Alg. 1 summarizes the pruning procedure. Once the infeasible
transitions are removed as in line 1, the following feasibility tests

are performed. A state and all of its adjacent transitions are deleted
either if it does not have an outgoing transition and it is nota final
state or if it does not have an incoming transition and it is not an
initial state (line 6). Removing such states and transitions does not
reduce the solution space since such states cannot be part ofany
satisfying trajectory.

Algorithm 1 Initial Pruning ofA D

1: →D:=→D \{(q,q′) | Post(Pq)∩Pq′ = /0}
2: Q̄ := QD

3: while Q̄ 6= /0 do
4: for all q∈ Q̄ do
5: Q̄ := Q̄\{q}
6: if (q 6∈ FD AND {q′ | (q,q′) ∈→D} = /0) OR ( q 6∈ QD

0 AND
{q′ | (q′,q) ∈→D}= /0 ) then

7: QD := QD \{q}
8: Q̄ := Q̄∪ ({q′ | (q,q′) ∈→D}∪{q′ | (q′,q) ∈→D})
9: →D:=→D \({(q,q′) | (q,q′)∈→D}∪{(q′,q) | (q′,q) ∈→D})

10: end if
11: end for
12: end while

4.2 Automaton Refinement
Alg. 1 guarantees that a non-empty polyhedral subset of a source

polytopePq is one-step controllable to the target polytopePq′

corresponding to the transition(q,q′). However, this does not im-
ply the feasibility of the corresponding polytope-to-polytope con-
trol problem. An iterative algorithm is developed to refine the poly-
topePq and hence, the corresponding state of the dual automaton,
whenever the feasibility test fails. Alg. 2 refines the automaton at
each iteration by partitioning the states for which there does not ex-
ist an admissible sequence of control actions with respect to reach-
ing a final state. The algorithm does not affect the states of sys-
tem (2) that can reach a final state region and as such, it results in a
monotonically increasing, with respect to set inclusion, set of states
of system (2) for which there exists an admissible control strategy.

For a transition(q,q′) ∈→D, the set of states inPq that can
reachPq′ in one step is called abeacon. We useBqq′ to denote the
beacon corresponding to transition(q,q′), which can be obtained as
Bqq′ := Pq∩Pre(Pq′), where

Pre(P) := {x∈ X | ∃u∈ U, Ax+Bu∈ P}, ∀P ⊆ R
n
. (6)

If P andU are polytopes, thenPre(P) can be computed via or-
thogonal projection. Given a controller that enables a transition
(q,q′), the costJ((q,q′)) of transition(q,q′) is defined as the worst-
case time bound such that every trajectory originating inPq reaches
Pq′ . The costJP(q) of a stateq is defined as the shortest path cost
from q to a final state on the graph of the automaton weighted with
transition costs.

The refinement algorithm uses three subroutines:ShortestPath,
Partitioning and FeasibilityTest(q,q′). The ShortestPathproce-
dure computes a shortest path cost for every state ofA D using Di-
jkstra’s algorithm [23]. ThePartitioning procedure, which will be
presented in detail in the next subsection, partitions a state region
and modifiesA D accordingly.

TheFeasibilityTest(q,q′) procedure checks if there exists a con-
troller that enables(q,q′) and returns the costJ((q,q′)) of the tran-
sition. The computational aspects of this procedure are presented
in Sec. 5. The cost is set to infinity when no feasible controller is
found. Whenq has a self transition, the procedure checks if there
exists a controller that steers all trajectories originating in Pq to
the beacon of(q,q′), i.e., Bqq′ , in finite time without leaving the
set Pq. Notice that to solve thePq-to-Pq′ problem it suffices



to solve thePq-to-Bqq′ problem, since a trajectory originating in
Pq will reach Pq′ without leavingPq only through the beacon
Bqq′ . By definition, there exists an admissible control action for
all x ∈ Bqq′ such thatPq′ is reached in one step. Ifq does not
have a self transition, the transition(q,q′) is only enabled when
Pq = Bqq′ , sinceBqq′ is the largest set of states inPq that can
reachPq′ in one step.

