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Abstract

We develop a method for generating smooth trajectories for a set of mobile robots. We show that, given two end
configurations of the set of robots, by tuning one parameter, the user can choose an interpolating trajectory from
a continuum of curves varying from that corresponding to maintaining a rigid formation to motion of the robots
toward each other. The idea behind this method is to change the original constant kinetic energy metric in the
configuration space and can be summarized into three steps. First, the energy of the motion as a rigid structure
is decoupled from the energy of motion along directions that violate the rigid constraints. Second, the metric is
“shaped” by assigning different weights to each term, and, third, geodesic flow is constructed for the modified
metric. The optimal motions generated on the manifolds of rigid body displacements in 3-D Spa6¢) (or in

plane (SE(2)) and the uniform rectilinear motion of each robot corresponding to a totally uncorrelated approach

are particular cases of our general treatment.

1 Introduction

Multi-robotic systems are versatile and efficient in exploration missions, military surveillance, and cooperative
manipulation tasks. Recent research on such systems include work on cooperative manipulation [9], multi-robot
motion planning [14], mapping and exploration [8], behavior-based formation control [1], and software architec-
tures for multi-robotic systems [10]. In all these paradigms, the motion planning and controlteathef robots

in formation can be modelled as a trigle, r, H), whereg € SFE(3) represents the gross position and orientation

of the team (for example, the pose of the leader} a set of shape variables that describes the relative positions

of the robots in the team, arHd is a control graph which describes the control strategy used by each robot [7]. In
this paper, we are primarily interested in trajectory and shiagein g andr.

First, we consider the formation of robots as a rigid body, and investigate its motion. Virtual structures have



been proposed in [12] and used for motion planning and coordination and control of space-crafts in [2]. Our
definition of a rigid formation requires the distances between robots, or reference points on robots, to remain fixed.
Such arigid formation is geometrically defined as a polyhedron formed by the reference points of each robot. The
relative orientations of each robot are not restricted in such a rigid formation. To this end, we build on the results
from [15] to generate trajectories that satisfy the rigid formation constraint and the overall energy of motion is
minimized. The optimal problem is reduced to generating geodesi§$)48) andSE(3). Due to the geometrical
framework that we use, the generated trajectories are left invareanindependent of the choice of the inertial
frame{F}.

The rigid formation constraint is too restrictive in many applications. We would like robots to be able to break
formation, cluster together or string themselves out to avoid obstacles, and to regroup to achieve a desired goal
formation at the destination. This paper develops a family of trajectories ranging from the trajectories that are
optimal for a rigid formation on one extreme to independent trajectories that are optimal for each robot on the
other.

We build the geodesic flow of a new metric in the whole configuration space given by collecting the config-
uration spaces of all robots. This new metric is obtained from the naturally induced (constant) kinetic energy
metric dependent on the inertial properties of the robots by first decomposing each tangent space into two metric-
orthogonal subspaces and then assigning different weights to the terms corresponding to rigid and non-rigid in-
stantaneous motions. This idea of a “decomposition” and a subsequent “modification” is closely related to the
methodology of controlled Lagrangians described in [5, 13]. The optimal motions generated on the manifolds of
rigid body displacements in 3-D spac&H/(3)) or in plane §FE(2)) and the uniform rectilinear motion of each

robot corresponding to a completely independent approach are also particular cases of this general treatment.

2 Problem statement and notation

ConsiderN robots moving (rotating and translating) in 3-D space with respect to an inertial frAfheNe choose
a reference point on each robot at its center of nigssA moving frame{ M, } is attached to each robot@j (see

Figure 1).

Robot:i has massn; and matrix of inertiaH; with respect to framé¢M; }. Let R; € SO(3) denote the rotation
of {M;} in {F} andg; € R? the position vector of); in { F'}. Letw; denote the expression {i;} of the angular
velocity of { M;} with respect to{ F'}. Sometimes it is also useful to defindaamation frame{/}, attached at
some virtual poinD’ and with pos€ R, d) € SE(3) in { F'}. Letr; denote the position vectors 6f; in {M}.

