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Abstract

We present two methods for generating trajectories and motion interpolants that minimize energy function-
als on SE(3), the group of rigid body displacements. We treat SE(3) as a Lie Group and endow it with a
left-invariant Riemannian metric derived from energy considerations. The first method is based on a relax-
ation formulation where the Euler-Lagrange equations for the minimization problem are solved. The second
method offers a closed form, but approximate solution to the problem. Both methods preserve invariance.
We compare the two methods in terms of computational efficiency and accuracy.

1 Introduction

We consider methods for finding a smooth interpolating motion between two given positions and orientations
of a rigid body. This problem finds applications in robotics and computer graphics. The problem is well
understood in Euclidean spaces [1, 2]. However, the group of all rigid body displacements, SE(3), is a non-
Euclidean space. It is desirable that the computational scheme be independent of the description of the space
and be invariant with respect to the choice of the coordinate systems used to describe the motion. Secondly,
the smoothness properties and the optimality of the trajectories need to be considered. It is necessarily to
endow SE(3) with a metric, and derive trajectories that minimize energy measures derived from this metric.

Shoemake [3] proposed a scheme for interpolating rotations with Bezier curves based on the spherical
analog of the de Casteljau algorithm. The focus in this article is on the generalization of the notion of inter-
polation from the Euclidean space to a curved space, and invariance properties or metrics are not specifically
considered. The basic idea was extended by Ge and Ravani [4] and Park and Ravani [5] to spatial motions.
Park and Ravani [5] use a left invariant metric on SE(3) for this generalization. However, there is no opti-
mality result in this paper.

Another class of methods is based on the representation of Bezier curves with Bernstein polynomials. Ge
and Ravani [6] used the dual unit quaternion representation of SE(3) and subsequently applied Euclidean
methods to interpolate in this space. Jütler [7] formulated a more general version of the polynomial interpola-
tion by using dual (instead of dual unit) quaternions to represent SE(3). In such a representation, an element
of SE(3) corresponds to a whole equivalence class of dual quaternions. Park and Kang [8] derived a rational
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interpolating scheme for the group of rotations SO(3) by representing the group with Cayley parameters
and using Euclidean methods in this parameter space. The advantage of these methods is that they produce
rational curves. However, once again, none of these papers emphasize the optimality of the resulting motion.

It is also worth noting that all these works (with the exception of [5]) use a particular coordinate represen-
tation of the group. In contrast, Noakes et al. [9] derived the necessary conditions for cubic splines on general
manifolds without using a coordinate chart. These results are extended in [10] to the dynamic interpolation
problem. Necessary conditions for higher-order splines are derived in Camarinha et al. [11]. A coordinate
free formulation of the variational approach was used to generate shortest paths and minimum acceleration
and jerk trajectories on SO(3) and SE(3) in [12]. However, analytical solutions are available only in the
simplest of cases, and the procedure for solving optimal motions, in general, is computationally intensive. If
optimality is sacrificed, it is possible to generate bi-invariant trajectories for interpolation and approximation
using the exponential map on the Lie Algebra [13]. While the solutions are of closed-form, the resulting
trajectories have no optimality properties.

This paper is built on the results from [12, 13, 14] to generate smooth curves for general Riemannian
metrics. We present two methods for generating trajectories and motion interpolants that minimize energy
functionals on SE(3), the group of rigid body displacements. The first method is a straightforward extension
of the results derived in [9, 12]. We use a relaxation formulation to solve the Euler-Lagrange equations
for the minimization problem. Our second method offers a closed form, but approximate solution to the
problem. Both methods preserve invariance. We present examples to compare the two methods in terms of
computational efficiency and accuracy.

2 Kinematics and Differential Geometry

2.1 The Lie Groups SO(3) and SE(3)

Let GL(3) denote the general linear group of dimension 3. As a manifold, GL(3) can be regarded as an open
subset of IR9. Moreover, matrix multiplication and inversion are both smooth operations, which make GL(3)
a Lie group. The special orthogonal group is a subgroup of the general linear group, defined as

SO(3) =
{
R ∈ GL(3) |RRT = I, detR = 1

}
SO(3) is referred to as the rotation group on IR3. GA(3) = GL(3) × IR3 is the affine group. SE(3) =
SO(3) × IR3 is the special Euclidean group, and is the set of all rigid displacements in IR 3.

Consider a rigid body moving in free space. Assume any inertial reference frame {F} fixed in space and
a frame {M} fixed to the body at point O ′ as shown in Figure 1. At each instance, the configuration (position
and orientation) of the rigid body can be described by a homogeneous transformation matrix, A, correspond-
ing to the displacement from frame {F} to frame {M}. SE(3) is the set of all rigid body transformations in
three-dimensions:

SE(3) =
{

A | A =
[

R d
0 1

]
, R ∈ IR3×3, d ∈ IR3, RT R = I, det(R) = 1

}
.