Algorithm 2 Refinement ofA D

1: for all (q,q′) ∈→D do
2: J((q,q′)) := FeasibilityTest(q,q′ )
3: end for
4: JP := ShortestPath(J,FD)
5: CandidateSet= {(qi ,qj ) | (qi ,qj ) ∈→

D,JP(qi) = ∞,JP(qj ) 6= ∞}
6: while CandidateSet6= /0 do
7: (qs,qd) := minJP(q j )

{(qi ,qj ) | (qi ,qj ) ∈CandidateSet}

8: [A D,J] := Partitioning(A D,qs,(qs,qd))
9: JP := ShortestPath(J,FD)

10: CandidateSet:= {(qi ,qj ) | (qi ,qj ) ∈→
D,JP(qi) = ∞,JP(qj ) 6= ∞}

11: end while

At each iteration of the refinement algorithm, the transition costs
and shortest path costs are updated, and the set of candidatestates
for partitioning is constructed as follows. A stateqi that has an
infinite cost (JP(qi) = ∞) and a transition ((qi ,q j ) ∈→

D) to a state
that has a finite cost (JP(q j )< ∞) is chosen as a candidate state for
partitioning (lines 5 and 10). Then, a stateqs is selected from the
set of candidate states for partitioning by considering thepath costs
in line 7. The algorithm stops when there are no transitions from
infinite cost states to finite cost states, i.e., when the set of candidate
states for partitioning is empty.

4.2.1 Partitioning
A stateq is partitioned into a set of states{q1, . . . ,qd} via a poly-

topic partition ofPq. The transitions of the new states are inher-
ited from the stateq and new states are set as start states ifq∈ QD

0
to preserve the automaton language. The partitioning procedure is
summarized in Alg. 3.

Algorithm 3 Partitioning ofq in {q1, . . . ,qd}

1: QD := (QD \{q})∪{q1, . . . ,qd}
2: for all (q′,q) ∈→D do
3: →D:=→D \{(q′,q)}
4: for i = 1 : d do
5: if Post(q′)∩Pqi 6= /0 then
6: →D:=→D ∪{(q′,qi )}
7: J((q′,qi )) := FeasibilityTest(q′ ,qi )
8: end if
9: end for

10: end for
11: for all (q,q′) ∈→D do
12: →D:=→D \{(q,q′)}
13: for i = 1 : d do
14: if Post(qi)∩Pq′ 6= /0 then
15: →D:=→D ∪{(qi ,q′)}
16: J((qi ,q′)) := FeasibilityTest(qi ,q′)
17: end if
18: end for
19: end for

A heuristic partitioning strategy guided by a transition(q,q′) is
used: the region is partitioned in two subregions using a hyperplane
of the beaconBqq′ . Notice that beacons will always be polytopes,
asPre(Pq′) is a polytope for linear dynamics,U is a polytope and
the intersection of two polytopes is a polytope. The hyperplane
which maximizes the radius of the Chebyshev ball that can fit in

any of the resulting regions is chosen as the partitioning criterion.
Choosing a hyperplane of the beacon ensures that only one of the
resulting states can have a transition toq′. Even if a controller that
enables the transition toq′ does not exist for this state, after further
partitioning the beacon becomes a state itself and the transition is
enabled for it. The employed maximal radius criterion is likely to
result in a less-complex partition, as opposed to iteratively comput-
ing one-step controllable sets toBqq′ , and it is applicable to high
dimensional state-spaces.

LetA Di =(QDi ,→Di ,ΓDi ,τDi ,QDi
0 ,FDi ) denote the dual automa-

ton after refinement iterationi, and letA D0 denote the initial dual
automaton. For a dual automatonA Di , the setXi

0 ⊆ X denotes the
union of the regions corresponding to start states of automatonA Di

with finite path costs, i.e.,

X
i
0 :=

⋃

q∈{q′∈Q
Di
0 |JP(q′)<∞}

Pq ⊆ X. (7)

Example 4.4 Consider system (2) withA= I2, B= I2, U = {u ∈
R2 |0≤u1 ≤ 0.2,−0.1≤ u2 ≤0.2} and specification from1 Ex. 4.3.
A D0 has two states{q1,q2}; both are initial states andq2 is a fi-
nal state. SinceJ((q1,q2)) = ∞, initially only q2 has finite cost
and q1 is a candidate state for partitioning. Using a hyperplane
of Bq1q2 generates the state regions and the automaton shown in
Fig. 4c and Fig. 4d. AsPost(Pq3)∩Pq2 = /0, the transition(q3,q2)
is removed. In the next iterationq1 is partitioned usingBq1q2 and
the algorithm terminates after this iteration, since thereexists a fi-
nite cost automaton path from all states to the final state andthe
candidate set is empty. The control synthesis tools of Sec. 5were
used in this example to check the costs of the transitions.

