
Motion generation for groups of robots:

a centralized, geometric approach

Calin Belta and Vijay Kumar

GRASP Laboratory

University of Pennsylvania

Philadelphia, PA 19104

fcalin, kumarg@grasp.cis.upenn.edu

Abstract

We develop a method for generating smooth trajectories for a set of mobile robots. We show that, given two end

configurations of the set of robots, by tuning one parameter, the user can choose an interpolating trajectory from

a continuum of curves varying from that corresponding to maintaining a rigid formation to motion of the robots

toward each other. The idea behind this method is to change the original constant kinetic energy metric in the

configuration space and can be summarized into three steps. First, the energy of the motion as a rigid structure

is decoupled from the energy of motion along directions that violate the rigid constraints. Second, the metric is

“shaped” by assigning different weights to each term, and, third, geodesic flow is constructed for the modified

metric. The optimal motions generated on the manifolds of rigid body displacements in 3-D space (SE(3)) or in

plane (SE(2)) and the uniform rectilinear motion of each robot corresponding to a totally uncorrelated approach

are particular cases of our general treatment.

1 Introduction

Multi-robotic systems are versatile and efficient in exploration missions, military surveillance, and cooperative

manipulation tasks. Recent research on such systems include work on cooperative manipulation [9], multi-robot

motion planning [14], mapping and exploration [8], behavior-based formation control [1], and software architec-

tures for multi-robotic systems [10]. In all these paradigms, the motion planning and control of theteamof robots

in formation can be modelled as a triple(g; r; H), whereg 2 SE(3) represents the gross position and orientation

of the team (for example, the pose of the leader),r is a set of shape variables that describes the relative positions

of the robots in the team, andH is a control graph which describes the control strategy used by each robot [7]. In

this paper, we are primarily interested in trajectory and shape,i.e., in g andr.

First, we consider the formation of robots as a rigid body, and investigate its motion. Virtual structures have



been proposed in [12] and used for motion planning and coordination and control of space-crafts in [2]. Our

definition of a rigid formation requires the distances between robots, or reference points on robots, to remain fixed.

Such a rigid formation is geometrically defined as a polyhedron formed by the reference points of each robot. The

relative orientations of each robot are not restricted in such a rigid formation. To this end, we build on the results

from [15] to generate trajectories that satisfy the rigid formation constraint and the overall energy of motion is

minimized. The optimal problem is reduced to generating geodesics onSO(3) andSE(3). Due to the geometrical

framework that we use, the generated trajectories are left invarianti.e., independent of the choice of the inertial

framefFg.

The rigid formation constraint is too restrictive in many applications. We would like robots to be able to break

formation, cluster together or string themselves out to avoid obstacles, and to regroup to achieve a desired goal

formation at the destination. This paper develops a family of trajectories ranging from the trajectories that are

optimal for a rigid formation on one extreme to independent trajectories that are optimal for each robot on the

other.

We build the geodesic flow of a new metric in the whole configuration space given by collecting the config-

uration spaces of all robots. This new metric is obtained from the naturally induced (constant) kinetic energy

metric dependent on the inertial properties of the robots by first decomposing each tangent space into two metric-

orthogonal subspaces and then assigning different weights to the terms corresponding to rigid and non-rigid in-

stantaneous motions. This idea of a “decomposition” and a subsequent “modification” is closely related to the

methodology of controlled Lagrangians described in [5, 13]. The optimal motions generated on the manifolds of

rigid body displacements in 3-D space (SE(3)) or in plane (SE(2)) and the uniform rectilinear motion of each

robot corresponding to a completely independent approach are also particular cases of this general treatment.

2 Problem statement and notation

ConsiderN robots moving (rotating and translating) in 3-D space with respect to an inertial framefFg. We choose

a reference point on each robot at its center of massOi. A moving framefMig is attached to each robot atOi (see

Figure 1).

Roboti has massmi and matrix of inertiaHi with respect to framefMig. LetRi 2 SO(3) denote the rotation

of fMig in fFg andqi 2 IR3 the position vector ofOi in fFg. Let!i denote the expression infMig of the angular

velocity of fMig with respect tofFg. Sometimes it is also useful to define aformation framefMg, attached at

some virtual pointO0 and with pose(R; d) 2 SE(3) in fFg. Let ri denote the position vectors ofOi in fMg.