The configuration space is the 6N-dimensiofi&l(3)", given by the poses of each robot. Given two configu-
rations at timeg = 0 and¢ = 1 respectively, the goal is to generate smooth interpolating motion for each robot so
that the total kinetic energy is minimized.

The kinetic energyl” of the system of robots is the sum of the individual energies. Since the frahigsvere
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Figure 1: A set ofNV = 3 robots.

placed at the centroid3; of the robots,I" can be written as the sum of the total rotational endrggand the total
translational energ¥; in the form:
1 & 1
T=T,+T, T =5 (o] Hw), T = = > (mid] ¢) (1)
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Due to the decomposition in equation (1), minimizing the total energy is equivalent to sdlvind independent
optimization subproblems:
n;in/lw?Hiwidt, i=1,...,N, 2)
' 1
min/ T,dt 3)
% Jo

whereo; is some parameterization of the rotation{df/;} in {F'}, i.e., some local coordinates a$0(3). The
solutions to equations (2) are given By geodesics oi$'O(3) with left invariant metrics with matricel;. Two
different methods to obtain the solution are given in [15, 3] and a short example is given in Section 6.

Our main focus in this paper is solving problem (3) while certain constraints on the positions of the reference
pointsO; are satisfied. This is why throughout the paper the configuration space we are interested in iSjist the
dimensional) = {q|q = (q1, - . ., qn’), which collects all the position vectors. Even though we envision that more
general problems can be approached, in this paper we restrict to maintaining a rigid formation (virtual structure)

and relaxing the constraint as necessary.

3 Approach

Our approach is geometric. To impose some degree of rigidity to the motion of the reference(points

need to be able to separate the infinitesimal rigid motion from the non-rigid motion at each point in the position
configuration space € Q. It is well known that the rigid body displacementsiR? are elements of a Lie group,

the special Euclidea§ E(3), which can be seen as acting @ Then, if the set of point®); described by € @

are assumed as rigidly coupled at some instant, then the suli@dhaf they can reach at further times is given by



the orbit ofg under the actions o £(3). With this formulation, the separation of instantaneous rigid and non-rigid
motion is simple: at each poigte @, in the tangent spacg, (), decompose the velocityinto a component which

is tangent to the orbit at (this will induce rigid motion) and one which is orthogonal in some metric to the first
(this will produce motion violating the rigid restriction).

The orthogonality of the two components of the velocity will asssure the separability of the terms corresponding
to rigid and non-rigid motion in the kinetic energy, if the metric used for orthogonal decomposition is the kinetic
energy metric. These two terms can be differently weighted to produce a new metric on the configuration space,
for which we can control the amount of energy spent for rigid and non-rigid motions. The geodesic flow for the
modified metric gives the optimal trajectories of the system of robots in the form of a continuum of curves varying
from optimal motion in rigid formation to independent minimum energy motion of each robot.

The mathematical tools that we use are outlined in the next section.

4 Background

4.1 \elocity decomposition

Let Q be the configuration space of a system gna Lie group that acts o€ so that the Lagrangean defined on
TQ is invariant under this action. The state of the system can be described by(a,paiwhereg € G ands is

an element in the complementary sp&gg7, which we will call the shape space. At any pojnE @, a tangent
vectorV, € T;Q can be decomposed into a component which is tange@ttg (the orbit ofg under actions of

G), and a component which is orthogonal (in some metrjc-) to this first component (see Figure 2). Following
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Figure 2: Pointwise decomposition of the tangent space in the vertical and horizontal subspaces

the notation in [5, 13], the spad Orb, is called the vertical space @t Ver,, and its orthogonal complement is
the horizontal space ate @, Hor,. The decomposition of the tangent veckgrinto VerV, (projection ontoVer,)

andHorV, (projection ontator,) is uniquely defined by requiring that metrg > satisfies

112 1 2
<Vy,Vy >=<HorV, ,HorV;" > +

< VerV,VerV} >, V!, V2 € T,Q (4)