Proposition 4.5 AssumeX0
0 is non-empty. Given an arbitrary it-

erationi ≥ 1 of Alg. 2, the setXi
0 as defined in Eqn.(7) has the

following properties:
(i) There exists a sequence of admissible control actions such

that every closed-loop trajectory of system(2) originating inXi
0

satisfies formulaΦ, and
(ii) Xi−1

0 ⊆ X
i
0.

PROOF. (i) A finite path cost for a stateq0 ∈ QDi
0 implies that

there exists an automaton runq0q1 . . .qd with J((q j ,q j+1)) < ∞
for all j = 0, . . . ,d − 1 and JP(q0) = ∑d−1

j=0 J((q j ,q j+1)). As a
transition cost is assigned according to the existence of the con-
troller that enables the transition, there exists a controlsequence
that ensures that every closed-loop trajectory originating in Pq0

reachesPqd by following the automaton path. Considering that
removing states and transitions only reduces the language of the
automaton, by Prop. 4.2 it follows thatL

A D0 ⊆ LΦ. Since the
proposed partitioning procedure preserves the language, we have
LA Di ⊆L

A
Di−1 . Consequently,LA Di ⊆LΦ and the resulting tra-

jectories satisfy the formula.
(ii) For anyx ∈ X

i−1
0 , there exists an accepting automaton run

rD = q0q1 . . .qd with x∈ Pq0 andJP(q0) = ∑d−1
j=0 J((q j ,q j+1)) <

∞. Let qs be the state chosen for partitioning at iterationi. Then,
JP((qs)) = ∞ and qs 6= q j for all j = 0, . . . ,d asJP(q j ) < ∞ for
all j = 0, . . . ,d. As only the transitions adjacent toqs are affected
by partitioning,q j ∈ QD

i for all j = 0, . . . ,d and(q j ,q j+1) ∈→
Di

for all j = 0, . . . ,d−1. Therefore,x∈ Pq0, rD = q0q1 . . .qd is an
accepting run ofADi with finite cost and thus,x ∈ Xi

0. Observing
thatx∈ X

i−1
0 was chosen arbitrary completes the proof.

1Note that the automata in Fig. 2 and in Fig. 6a representA D0. For
simplicity the final state labeled byT is not shown in Fig. 6a.
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Figure 4: Automata and their corresponding polytopic state-space partitions for the iterations of Ex. 4.4. The polytopes are shown
with black borders and Xi

0 is shown in yellow. The beacon of transition(q1,q2) is shown in blue. A transition is shown with dashed
line if a controller that enables the transition was not found, otherwise the transition is marked with a time bound.

The automaton refinement algorithms presented in this section
generate a finite set of polytope-to-polytope control problems. Sev-
eral tractable approaches for solving these problems are proposed
in the next section.

5. POLYTOPE-TO-POLYTOPE CONTROL
Enabling a transition(q,q′) requires an admissible control law

that solves thePq-to-Pq′ control problem. By the definition of
Bqq′ , this problem can be decomposed in two subproblems. The
first problem concerns the computation of a control law whichgen-
erates a closed-loop trajectory, for allx∈Bqq′ , that reachesPq′ in
one discrete-time instant. The second problem concerns thecon-
struction of a control law which generates a closed-loop trajectory,
for all x∈Pq, that reachesBqq′ in a finite number of discrete-time
instants. These synthesis problems are formally stated next.

Problem 5.1 Let B,P ∈P(Rn) with B ⊆ Pre(P) and consider
system (2). Construct a state-feedback control lawg : Rn → Rm

such that

Ax+Bg(x) ∈ P , g(x) ∈ U, ∀x∈ B.

Problem 5.2 Let N∈Z≥1, B,P ∈P(Rn) with B ⊆P and con-
sider system (2). Construct a state-feedback control lawg : Rn →
Rm such that for allx∈ P it holds that

x0 := x,

xk+1 = Axk+Bg(xk), ∀k= 0, . . . ,N−1,

xk ∈ P , g(xk) ∈ U, ∀k= 0, . . . ,N−1,

xN ∈ B.