The configuration space is the 6N-dimensionalSE(3)N , given by the poses of each robot. Given two configu-

rations at timest = 0 andt = 1 respectively, the goal is to generate smooth interpolating motion for each robot so

that the total kinetic energy is minimized.

The kinetic energyT of the system of robots is the sum of the individual energies. Since the framesfMig were
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Figure 1: A set ofN = 3 robots.

placed at the centroidsOi of the robots,T can be written as the sum of the total rotational energyTr and the total

translational energyTt in the form:

T = Tr + Tt; Tr =
1

2

NX
i=1

(!Ti Hi!i); Tt =
1

2

NX
i=1

(mi _q
T
i _qi) (1)

Due to the decomposition in equation (1), minimizing the total energy is equivalent to solvingN + 1 independent

optimization subproblems:

min
�i

Z 1

0
!Ti Hi!idt; i = 1; : : : ; N; (2)

min
qi

Z 1

0
Ttdt (3)

where�i is some parameterization of the rotation offMig in fFg, i.e., some local coordinates onSO(3). The

solutions to equations (2) are given byN geodesics onSO(3) with left invariant metrics with matricesHi. Two

different methods to obtain the solution are given in [15, 3] and a short example is given in Section 6.

Our main focus in this paper is solving problem (3) while certain constraints on the positions of the reference

pointsOi are satisfied. This is why throughout the paper the configuration space we are interested in is just the3N

dimensionalQ = fqjq = (q1; : : : ; qN ), which collects all the position vectors. Even though we envision that more

general problems can be approached, in this paper we restrict to maintaining a rigid formation (virtual structure)

and relaxing the constraint as necessary.

3 Approach

Our approach is geometric. To impose some degree of rigidity to the motion of the reference pointsOi, we

need to be able to separate the infinitesimal rigid motion from the non-rigid motion at each point in the position

configuration spaceq 2 Q. It is well known that the rigid body displacements inIR3 are elements of a Lie group,

the special EuclideanSE(3), which can be seen as acting onQ. Then, if the set of pointsOi described byq 2 Q

are assumed as rigidly coupled at some instant, then the subset ofQ that they can reach at further times is given by
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the orbit ofq under the actions ofSE(3). With this formulation, the separation of instantaneous rigid and non-rigid

motion is simple: at each pointq 2 Q, in the tangent spaceTqQ, decompose the velocity_q into a component which

is tangent to the orbit atq (this will induce rigid motion) and one which is orthogonal in some metric to the first

(this will produce motion violating the rigid restriction).

The orthogonality of the two components of the velocity will asssure the separability of the terms corresponding

to rigid and non-rigid motion in the kinetic energy, if the metric used for orthogonal decomposition is the kinetic

energy metric. These two terms can be differently weighted to produce a new metric on the configuration space,

for which we can control the amount of energy spent for rigid and non-rigid motions. The geodesic flow for the

modified metric gives the optimal trajectories of the system of robots in the form of a continuum of curves varying

from optimal motion in rigid formation to independent minimum energy motion of each robot.

The mathematical tools that we use are outlined in the next section.

4 Background

4.1 Velocity decomposition

LetQ be the configuration space of a system andG a Lie group that acts onQ so that the Lagrangean defined on

TQ is invariant under this action. The state of the system can be described by a pair(g; s), whereg 2 G ands is

an element in the complementary spaceQ=G, which we will call the shape space. At any pointq 2 Q, a tangent

vectorVq 2 TqQ can be decomposed into a component which is tangent toOrbq (the orbit ofq under actions of

G), and a component which is orthogonal (in some metric<;>) to this first component (see Figure 2). Following
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Figure 2: Pointwise decomposition of the tangent space in the vertical and horizontal subspaces

the notation in [5, 13], the spaceTqOrbq is called the vertical space atq, Verq, and its orthogonal complement is

the horizontal space atq 2 Q,Horq. The decomposition of the tangent vectorVq intoVerVq (projection ontoVerq)

andHorVq (projection ontoHorq) is uniquely defined by requiring that metric<;> satisfies

< V 1
q ; V

2
q >=< HorV 1

q ;HorV
2
q > +

< VerV 1
q ;VerV

2
q >; V 1

q ; V
2
q 2 TqQ (4)
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4.2 The geometry of rigid body motion