4.2 The geometry of rigid body motion

The Lie groupg that we are interested in is the special Euclidean g®a}3), the set of all rigid displacements
in IR?:

R d
SE(3) = {gg { ],REIR3X3, RRT =1, detRl,delR3}.
0 1

The Lie algebra o6 E(3), denoted bye(3), is given by:

w v
se(3) = {gg = { ] L, weRY3 T =—0, ve IR3}
0 0

where is the skew-symmetric matrix form of the vectore R®. Given a curve

R(t) d(t)
0 1

] € SE(3)

an element (¢) of the Lie algebrae(3) can be associated to the tangent veg{oy at an arbitrary point by:

(5)

@ T
c(t>gl(t)g<t>{ ) R d]

0 0
wherew(t) = RTR.
Consider a rigid body moving in free space. Assume any inertial reference frathéxed in space and a

frame{ M } fixed to the body at poir®’ as shown in Figure 3. A curve d%/(3) physically represents a motion of

Y4 {M}

Figure 3: The inertial frame and the moving frame

the rigid body. If{w(¢),v(¢)} is the vector pair corresponding {@¢), thenw corresponds to the angular velocity

of the rigid body whilev is the linear velocity of)’, both expressed in the frand@/}. In kinematics, elements
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of this form are called twists angk(3) thus corresponds to the space of twists. The t@fs} computed from
Equation (5) does not depend on the choice of the inertial frafiie
If Pis an arbitrary point on the rigid body with position vectan frame{ }, then the velocity of in frame
{M} is given by
vp:[—f Ig]c (6)

where( is the twist of the rigid body written in vector forgi= [w’ vT]7.

4.3 The kinetic energy of a moving body - a left invariant metric onS E(3)

For any(1, ¢» € se(3) andG a positive definite matrix, we can define a metfjoaG ¢, on the Lie algebrae(3)
and extend it through left translation throughout the manifokd(3). Letm be the mass of the rigid body from

(Figure 3) andH its matrix of inertia with respect to the body franfé/ }, assumed at the center of mass. Then,

with
H 0
] (7)

0 mI3

L

G:2

the norm induced by the above meti€G( is exactly the kinetic energy of the moving (rotating and translating)
rigid body. Moreover, if{ M} is aligned with the principal axes, thdi is diagonal. In the most general case,
when the framd M } is displaced by som@Ry, dy) from the centroid and the orientation parallel with the principal

axes, we have [15]:

1 | RYHRy —mRYdoRy  a
G=- 0 0 0 7050 ,a:—mRodo
2 —a mls
For a rigid system ofV particles with masses, ..., my and position vectors, ..., ry in the body fixed frame

{M}, the matrix of the (left invariant) kinetic energy metric 8#&(3) is [4]:

— SN 2 N P
M _ |: Zi:l [ Zz:l e ] (8)

- Zz]\il mit' Zz]\il mil3
The upper lef8 x 3 submatrix of M is the inertia matrix of the system of particles with respecitié}. If frame
{M} is placed at the center of mass and aligned with the principal axes of the structur#/thecomes diagonal.
4.4 Geodesics - minimum energy curves

The geodesics on a differentiable manifold can be defined as minimum length, or equivalently, minimum energy

curves [6]. A useful (local) characterization of a geodesic curve on a n-dimensional Riemannian manifold (locally)

parameterized by, ..., z, is the following set of differential equations:
B+ Y Dhdjip =0,i=1,...,n 9)
Jk

wherel‘;'.k are the Christoffel symbols of the unique symmetric connection associated to the metric on the manifold.