Notice that while Prob. 5.1 is always feasible sinceB ⊆ Pre(P),
Prob. 5.2 needs not be feasible for any setP and corresponding
beaconB. In what follows, sufficient conditions for feasibility of
Prob. 5.2 will be indicated.

Firstly, let us present a vertex interpolation-based solution to
Prob. 5.1. Let{vi}i=1,...,#V (B) denote the set of vertices ofB and

let {ui}i=1,...,#V (B) denote a corresponding set of control actions.
Consider the following set of linear inequalities in the variables
{ui}i=1,...,#V (B):

HP(Avi +Bui)≤ hP ,

HUui ≤ hU. (8)

A solution to (8) can be obtainedoff-line by solving a feasibility
LP. It is trivial to deduce that the control law

g(x) :=
#V (B)

∑
i=1

λiu
i
, (9)

whereλi ∈ R, 0≤ λi ≤ 1, are such thatx = ∑#V (B)
i=1 λivi , solves

Prob. 5.1. The evaluation of the control law (9) requireson-line
calculation of the coefficients{λi}i=1,...,#V (B), which amounts to
solving a system of linear equations and can also be formulated as
a feasibility LP.

Alternatively, an explicit piecewise affine (PWA) form ofg(·)
can be obtained by a simplicial partition ofB. Then, the evaluation
of g requires solvingon-linea point location problem, which con-
sists of checking a finite number of linear inequalities. Although
efficient ways to solve point location problems exist, depending on
the complexity of the partition (number of simplices), the point lo-
cation problem may be more computationally expensive than calcu-
lating the coefficients{λi}i=1,...,#V (B) on-line. Yet another explicit
PWA solution to Prob. 5.1 can be obtaining via direct synthesis of
a PWA control law defined over an arbitrary polytopic partition of
B, which can still be formulated as a LP. While this approach may
lead to a less complex point location problem, however, feasibility
is not necessarily guaranteed for an arbitrary partition.

Next, two approaches are proposed to solve Prob. 5.2, i.e., vertex
interpolation and polyhedral LFs.

Vertex interpolationLet {vi}i=1,...,#V (P) be the vertices ofP

and let{ui}i=1,...,#V (P) denote a corresponding set of finite se-

quences of control actions, whereui := {ui
k}k=0,...,N−1 for all i ∈

Zi=1,...,#V (P) andN∈Z≥1. For eachvi ∈V (P) define the follow-
ing set of linear equality and inequality constraints in thevariables
{ui}i∈Zi=1,...,#V (P)

:

xi
0 := vi

,

xi
k+1 = Axi

k+Bui
k, ∀k= 0, . . . ,N−1,

HPxi
k ≤ hP , HUui

k ≤ hU, ∀k= 0, . . . ,N−1,

HBxi
N ≤ hB . (10)

A solution to the set of problems (10) can be searched foroff-line
by solving repeatedly a corresponding set of feasibility LPs starting
with N = 1, for all i = 1, . . . ,#V (P), and increasingN until a
feasible solution is obtained for all LPs and the same value of N.
Let N∗ ≥ 1 denote the minimalN for which a feasible solution was
found. Then, it is straightforward to establish that for anyx ∈ P ,
the control law

g(xk) :=
#V (P)

∑
i=1

λiu
i
k, k= 0, . . . ,N∗−1, (11)

wherex0 = x andλi ∈R, 0≤ λi ≤ 1, are such thatx=∑#V (P)
i=1 λivi ,

solves Prob. 5.2 and yields closed-loop trajectories that reachB in
at mostN∗ discrete-time instants.

Evaluation of the control lawg of (11) at timek = 0 requires
on-linecalculation of the coefficients{λi}i=1,...,#V (P), which is a
LP, while at everyk = 1, . . . ,N∗−1 the analytic expression ofg is



implemented. However, a faster convergence toB can be obtained

by takingλi ∈ R, 0≤ λi ≤ 1, such thatx= ∑#V (P)
i=1 λixi

j∗ , where

j∗ := argmax{ j ∈ {0, . . . ,N∗} | x∈ Co({xi
j}i=1,...,#V (P))}.

Then, the resulting closed-loop trajectories will reachB in at most
N∗− j∗ discrete-time instants.