The Lie groupG that we are interested in is the special Euclidean groupSE(3), the set of all rigid displacements

in IR3:

SE(3) =

8<
:g j g =

2
4 R d

0 1

3
5 ; R 2 IR3�3; RRT = I; detR = 1; d 2 IR3

9=
; :

The Lie algebra ofSE(3), denoted byse(3), is given by:

se(3) =

8<
:�j� =

2
4 !̂ v

0 0

3
5 ; !̂ 2 IR3�3; !̂T = �!̂; v 2 IR3

9=
;

where!̂ is the skew-symmetric matrix form of the vector! 2 IR3. Given a curve

g(t) =

2
4 R(t) d(t)

0 1

3
5 2 SE(3)

an element�(t) of the Lie algebrase(3) can be associated to the tangent vector_g(t) at an arbitrary pointt by:

�(t) = g�1(t) _g(t) =

2
4 !̂(t) RT _d

0 0

3
5 (5)

where!̂(t) = RT _R.

Consider a rigid body moving in free space. Assume any inertial reference framefFg fixed in space and a

framefMg fixed to the body at pointO0 as shown in Figure 3. A curve onSE(3) physically represents a motion of
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Figure 3: The inertial frame and the moving frame

the rigid body. Iff!(t); v(t)g is the vector pair corresponding to�(t), then! corresponds to the angular velocity

of the rigid body whilev is the linear velocity ofO0, both expressed in the framefMg. In kinematics, elements
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of this form are called twists andse(3) thus corresponds to the space of twists. The twist�(t) computed from

Equation (5) does not depend on the choice of the inertial framefFg.

If P is an arbitrary point on the rigid body with position vectorr in framefMg, then the velocity ofP in frame

fMg is given by

vP =
h
�r̂ I3

i
� (6)

where� is the twist of the rigid body written in vector form� = [!T vT ]T .

4.3 The kinetic energy of a moving body - a left invariant metric onSE(3)

For any�1; �2 2 se(3) andG a positive definite matrix, we can define a metric�T1 G�2 on the Lie algebrase(3)

and extend it through left translation throughout the manifoldSE(3). Letm be the mass of the rigid body from

(Figure 3) andH its matrix of inertia with respect to the body framefMg, assumed at the center of mass. Then,

with

G =
1

2

2
4 H 0

0 mI3

3
5 (7)

the norm induced by the above metric�TG� is exactly the kinetic energy of the moving (rotating and translating)

rigid body. Moreover, iffMg is aligned with the principal axes, thenH is diagonal. In the most general case,

when the framefMg is displaced by some(R0; d0) from the centroid and the orientation parallel with the principal

axes, we have [15]:

G =
1

2

2
4 RT

0HR0 �mRT
0 d̂0R0 â

�â mI3

3
5 ; a = �mR0d0

For a rigid system ofN particles with massesm1; : : : ;mN and position vectorsr1; : : : ; rN in the body fixed frame

fMg, the matrix of the (left invariant) kinetic energy metric onSE(3) is [4]:

M =

2
4 �

PN
i=1mir̂

2
i

PN
i=1mir̂i

�
PN

i=1mir̂i
PN

i=1miI3

3
5 (8)

The upper left3� 3 submatrix ofM is the inertia matrix of the system of particles with respect tofMg. If frame

fMg is placed at the center of mass and aligned with the principal axes of the structure, thenM becomes diagonal.

4.4 Geodesics - minimum energy curves

The geodesics on a differentiable manifold can be defined as minimum length, or equivalently, minimum energy

curves [6]. A useful (local) characterization of a geodesic curve on a n-dimensional Riemannian manifold (locally)

parameterized byx1; : : : ; xn is the following set of differential equations:

�xi +
X
j;k

�ijk _xj _xk = 0; i = 1; : : : ; n (9)

where�ijk are the Christoffel symbols of the unique symmetric connection associated to the metric on the manifold.
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In [15] it has been proved that a geodesicg(t) onSE(3) equipped with a left invariant product metric of the

type (7) is composed of the geodesics in the component spacesSO(3) andIR3 with the corresponding component

metrics, and are described by the following set of differential equations:

d!

dt
= �H�1(! � (H!)) (10)

�d = 0: (11)

If H = �I, an analytical expression for the geodesic passing throughg(0) = (R(0); d(0)) andg(1) = (R(1); d(1))

at t = 0 and t = 1 respectively, is given by [15]g(t) = (R(t); d(t)), whereR(t) = R(0) exp(!̂0t), d(t) =

(d(1) � d(0))t + d(0) and!̂0 = log(R(0)TR(1)) In the case whenH 6= �I, there is no closed form expression

for the corresponding geodesic and numerical methods or the projection method [3] should be employed.