6



In [15] it has been proved that a geodegi¢) on SE(3) equipped with a left invariant product metric of the
type (7) is composed of the geodesics in the component spa2EdD andR? with the corresponding component

metrics, and are described by the following set of differential equations:

W H e x (HY) (10)
d = 0. (11)

If H = «I, an analytical expression for the geodesic passing thrg(iph= (R(0), d(0)) andg(1) = (R(1),d(1))
att = 0 andt = 1 respectively, is given by [154(t) = (R(t),d(t)), where R(t) = R(0) exp(wot), d(t) =
(d(1) — d(0))t + d(0) and@g = log(R(0)TR(1)) In the case whelll # oI, there is no closed form expression

for the corresponding geodesic and numerical methods or the projection method [3] should be employed.

5 Motion decomposition: rigid vs. non-rigid

We first define a metrie<, > in the position configuration space, which is the same at all pgiats):
112 _ 1T 2
<V, Vi>=V, MV/, (12)
1
Vo=qeTyQ, M= §diag{m113, coo,myls}

Metric (12) is called the&kinetic energy metribecause its induced nornﬁ’q( = Vq2 = ¢) assumes the familiar
expression of the total kinetic energy of the systefn ZiN: L Mgl ;.

If no restrictions are imposed dap, the geodesic for metric (12) is obviously a straight line uniformly param-
eterized in time interpolating betwegh andq! in Q.

In this paper, the Lie groug@ as defined in Section 4.1 &FE(3). The left action ofg onQ = (q1,...,qn) IS
the rigid body displacement applied to eaghwritten in homogeneous form. TkEorbit atq is the set of all poses
that the structuréq, ¢2, . . ., qn) can reach if it was assumed rigidly attached ¥} = {F'} at that instant.

At each poinig in the configuration spaa@, in the corresponding tangent spaGg), the velocity correspond-
ing to infinitesimal rigid motion is given byerV,. Therefore,Ver, locally describes the set of all rigid body
motion directions. The orthogonal complementvia,, Hor, will be the set of all directions violating the rigid
body constraints.

Using (6) for eachy;, i = 1,..., N and{M} = {F'}, itis easy to see thafer, is the range of the following
3N x 6 matrix:

- I3
Ver, = Range(A(q)), A(q) = (13)
—qn I3
The coordinates of the expansionérV, € Ver, along the columns ofi(q) are exactly the components of the

left invariant twist¢ € se(3) of the virtual structure formed by, ..., qx) and{ M} = {F'} at that instant:
VerV, = A(
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Using metric (12), the orthogonal complement\ef:, is
Hor, = Null(A(q)" M) (14)

Let B(q) denote a matrix whose columns are a basHaf,. Let denote the components HbrV;, in this basis:

HorV, = B(q)vy. Therefore, the velocity at poigtcan be written as:
V, = VerV, + HorV, = A(q)¢ + B(q)v (15)
Then, requirement (4) is satisfied. Indeed, for &y V;? € T,Q,
172 _ 17T 2 _ AT 1 2
<V, Vy>=V, MV;=(" A"MAC +
+C1TATMB¢2 + wlTBTMACQ + ’I/JITBTMB’I/JQ —
= (TATMAC? + 4" BTMBy? =
=< By, Byp? > + < ACY AC? >=

=< Hoﬂ/'ql,HorVq2 >+ < Veerql,VerVq2 >
because bot” M B and BT M A are zero from (14). Also, note that

C=(ATMA) AT MY,
(16)
¢y =B"MB)"'BTMV

where the explicit dependence dfand B on ¢ was omitted for simplicity. Therefore, the translational kinetic

energy (which is the square of the norm induced by metric (12)) becomes:
Ti(a,4) = ¢" M =T AT MAC + 9" B" MBy (17)

Straightforward calculation shows thdt M A is the same as (8), (when = ¢;, {M} = {F}) i.e.,the matrix of
the left invariant kinetic energy metric if the system of particles is assumed rigid. Therefore, i (UM A¢
captures the energy of the motion of the system of particles as a rigid body, while the remaining BA/ B+
is the energy of the motion that violates the rigid body restrictions. For example, in the obvious case of a system
of N = 2 particles, the first part corresponds to the motion of the two particles connected by a rigid massless rod,

while the second part would correspond to motion along the line connecting the two bodies.