Similarly as in the case of the control law (9), simplicial decom-
positions ofP can be employed to obtain an explicit PWA form of
the control lawg(xk), k = 0, . . . ,N∗−1, both for its standard and
faster variants presented above.

Remark 5.3 In general, existence of a finite, commonN such that
all LPs (10) are feasible is not guaranteed. If a certain upper bound
on N is reached, theoff-line synthesis procedure is stopped and
Alg. 3 is employed to further partition the setP . In the “worst”
case, the partitioning converges to the maximal controllable subset
of P with respect toB, which ultimately recovers the “one-step
controllable sets” partition of the state-space. However,if a so-
lution is found for a finiteN, there is no need to further partition
P , which can result in a significant complexity reduction, as it is
illustrated for the case studies presented in Sec. 7.

Sufficient conditions for feasibility of the LPs (10) can be ob-
tained as follows. Consider the set

EB := {xs ∈ int(B) | ∃us ∈ U : xs = Axs+Bus}.

If EB 6= /0 and the Minkowski function of the polytopeP is a local
control Lyapunov function [24] for system (2), there alwaysexists a
Ni ≥ 1 such that the LPs (10) are feasible for alli = 1, . . . ,#V (P).
Then interpolation becomes feasible as control sequences of equal
length can be obtained via augmentation with a suitable control ac-
tion us,i , which corresponds to somexs,i ∈ EB . Notice that the same
assumptions were employed in [19], where only obstacle avoidance
specifications were considered and polyhedral LFs were employed.

In this respect, the proposed vertex interpolation solution for
solving Prob. 5.2 can be regarded as a relaxation of standardinter-
polation synthesis methods, where existence of a closed-loop equi-
librium is assumed.

Polyhedral LFsHowever, ifEB 6= /0, a simpler explicit PWA so-
lution to Prob. 5.2 can be obtained via polyhedral LFs, see, e.g.,
[19, 25], as follows. LetM (x) := maxi=1,...,wWi•(x− xs), where
w≥ n+1 is the number of lines of the matrixHP andxs∈ EB , de-
note the Minkowski function of the polytopeP . Next, consider the
conic polytopic partition{Ci}i=1,...,w of P induced byxs, which is
constructed as follows:

Ci := {x∈ P |(Wi•−Wj•)(x−xs)≥ 0, j = 1, . . . ,w}∪{xs}.

Notice that∪i=0,...,wCi = P and int(Ci)∩ int(C j) = /0 for all i 6=
j . Let ρ ∈ R with 0 ≤ ρ < 1 denote a desired convergence rate.
Consider the PWA control law

g(x) := Kix+ai if x∈ Ci (12)

and the following feasibility LP in the variables{Ki ,ai}i=1,...,w, to
be solvedoff-line:

ρWi•(x−xs)−Wj•(Ax+Bg(x)−xs)≥ 0,

∀x∈ V (Ci),∀ j = 1, . . . ,w,

Kix+ai ∈ U, ∀i = 1, . . . ,w,

(A+Ki)x
s+ai = xs

, ∀i = 1, . . . ,w. (13)

Notice thatρ can be minimized to obtain an optimal convergence
rate and a differentρi can be assigned to each coneCi , while (13)
remains a LP.

Proposition 5.4 Suppose that the LP(13) is feasible. Then the
function M is a Lyapunov function andP is a ρ-contractive set
for system(2) in closed-loop with the PWA control law(12), with
respect to the equilibriumxs ∈ int(B).

The proof of Prop. 5.4 is a straightforward application of Thm. III.6
from [25] and it is omitted for brevity.

Letting k∗ := argmin{k ≥ 1 | ρkP ⊆ B}, one obtains that all
trajectories of system (2) in closed-loop with (12) that start in P

reachB in at mostk∗ discrete-time instants. Thus, the PWA control
law (12) solves Prob. 5.2. Theon-lineevaluation of (12) reduces to
a point location problem that can be solved in logarithmic time due
to the specific conic partition.