5 Motion decomposition: rigid vs. non-rigid

We first define a metric<;> in the position configuration space, which is the same at all pointsq 2 Q:

< V 1
q ; V

2
q >= V 1

q

T
MV 2

q ; (12)

Vq = _q 2 TqQ; M =
1

2
diagfm1I3; : : : ;mNI3g

Metric (12) is called thekinetic energy metricbecause its induced norm (V 1
q = V 2

q = _q) assumes the familiar

expression of the total kinetic energy of the system1=2
PN

i=1mi _q
T
i _qi.

If no restrictions are imposed onQ, the geodesic for metric (12) is obviously a straight line uniformly param-

eterized in time interpolating betweenq0 andq1 in Q.

In this paper, the Lie groupG as defined in Section 4.1 isSE(3). The left action ofG onQ = (q1; : : : ; qN ) is

the rigid body displacement applied to eachqi written in homogeneous form. TheG-orbit atq is the set of all poses

that the structure(q1; q2; : : : ; qN ) can reach if it was assumed rigidly attached tofMg � fFg at that instant.

At each pointq in the configuration spaceQ, in the corresponding tangent spaceTqQ, the velocity correspond-

ing to infinitesimal rigid motion is given byVerVq. Therefore,Verq locally describes the set of all rigid body

motion directions. The orthogonal complement toVerq, Horq will be the set of all directions violating the rigid

body constraints.

Using (6) for eachqi, i = 1; : : : ; N andfMg � fFg, it is easy to see thatVerq is the range of the following

3N � 6 matrix:

Verq = Range(A(q)); A(q) =

2
664
�q̂1 I3

: : : : : :

�q̂N I3

3
775 (13)

The coordinates of the expansion ofVerVq 2 Verq along the columns ofA(q) are exactly the components of the

left invariant twist� 2 se(3) of the virtual structure formed by(q1; : : : ; qN ) andfMg � fFg at that instant:

VerVq = A�
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Using metric (12), the orthogonal complement ofVerq is

Horq = Null(A(q)TM) (14)

LetB(q) denote a matrix whose columns are a basis ofHorq. Let denote the components ofHorVq in this basis:

HorVq = B(q) . Therefore, the velocity at pointq can be written as:

Vq = VerVq +HorVq = A(q)� +B(q) (15)

Then, requirement (4) is satisfied. Indeed, for anyV 1
q ; V

2
q 2 TqQ,

< V 1
q ; V

2
q >= V 1

q

T
MV 2

q = �1
T
ATMA�2 +

+�1
T
ATMB 2 +  1TBTMA�2 +  1TBTMB 2 =

= �1
T
ATMA�2 +  1TBTMB 2 =

=< B 1; B 2 > + < A�1; A�2 >=

=< HorV 1
q ;HorV

2
q > + < VerV 1

q ;VerV
2
q >

because bothATMB andBTMA are zero from (14). Also, note that

� = (ATMA)�1ATMV;

(16)

 = (BTMB)�1BTMV

where the explicit dependence ofA andB on q was omitted for simplicity. Therefore, the translational kinetic

energy (which is the square of the norm induced by metric (12)) becomes:

Tt(q; _q) = _qTM _q = �TATMA� +  TBTMB (17)

Straightforward calculation shows thatATMA is the same as (8), (whenri = qi, fMg = fFg) i.e., the matrix of

the left invariant kinetic energy metric if the system of particles is assumed rigid. Therefore, in (17),�TATMA�

captures the energy of the motion of the system of particles as a rigid body, while the remaining part TBTMB 

is the energy of the motion that violates the rigid body restrictions. For example, in the obvious case of a system

of N = 2 particles, the first part corresponds to the motion of the two particles connected by a rigid massless rod,

while the second part would correspond to motion along the line connecting the two bodies.

6 Motion generation for rigid formations

In this section, we will assume that the robots are required to move inrigid formation, i.e., the distances between

any two reference pointsOi are preserved, or, equivalently, the reference points form a rigid polyhedron.