6 Motion generation for rigid formations

In this section, we will assume that the robots are required to morigithformation i.e., the distances between
any two reference point9; are preserved, or, equivalently, the reference points form a rigid polyhedron.
In our geometric framework, the rigid body requierement means restricting the trajectdrg Q to be a

SE(3) - orbit, or equivalentlyHorV; = 0 for all g.



In this case, to reduce the dimension of the problem and make the invariance properties obvious, we will make
use of the formation framéM } as defined in Section 2, which is attached at the centdidnd aligned with the
principal axes of the virtual structure determined by the pdihtdMoving in rigid formation is therefore equivalent
tor; =0foralli =1,...,N. Letv; denote the velocity oD; in { F'} expressed if M}, i.e,v; = RT¢;.

Then, using the invariance of the 2-norm to orthogonal transformations and equation (6), the kinetidgnergy

becomes:
N N

=1 i=1

where( € se(3) is the instantaneous twist of the virtual structure atfd\ A is the constant metric of the left
invariant kinetic energy metric as in (8).

Therefore, if the set of robots is required to move while maintaining a constant shalpe optimization
problem is reduced from dimensi@@V to dimensior3N + 6, and consists of solving faV geodesics 05 0(3)
with metrics H; (individual rotations) and one geodesic on $8(3) of the virtual structure with metried” M A.

We are now in the position to outline a procedure for generating smooth motion for each robot to interpolate
between two given positions while preserving the formation and minimizing the kinetic energy.

Assume the initial{ = 0) and final ¢ = 1) poses of each robot are given in frag#}. Obviously, the initial
and final poses should have the same shapdjave the same;’s.

First, we locate the centroid3;, attach the frame$M;} and, from the geometric properties of each robot,
calculate the inertia matricds;. If { M;} is aligned with the principal axes of robgtthenH; is diagonal, but this
is not necessary. If the initial and final rotatioﬁg, R} of robot: are given, then the rotation of each robot is the
interpolating geodesic ofiO(3) equipped with metridd;.

Giveng?,qd,...,q% att = 0 andqj, g3, ..., gk att = 1, the initial and final positions of the centroid of the
fictitious rigid body are given by = (N m,g/) /(SN mi), j = 0,1. A frame{M} is fixed to the virtual
rigid body at its center of mass, which will give the initial and final orientations of the formalitmndR'. The
ri's are then determined by = R°"(¢? — d°), which will induce a metriaz on the SE(3) of the formation,
according to (8). The geodesid(t), R(t)) on the SE(3) of the formation with boundary conditiong’, R°),
(d', R') can be found as described in Section 4.4. The trajectory of the centroid of each robot is finally determined
in the formg; (t) = d(t) + R(t)r;.

Example: Five identical robots in 3D space

For illustration, we consider five identical parallelepipedic robats= m, i = 1,...5 required to move in
formation while minimizing energy. The initial and final poses together with the geometrical properties of the
robots are given in Figure 4.

As outlined in the previous section, generating optimal motion for this group of robots reduces to generating



Figure 4: Geometry of the robots and of the virtual structure: a=c=2, b=10, h=20, I=10, X=20, Z=20, m=12

five geodesics on th80(3) of each robot with left invariant metric

b2+ c? 0 0
m
H: = — 2 2 ,=1,...
i =9 0 a®+c 0 y 1 yeeayD
0 0 a’ +b?

and one geodesic on ti#(3) of the virtual structure endowed with a left invariant metric with matrix

212 0 0 0

Gom| 0 24 0
210 0o 4o

0 0 0 30

The resulting motion is presented in Figure 5.
We used exponential coordinat@gma; as local parameterization 610 (3).
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Figure 5: Optimal motion for five identical bodies required to maintain a rigid formation

7 Motion generation by kinetic energy shaping

By shaping the kinetic energy, we mean smoothly changing the corresponding metric{12) st that motion
along some specific directions is allowed while motion along some other directions is penalized. The new metric
will no longer be constant - the Christoffel symbols of the corresponding symmetric connection will be non-zero.
The associated geodesic flow gives optimal motion.