6. COMPLETE CONTROL STRATEGY
The proposed control strategy that solves Prob. 3.1 is composed

of a finite state generator automatonA C and a mapM from tran-
sitions ofA C to state feedback controllers. The automatonA C =
(QC,→C,ΓC,τC,QC

0 ,F
C) is constructed from the dual automaton

A DR = (QDR,→DR,ΓDR,τDR,QDR
0 ,FDR) and it results from Alg. 2

as follows:

QC = {q∈ QDR | JP(q)< ∞},

→C = {(q,q′) | J((q,q′))< ∞,(q,q′) ∈→DR},

ΓC = ΓDR,

τC : QC → ΓC
, τC(q) = {p | [p]∩Pq 6= /0},

QC
0 = QD

0 ∩QC
,

FC = FDR. (14)

The state feedback controllers assigned byM are constructed as
described in Sec. 5. Existence of these controllers are guaranteed,
sinceA C has only finite cost transitions.

Given a statex0 ∈Pq0 of system (2) for someq0 ∈QC
0 , there ex-

ists an accepting runrC = q0q1 . . .qd of A C. The run corresponds
to a control sequenceMrC = M((q0,q1)), . . . ,M((qd−1,qd)). Start-
ing from x0 ∈ Pq0, the state feedback controllerM((q0,q1)) is
applied to system (2) until the trajectory reachesPq1. Then, the
applied feedback controller switches toM((q1,q2)). This process
continues until the trajectory reachesPqd while M((qd−1,qd)) is
applied.

The union of the regions corresponding to the initial statesof
automatonA C defines the set of initial system statesX0, such that
closed-loop trajectories originating inX0 satisfy formulaΦ:

X0 =
⋃

q∈QC
0

Pq. (15)

For a given accepting runrC = q0q1 . . .qd of A C, the time re-
quired to satisfy the specification for trajectories originating inPq0

is upper bounded by∑d−1
i=0 J((qi ,qi+1))whenMrC =M((q0,q1)), . . . ,

M((qd−1,qd)) is applied. If the control sequences are chosen ac-
cording to shortest paths for eachq0 ∈ QC

0 , the time required to sat-
isfy the specification starting from any statex0 ∈ X0 of system (2)
is upper bounded by maxq0∈QC

0
JP(q0). Moreover, the control se-

quences can also be chosen to minimize the number of controller
switches. In this case, the number of maximum controller switches
for the trajectories originating inX0 is bounded by maxq0∈QC

0
JL(q0),

whereJL(q0) is the minimal length of an accepting run ofA C start-
ing from q0.

The following theorem states that when the refinement algorithm
terminates, the proposed solution to Prob. 3.1 is correct and com-
plete.



Theorem 6.1 Suppose Alg. 2 terminates, then any closed-loop tra-
jectory that originates inX0 satisfies the formulaΦ and any trajec-
tory of system(2) that produces a wordw∈ LΦ originates inX0.

PROOF. The proof that all the trajectories of the closed loop sys-
tem satisfy the formula follows immediately from Prop. 4.5 since
X0 = X

DR
0 .

To show that any satisfying trajectory originates inX0, assume
by contradiction that there existx0 6∈ X0 such thatx0x1 . . .xd is a
satisfying trajectory of system (2), i.e.,P0P1 . . .Pd ∈ LΦ. Then by
Prop. 4.2, there exists an accepting runrD = q0q1 . . .qd of the ini-
tial dual automatonA D0 such thatxk ∈Pqk , ∀k= 0, . . . ,d. The run
rD induces a unique refined dual automaton runrDR = q′0q′1 . . .q

′
d

whereq′k andqk coincide orq′k is obtained fromqk through parti-
tioning andxk ∈ Pq′k

⊆ Pqk for all k= 0, . . . ,d.
Let r ′DR = qs0qs1 . . .qsd′

be obtained by eliminating consecutive
duplicates inrDR. Then, for eachi = 0, . . . ,d′ − 1, si < si+1 and
xk ∈ Pqsi

for all k = si ,si + 1, . . . ,si+1 − 1. Then,x0 6∈ X0 indi-

cates thatJP(qs0) = ∞. Hence, eitherPost(Pqsi
)∩Pqsi+1

= /0 or
J((qsi ,qsi+1)) = ∞ for somei = 0, . . . ,d′. Let si be the maximal
index wherePost(Pqsi

)∩Pqsi+1
= /0 or J((qsi ,qsi+1)) = ∞. There-

fore, J((qsk ,qsk+1)) < ∞, ∀k = i + 1, . . . ,d′ − 1 andJP(qsk) < ∞,
∀k= i+1, . . . ,d′. As Alg. 2 terminates, it holds that

Post(Pq)
⋂

{

⋃

JP(q′)<∞,(q,q′)∈→DR

Pq′

}

= /0 (16)

for all q with JP(q) = ∞. Consequently,Post(Pqsi
) ∩Pqsi+1

=

/0. As xsi+1−1 ∈ Pqsi
andxsi+1 ∈ Pqsi+1

, there is no controlu∈ U

that satisfiesxsi+1 = Axsi+1−1 +Bu. Thereforex0x1 . . .xd is not a
trajectory of system (2) and thus, we reached a contradiction.