In our geometric framework, the rigid body requierement means restricting the trajectoryq(t) 2 Q to be a

SE(3) - orbit, or equivalently,HorVq = 0 for all q.
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In this case, to reduce the dimension of the problem and make the invariance properties obvious, we will make

use of the formation framefMg as defined in Section 2, which is attached at the centroidO0 and aligned with the

principal axes of the virtual structure determined by the pointsOi. Moving in rigid formation is therefore equivalent

to _ri = 0 for all i = 1; : : : ; N . Let vi denote the velocity ofOi in fFg expressed infMg, i.e., vi = RT _qi.

Then, using the invariance of the 2-norm to orthogonal transformations and equation (6), the kinetic energyTt

becomes:

Tt =
1

2

NX
i=1

(mi _q
T
i _qi) =

1

2

NX
i=1

(miv
T
i vi) = �TA(r)TMA(r)�

where� 2 se(3) is the instantaneous twist of the virtual structure andATMA is the constant metric of the left

invariant kinetic energy metric as in (8).

Therefore, if the set of robots is required to move while maintaining a constant shaper, the optimization

problem is reduced from dimension6N to dimension3N + 6, and consists of solving forN geodesics onSO(3)

with metricsHi (individual rotations) and one geodesic on theSE(3) of the virtual structure with metricATMA.

We are now in the position to outline a procedure for generating smooth motion for each robot to interpolate

between two given positions while preserving the formation and minimizing the kinetic energy.

Assume the initial (t = 0) and final (t = 1) poses of each robot are given in framefFg. Obviously, the initial

and final poses should have the same shape,i.e. have the sameri’s.

First, we locate the centroidsOi, attach the framesfMig and, from the geometric properties of each robot,

calculate the inertia matricesHi. If fMig is aligned with the principal axes of roboti, thenHi is diagonal, but this

is not necessary. If the initial and final rotationsR0
i , R

1
i of robot i are given, then the rotation of each robot is the

interpolating geodesic onSO(3) equipped with metricHi.

Givenq01; q
0
2 ; : : : ; q

0
N at t = 0 andq11; q

1
2 ; : : : ; q

1
N at t = 1, the initial and final positions of the centroid of the

fictitious rigid body are given bydj = (
PN

i=1miq
j
i )=(

PN
i=1mi); j = 0; 1. A framefMg is fixed to the virtual

rigid body at its center of mass, which will give the initial and final orientations of the formation,R0 andR1. The

ri’s are then determined byri = R0T (q0i � d0), which will induce a metricG on theSE(3) of the formation,

according to (8). The geodesic(d(t); R(t)) on theSE(3) of the formation with boundary conditions(d0; R0),

(d1; R1) can be found as described in Section 4.4. The trajectory of the centroid of each robot is finally determined

in the formqi(t) = d(t) +R(t)ri.

Example: Five identical robots in 3D space

For illustration, we consider five identical parallelepipedic robotsmi = m; i = 1; : : : 5 required to move in

formation while minimizing energy. The initial and final poses together with the geometrical properties of the

robots are given in Figure 4.

As outlined in the previous section, generating optimal motion for this group of robots reduces to generating
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Figure 4: Geometry of the robots and of the virtual structure: a=c=2, b=10, h=20, l=10, X=20, Z=20, m=12

five geodesics on theSO(3) of each robot with left invariant metric

Hi =
m

24

2
664
b2 + c2 0 0

0 a2 + c2 0

0 0 a2 + b2

3
775 ; i = 1; : : : ; 5

and one geodesic on theSE(3) of the virtual structure endowed with a left invariant metric with matrix

G =
m

2

2
666664

2l2 0 0 0

0 l2 + 4h2

3 0 0

0 0 l2 + 4h2

3 0

0 0 0 3I3

3
777775

The resulting motion is presented in Figure 5.

We used exponential coordinatessigmai as local parameterization ofSO(3).

10



−20
0

20
40

60
80

−10

−5

0

5

10
−10

0

10

20

30

40

xy

z

Figure 5: Optimal motion for five identical bodies required to maintain a rigid formation

7 Motion generation by kinetic energy shaping

By shaping the kinetic energy, we mean smoothly changing the corresponding metric (12) atTqQ so that motion

along some specific directions is allowed while motion along some other directions is penalized. The new metric

will no longer be constant - the Christoffel symbols of the corresponding symmetric connection will be non-zero.