In this paper, we “shape” the original metric (12)) by putting different weights on the terms corresponding to

the rigid and non-rigid motions:
1 2 1 2 1 2
<V, V) >a=a < HorV,, HorV® > +(1 — a) < VerV, VerV" > (18)
Using (16) to go back to the original coordinates, we get the modified metric in the form:

T
< Vqla ‘/qz >q= Vq1 Ma(Q)Van

(19)

where the new matrix of the metric is now dependent on the artificially introduced paramatet the point on

the manifoldg € Q:
My(q) = aMA(ATMA) TATM + (1 —a)MB(BT*MB) TBTM (20)

The influence of the parametarcan be best seen by examining the significance taking on the values of
0, 0.5 and 1. The two extreme valuesngf0 and 1, cause the metric (19) to become singulat 1 reduces to the
rigid formation metric (8) org, while o = 0 yields a metric for motions along the fib§/G. The intermediate
caseqn = 0.5, yields the kinetic energy of a system of independent robots.

As « tends to 0, the preferred motions will be ones where robots cluster together through much of the duration

of the trajectory, thus minimizing thiégid body energyonsumption. As approaches 0.5, the motions degenerate

11



toward uncoordinated, independent motions. cAgends to 1, the preferred motions are ones where the robots
stay in rigid formation through most of the trajectory, thus minimizing the energy associatedefattmingthe
formation.
We use the geodesic flow of metric (19) to produce smooth interpolating motion between two given configura-
tions:
7" =q(0), ¢' =q(1) e R?" (21)
To simplify the notation, let:;, i = 1,..., 3N denote the coordinates € R, i = 1, ..., N on the configuration

manifold Q. In this coordinates, the geodesic flow is described by the following differential equations [6]:

B+ Y Dy =0,i=1,...,3N (22)
gk

whereFfj are the Christoffel symbols of the uniqgue symmetric connection associated to metric (19):

1 omyp;  Om; omi;
kE _ * hj th 1] hk
by 2 ; ( oz oas dzh > i (23)

m;; andm® are elements o/, and M, !, respectively.

Becausailpha = 0 andalpha = 1 make the metric singular, (23) can only be usedifer o < 1.

Example: two bodies in the plane

Consider two bodies of masses andm, moving in thez — y plane. The configuration space@s= R* with
coordinates; = [z, y1, T2, y2]* . The symmetry groug is the three-dimension@ £(2). The A and B matrices

describingVer, andHor, as in (13) and (14) are:

mao(x2—1x1)
5 10 mi(y1—y2)
A= ol 0 1 ’ B— —m—?
w10 n-n
T2 0 1 1

The 64 Christoffel symbol&* = (Ffj)ij of the connection associated with the modified metrig¢ at) become:

L 20-20)  my de
oY m1 + ma (d2 + clg)2
o 2(1-2a) mo dy
"= VA
e m1 +ma (di + d2)
3 _2(1 —2a) My d,
N a  my+my(d2+d2)?
= _2(1 —2a) My dy

o my+my (dZ+d2)?
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where
—dz dgdy dz —dgd,
dgdy —d? —dgdy d?
dz —dgdy —dz dgdy
—dgdy d? dgdy —d?
andd, = x1 — z9, dy = y1 — yo. It can be easily seen that, as expected, all Christoffel symbols are zete (f.5.
Also, the actual masses of the robots are not relevant, it's only thernatie, which is important.

In this example, we assumey, = 2m4 and the boundary conditions:

2
1 32

V2

P = 0 ¢t = T2
—0.5 3+ V2

0 &

which correspond to a rigid body displacement so that we can compare our results to the optimal motion corre-
sponding to a rigid body.