Remark 6.2 As shown in Prop. 4.5, Alg. 2 establishes a set iter-
ation which produces a monotonically increasing, with respect to
set inclusion, sequence of sets described by unions of polytopes.
Thm. 6.1 states that when this iteration converges in finite time
then the maximal set of satisfying states has been obtained.This
is possible whenever the maximal set is a polytope or a union of
polytopes. As this is not necessarily the case for any specification,
in practice, to guarantee finite time termination, an artificial stop-
ping criterion can be used, such as, e.g., the size of the region of
satisfying states of system (2).

Remark 6.3 The complexity of the proposed solution can be an-
alyzed in two aspects: off-line and on-line parts. The complexity
of the off-line part essentially depends on the number of iterations
required to reach the stopping criterion of Alg. 2. At each itera-
tion, Alg. 2 involves shortest path computation, basic polyhedral
operations and linear programming. The on-line part deals with the
generation of the control input for system (2) and involves linear
programming.

7. IMPLEMENTATION
AND CASE STUDIES

The proposed computational framework was implemented as a
Matlab software package, which is freely downloadable from
hyness.bu.edu/software. The toolbox takes as input a
scLTL formula over a set of linear predicates, the matrices of a
discrete-time linear system, and the control constraints set, and pro-
duces a solution to Prob. 3.1 in the form of a set of initial states and
a state-feedback control strategy. The tool, which usesscheck2[22]

for the construction of the FSA and MPT [26] for polyhedral oper-
ations, also allows for displaying the set of initial statesand simu-
lating the trajectories of the closed-loop system for 2D or 3D state-
spaces.

7.1 Case Study 1 : Double Integrator
Obstacle avoidance for double integrators is a particularly chal-

lenging problem [18]. The discrete-time double integratordynam-
ics with sampling time of 1 second are of the form given in Eqn.
(2), where

A=

[

1 1
0 1

]

, B=

[

0.5
1

]

. (17)

We assume that the control constraint set is given byU = {u |
−2≤ u≤ 2}. The control specification is to visit regionA or region
B, and then the target regionT, while always avoiding obstaclesO1
andO2, and staying inside a safe region given byX = {x | −10≤
x1 ≤ 1.85,−10 ≤ x2 ≤ 2}. The setsX,U and the obstaclesO1
andO2 are the same as the ones used in [18]. All these polytopic
regions, together with the linear predicates used in their definitions,
are shown in Fig. 5 (a). Using these predicates, the specification can
be written as the following scLTL formula:

Φ2 = ((p0∧ p1∧ p2∧ p3∧¬(p4∧ p5)∧¬(¬p5∧¬p6∧ p7)) U

(¬p8∧ p9 ∧¬p10∧ p11))∧ (¬(¬p8∧ p9 ∧¬p10∧ p11) U ((p5 ∧
¬p12∧¬p13)∨ (¬p5∧¬p7∧ p14∧ p15))).

The FSA that acceptsLΦ2 has 3 states and 6 transitions. The
DNF simplification deletes 2425 conjunctive clauses with empty
state regions. The initial dual automaton has 72 states and 2452
transitions; 3 of the states and 1921 of the transitions are removed
via the pruning algorithm. After 183 iterations of the refinement
algorithm, 228 of the dual automaton states have finite cost.The
maximal set of initial states and a sample of satisfying trajectories
of the closed loop system are shown in Fig. 6b. Every trajectory
originating inX0 satisfies the specification within 20 discrete-time
instants. The polytope-to-polytope controllers are synthesized us-
ing vertex interpolation. The computation took 10 minutes on a
iMac with a Intel Core i5 processor at 2.8GHz with 8GB of mem-
ory.

As discussed in the paper, the upper time bound is affected bythe
choice of candidate polytopes for partitioning. In this example, a
transition is selected from the candidate set according to the cost of
the target state as described in Alg. 2. Our experiments showed that
choosing the state with the highest Chebychev ball radius resulted
in a faster coverage (117 iterations). However, it also produced a
higher time bound of 28 steps.