The associated geodesic flow gives optimal motion.

In this paper, we “shape” the original metric (12)) by putting different weights on the terms corresponding to

the rigid and non-rigid motions:

< V 1
q ; V

2
q >�= � < HorV 1

q ;HorV
2
q > +(1� �) < VerV 1

q ;VerV
2
q > (18)

Using (16) to go back to the original coordinates, we get the modified metric in the form:

< V 1
q ; V

2
q >�= V 1

q

T
M�(q)V

2
q ; (19)

where the new matrix of the metric is now dependent on the artificially introduced parameter� and the point on

the manifoldq 2 Q:

M�(q) = �MA(ATMA)�TATM + (1� �)MB(BTMB)�TBTM (20)

The influence of the parameter� can be best seen by examining the significance of� taking on the values of

0, 0.5 and 1. The two extreme values of�, 0 and 1, cause the metric (19) to become singular.� = 1 reduces to the

rigid formation metric (8) onG, while � = 0 yields a metric for motions along the fiberQ=G. The intermediate

case,� = 0:5, yields the kinetic energy of a system of independent robots.

As� tends to 0, the preferred motions will be ones where robots cluster together through much of the duration

of the trajectory, thus minimizing therigid body energyconsumption. As� approaches 0.5, the motions degenerate
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toward uncoordinated, independent motions. As� tends to 1, the preferred motions are ones where the robots

stay in rigid formation through most of the trajectory, thus minimizing the energy associated withdeformingthe

formation.

We use the geodesic flow of metric (19) to produce smooth interpolating motion between two given configura-

tions:

q0 = q(0); q1 = q(1) 2 IR3N (21)

To simplify the notation, letxi, i = 1; : : : ; 3N denote the coordinatesqi 2 IR3, i = 1; : : : ; N on the configuration

manifoldQ. In this coordinates, the geodesic flow is described by the following differential equations [6]:

�xi +
X
j;k

�ijk _xj _xk = 0; i = 1; : : : ; 3N (22)

where�kij are the Christoffel symbols of the unique symmetric connection associated to metric (19):

�kij =
1

2

X
h

�
@mhj

@xi
+
@mih

@xj
�
@mij

@xh

�
mhk (23)

mij andmij are elements ofM� andM�1
� , respectively.

Becausealpha = 0 andalpha = 1 make the metric singular, (23) can only be used for0 < � < 1.

Example: two bodies in the plane

Consider two bodies of massesm1 andm2 moving in thex � y plane. The configuration space isQ = R4 with

coordinatesq = [x1; y1; x2; y2]
T . The symmetry groupG is the three-dimensionalSE(2). TheA andB matrices

describingVerq andHorq as in (13) and (14) are:

A =

2
666664

�y1 1 0

x1 0 1

�y2 1 0

x2 0 1

3
777775
; B =

2
666664

m2(x2�x1)
m1(y1�y2)

�m2

m1

x1�x2
y1�y2
1

3
777775

The 64 Christoffel symbols�k = (�kij)ij of the connection associated with the modified metric atq 2 Q become:

�1 =
2(1� 2�)

�

m2

m1 +m2

dx
(d2x + d2y)

2
�

�2 =
2(1� 2�)

�

m2

m1 +m2

dy
(d2x + d2y)

2
�

�3 = �
2(1� 2�)

�

m1

m1 +m2

dx
(d2x + d2y)

2
�

�4 = �
2(1� 2�)

�

m1

m1 +m2

dy
(d2x + d2y)

2
�
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where

� =

2
666664

�d2y dxdy d2y �dxdy

dxdy �d2x �dxdy d2x

d2y �dxdy �d2y dxdy

�dxdy d2x dxdy �d2x

3
777775

anddx = x1�x2, dy = y1�y2. It can be easily seen that, as expected, all Christoffel symbols are zero if� = 0:5.

Also, the actual masses of the robots are not relevant, it’s only the ratiom1=m2 which is important.

In this example, we assumem2 = 2m1 and the boundary conditions:

q0 =

2
666664

1

0

�0:5

0

3
777775
; q1 =

2
666664

3�
p
2
2

�
p
2
2

3 +
p
2
4p

2
4

3
777775

which correspond to a rigid body displacement so that we can compare our results to the optimal motion corre-

sponding to a rigid body.