If the structure was assumed rigid, then the optimal motion is described by uniform rectilinear translation of
the center of mass betweéf, 0) and(3,0) and uniform rotation betweetand3r /4 around—z placed at the
center of mass. The corresponding trajectories of the robots are drawn in solid line in all the pictures in Figure 6. It
can be easily seen that there is no difference between the optimal motion of the virtual structure s&l¥&a on
and the geodesic flow of the modified metric with= 0.99 (Figure 6, bottom). Ifo. = 0.5, all bodies move in
straight line as expected (Figure 6, middle). koe 0.2, the bodies go toward each other first, and then split apart

to attain the final positions (Figure 6, top).

Example: three bodies in the plane

The calculation of the trajectories for three bodies moving in the plane is simplified by assuming that the robots
are identical, and, without loss of generality, we assume= my = m3 = 1. The vertical and the horizontal

spaces at a generic configuration

q = lz1, y1, T2, Y2, T3, y3)" € Q = RO

are given by
[y 10 ]
z; 0 1
Ver, — Range(4), 4= | > 1 Y
zo 0 1
—ys 1 0
| T3 01 i
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Figure 6: Three interpolating motions for a set of two planar robots as geodesics of a modified metric defined in

the configuration space.
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Figure 7: Three interpolating motions for a set of three planar robots as geodesics of a modified metric defined in

the configuration space.
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r3—T1 Y2—Y3 T2—T1
Yi1—y2 Yy1—y2 Yy1—yY2

-1 0 -1
T1—T3 Y3=Yi T1—T2
J— J— 1—Y2 1—Y2 1—Y2
Hor, = Range(B), B= | 7% »~% 0~y

0 0 1
0 1 0
1 0 0

For simplicity, we omit the expressions of the modified metric and of the Christoffel symbols. The simulation
scenario resembles the one in Section 7: the end poses correspond to a rigid structure consisting of a equilateral
triangle with side equal to 1. The optimal trajectory solvedsdr(2) corresponds to rectilinear uniform motion of

the center of mass (line between (0,0) and (3,0) in Figure 7) and uniform rotation fronletodle /4 around axis

—z. The resulting motion of each robot is shown solid, while the actual trajectory for the corresponding value of

« is shown dashed. First note far= 0.99 the trajectories are basically identical with the optimal traces produced

by the virtual structure, as expected. In the case 0.5 the bodies move in straight line (corresponding to the
unmodified metric). The tendency to clustercadecreases is seen far= 0.2. Note also that due to our choice

m1 = mg = mg, the geometry of the equilateral triangle is preserved for all values ibbnly scales down when

o decreases from 1.

8 Conclusion and future work

We presented a strategy for generating a family of smooth interpolating trajectories for a team of mobile robots.
The family is parameterized by a scatar As o becomes closer to zero, the robots will tend to cluster together
while moving between initial and final positions. The case 0.5 corresponds to a totally uncoordinated strategy:
each robot will move from its initial to its final position while minimizing its own energy. Finallyxasnds to
1, the robots try to preserve the distances between them and minimize the overall energy of the motion. This
constitutes an alternative to generating motion for virtual structures by solving an optimization problem on the
manifold of rigid body displacemeniSE(3) [4].

While the paper provides a useful conceptual framework for motion planning and generation of trajectories,
there is a practical limitation to this work. As the number of robaetsincreases, the generation of the Christof-
fel symbols and the solution of the two-point boundary value problem because more complicated. The number
of terms in the differential equations governing the motion increases exponentially with the number of robots,
although the order of the equations and the quadratic nonlinearity are independent of

There are two approaches to overcome the difficulty with scaling. The first is to exploit the known structure in
the trajectories for the limiting cases®f= 0, 0.5, and1.0. In these cases, solutions can be obtained efficiently (for
a = 1.0, approximately) and in closed form. One can interpolate between the trajectories to construct approximate
solutions for intermediate cases, a procedure that scales linearly. with

The second approach is to develop an alternative description of the shape of the formation, a description that
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is independent of the exact coordinates of the robots. This would allow the designer to focus on the gross motion
g € G and the shape € R, while the control of the robots to maintain the prescribed shagen be done at a

lower level of control. Both these approaches are directions for future investigation.
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