For the double integrator dynamics (17), the control strategy de-
veloped in this paper was also tested for a classical controlspecifi-
cation, i.e., computation of the maximal constrained control invari-
ant set withinX. The method converged to the actual maximal set
for the dynamics (17) and the given setsX andU, which is an indi-
cation of the non-conservatism of the vertex interpolationmethod
that solves Prob. 5.2.

7.2 Case Study 2 : Triple Integrator
Consider a triple integrator with sampling time of 1 second,whose

dynamics are described by Eqn. (2) with

A=





1 1 0.5
0 1 1
0 0 1



 ,B=





0.167
0.5
1



 , (18)

andU= {u∈R | −2≤ u≤ 2}. The specification is to reach a target
regionT, while always staying inside a safe setX and avoiding

hyness.bu.edu/software
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Figure 5: Case study 1: (a) The regions and the correspondinglinear predicates. The predicates are shown in the half planes where
they are satisfied; (b) The set of satisfying initial statesX0 (yellow region) and some trajectories of the closed loop system (the initial
states are marked by circles).

obstaclesO1 andO2, where

T= {x | −0.5≤ xi ≤ 0.5, i = 1,2,3}

X= {x | −4≤ xi ≤ 4, i = 1,2,3}

O1 = {x | 0.5≤ x1 ≤ 4,−4≤ x2 ≤ 4,−4≤ x3 ≤ 0.5,}

O2 = {x | −4≤ x1 ≤−0.5,−4≤ x2 ≤ 4,2≤ x3 ≤ 4}.

These regions, which are all boxes (i.e., hyper-rectangular poly-
topes), are shown in Fig. 6 (b). Each box is represented using
six predicates, one for each facet, where[c⊤i ,c

⊤
i+1,c

⊤
i+2] = −I3,

i =0,6; [c⊤i ,c
⊤
i+1,c

⊤
i+2] = I3, i =3,9; di =4, i =0, . . . ,5; di =0.5i =

6, . . . ,11 andc12=−e3, d12= 2. The specification can be formally
stated as the following scLTL formula:

Φ3 = (p0∧ p1∧ p2∧ p3∧ p4∧ p5∧¬(p3∧¬p9∧ p1∧ p4∧ p2∧
p11)∧¬(p0∧¬p6∧ p1∧ p4∧ p12∧ p5)) U (p6∧ p7∧ p8∧ p9∧
p10∧ p11).

The FSA that acceptsLΦ3 has 2 states and 3 transitions. The
DNF simplification deletes 21 conjunctive clauses with empty state
regions. The initial dual automaton has 16 states and 225 transi-
tions, and 101 of the transitions are removed via the pruningalgo-
rithm. The refinement algorithm terminates after 4790 iterations
and the refined dual automaton has 3612 states with finite cost. X0
and a sample of satisfying trajectories are shown in Fig. 6. Note
that X0 covers 37% of the obstacle free safe region and any tra-
jectory originating inX0 satisfies the specification in less than 10
steps. This computation took approximatively 5 hours usingthe
same computer as in the Case Study 1.

In this experiment, the candidate states for partitioning are cho-
sen according to the Chebychev ball radius. This example presents
a worst case scenario for the developed framework, since most of
the encountered controller synthesis problems of the type Prob. 5.2
were infeasible, and the states were partitioned until mostof them
became a beacon for a transition. Only 162 out of 6578 transition
controllers were not one-step controllers.

8. CONCLUSIONS
This paper considered the problem of controlling discrete-time

linear systems from specifications given as formulas of syntacti-
cally co-safe linear temporal logic over linear predicatesin the state
variables of the system. A systematic procedure was developed for
the automatic computation of sets of initial states and feedback con-

trollers such that all the resulting trajectories of the corresponding
closed-loop system satisfy the given specifications. The developed
procedure is based on the iterative construction and refinement of
an automaton that enforces the satisfaction of the formula.Inter-
polation and polyhedral Lyapunov function based approaches were
proposed to compute the polytope-to-polytope controllersfor the
transitions of the automaton. The algorithms developed in this pa-
per were implemented as a software package that is availablefor
download. Their application and effectiveness were demonstrated
for two challenging case studies.
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