If the structure was assumed rigid, then the optimal motion is described by uniform rectilinear translation of

the center of mass between(0; 0) and(3; 0) and uniform rotation between0 and3�=4 around�z placed at the

center of mass. The corresponding trajectories of the robots are drawn in solid line in all the pictures in Figure 6. It

can be easily seen that there is no difference between the optimal motion of the virtual structure solved onSE(2)

and the geodesic flow of the modified metric with� = 0:99 (Figure 6, bottom). If� = 0:5, all bodies move in

straight line as expected (Figure 6, middle). For� = 0:2, the bodies go toward each other first, and then split apart

to attain the final positions (Figure 6, top).

Example: three bodies in the plane

The calculation of the trajectories for three bodies moving in the plane is simplified by assuming that the robots

are identical, and, without loss of generality, we assumem1 = m2 = m3 = 1. The vertical and the horizontal

spaces at a generic configuration

q = [x1; y1; x2; y2; x3; y3]
T 2 Q = IR6

are given by

Verq = Range(A); A =

2
666666666664

�y1 1 0

x1 0 1

�y2 1 0

x2 0 1

�y3 1 0

x3 0 1

3
777777777775

;
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Figure 6: Three interpolating motions for a set of two planar robots as geodesics of a modified metric defined in

the configuration space.
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Figure 7: Three interpolating motions for a set of three planar robots as geodesics of a modified metric defined in

the configuration space.
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Horq = Range(B); B =

2
666666666664

x3�x1
y1�y2

y2�y3
y1�y2

x2�x1
y1�y2

�1 0 �1

x1�x3
y1�y2

y3�y1
y1�y2

x1�x2
y1�y2

0 0 1

0 1 0

1 0 0

3
777777777775

For simplicity, we omit the expressions of the modified metric and of the Christoffel symbols. The simulation

scenario resembles the one in Section 7: the end poses correspond to a rigid structure consisting of a equilateral

triangle with side equal to 1. The optimal trajectory solved onSE(2) corresponds to rectilinear uniform motion of

the center of mass (line between (0,0) and (3,0) in Figure 7) and uniform rotation from angle0 to 3�=4 around axis

�z. The resulting motion of each robot is shown solid, while the actual trajectory for the corresponding value of

� is shown dashed. First note for� = 0:99 the trajectories are basically identical with the optimal traces produced

by the virtual structure, as expected. In the case� = 0:5 the bodies move in straight line (corresponding to the

unmodified metric). The tendency to cluster as� decreases is seen for� = 0:2. Note also that due to our choice

m1 = m2 = m3, the geometry of the equilateral triangle is preserved for all values of�, it only scales down when

� decreases from 1.

8 Conclusion and future work

We presented a strategy for generating a family of smooth interpolating trajectories for a team of mobile robots.

The family is parameterized by a scalar�. As � becomes closer to zero, the robots will tend to cluster together

while moving between initial and final positions. The case� = 0:5 corresponds to a totally uncoordinated strategy:

each robot will move from its initial to its final position while minimizing its own energy. Finally, as� tends to

1, the robots try to preserve the distances between them and minimize the overall energy of the motion. This

constitutes an alternative to generating motion for virtual structures by solving an optimization problem on the

manifold of rigid body displacementsSE(3) [4].

While the paper provides a useful conceptual framework for motion planning and generation of trajectories,

there is a practical limitation to this work. As the number of robots,n, increases, the generation of the Christof-

fel symbols and the solution of the two-point boundary value problem because more complicated. The number

of terms in the differential equations governing the motion increases exponentially with the number of robots,

although the order of the equations and the quadratic nonlinearity are independent ofn.

There are two approaches to overcome the difficulty with scaling. The first is to exploit the known structure in

the trajectories for the limiting cases of� = 0, 0:5, and1:0. In these cases, solutions can be obtained efficiently (for

� = 1:0, approximately) and in closed form. One can interpolate between the trajectories to construct approximate

solutions for intermediate cases, a procedure that scales linearly withn.

The second approach is to develop an alternative description of the shape of the formation, a description that
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is independent of the exact coordinates of the robots. This would allow the designer to focus on the gross motion

g 2 G and the shaper 2 R, while the control of the robots to maintain the prescribed shaper can be done at a

lower level of control. Both these approaches are directions for future investigation.
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