SE(3) is a closed subset of GA(3), and, therefore, a Lie group.
On any Lie group the tangent space at the group identity has the structure of a Lie algebra. The Lie

algebras of SO(3) and SE(3), denoted by so(3) and se(3) respectively, are given by:

so(3) =
{

ω̂ ∈ IR3×3, ω̂T = −ω̂
}

, se(3) =
{[

ω̂ v
0 0

]
| ω̂ ∈ IR3×3, v ∈ IR3, ω̂T = −ω̂

}
.
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Figure 1: The inertial (fixed) frame and the moving frame attached to the rigid body

A 3 × 3 skew-symmetric matrix ω̂ can be uniquely identified with a vector ω ∈ IR 3 so that for an arbitrary
vector x ∈ IR3, ω̂x = ω × x, where × is the vector cross product operation in IR3. Each element S ∈ se(3)
can be thus identified with a vector pair {ω, v}. Given a curve

A(t) : [−a, a] → SE(3), A(t) =
[

R(t) d(t)
0 1

]

an element S(t) of the Lie algebra se(3) can be associated to the tangent vector Ȧ(t) at an arbitrary point t
by:

S(t) = A−1(t)Ȧ(t) =
[

ω̂(t) RT ḋ
0 0

]
. (1)

where ω̂(t) = RT Ṙ is the corresponding element from so(3).
A curve on SE(3) physically represents a motion of the rigid body. If {ω(t), v(t)} is the vector pair

corresponding to S(t), then ω physically corresponds to the angular velocity of the rigid body while v is the
linear velocity of the origin O ′ of the frame {M}, both expressed in the frame {M}. In kinematics, elements
of this form are called twists and se(3) thus corresponds to the space of twists. The twist S(t) computed from
Equation (1) does not depend on the choice of the inertial frame {F}. For this reason, S(t) is called the left
invariant representation of the tangent vector Ȧ. Alternatively, the tangent vector Ȧ can be identified with a
right invariant twist (invariant with respect to the choice of the body-fixed frame {M}).

Since so(3) is a vector space, any element can be expressed as a 3×1 vector of components corresponding
to a chosen basis. The standard basis for so(3) is:

Lo
1 = ê1, Lo

2 = ê2, Lo
3 = ê3 (2)

where
e1 =

[
1 0 0

]T
, e2 =

[
0 1 0

]T
, e3 =

[
0 0 1

]T
is the canonical basis of IR3. Lo

1, Lo
2 and Lo

3 represent instantaneous rotations about the Cartesian axes x, y
and z, respectively. The components of a ω̂ ∈ se(3) in this basis are given precisely by the angular velocity
vector ω.

The standard basis for se(3) is:



L1 =
[

Lo
1 0

0 0

]
L2 =

[
Lo

2 0
0 0

]
L3 =

[
Lo

3 0
0 0

]

L4 =
[

0 e1

0 0

]
L5 =

[
0 e2

0 0

]
L6 =

[
0 e3

0 0

] (3)

The twists L4, L5 and L6 represent instantaneous translations along the Cartesian axes x, y and z, re-
spectively. The components of a twist S ∈ se(3) in this basis are given precisely by the velocity vector pair,
{ω, v}.

2.2 Left Invariant Vector Fields

A differentiable vector field is a smooth assignment of a tangent vector to each element of the manifold. At
each point, a vector field defines a unique integral curve to which it is tangent [15]. Formally, a vector field
X is a (derivation) operator which, given a differentiable function, returns its derivative (another function)
along the integral curves of X .

An example of a differentiable vector field, X , on SE(3) is obtained by left translation of an element
S ∈ se(3). The value of the vector field X at an arbitrary point A ∈ SE(3) is given by:

X(A) = S̄(A) = AS. (4)

A vector field generated by Equation (4) is called a left invariant vector field and we use the notation S̄ to
indicate that the vector field was obtained by left translating the Lie algebra element S. Right invariant vector
fields can be defined analogously. By construction, the set of left or right invariant vector fields is isomorphic
to the Lie algebra se(3).

Since the vectors L1, L2, . . . , L6 are a basis for the Lie algebra se(3), the vectors L̄1(A), . . . , L̄6(A)
form a basis of the tangent space at any point A ∈ SE(3). Therefore, any vector field X can be expressed
as X =

∑6
i=1 X iL̄i, where the coefficients X i vary over the manifold. If the coefficients are constants, then

X is left invariant. By defining ω = [X 1, X2, X3]T and v = [X4, X5, X6]T , we can associate a vector
pair of functions {ω, v} to an arbitrary vector field X . If a curve A(t) describes a motion of the rigid body
and V = dA

dt is the vector field tangent to A(t), the vector pair {ω, v} associated with V corresponds to the
instantaneous twist (screw axis) for the motion. In general, the twist {ω, v} changes with time.

2.3 Exponential Map and Local Parameterization of SE(3)

For every S ∈ se(3), let AS : IR → SE(3) denote the integral curve of the left invariant vector field S̄
passing through I at t = 0. That is, AS(0) = I and

d

dt
AS(t) = S̄(AS(t)) = AS(t)S

It follows that [15] AS(s+ t) = AS(t)AS(s) which means that AS(t) is a one-parameter subgroup of SE(3).
The function exp : se(3) → SE(3) defined by exp(S) = AS(1) is called the exponential map of the Lie
algebra se(3) into SE(3). It is easy to show [16] that the exponential map takes the line tS ∈ se(3), t ∈ IR
into a one-parameter subgroup of SE(3), i.e.

exp(tS) = AS(t). (5)

Using Equation (1) we can show that the exponential map agrees with the usual exponentiation of the matrices
in IR4×4:

exp(tS) =
∞∑

k=0

tkSk

k!
, (6)



where S denotes the matrix representation of the twist S. The sum of this series can be computed explicitly
and the resulting expression, when restricted to SO(3), is known as Rodrigues’ formula. The formula for the
sum in SE(3) is derived in [16].

In this paper, we choose a parameterization of SE(3) induced by the product structure SO(3) × IR 3. In
other words, we define a set of coordinates σ1, σ2, σ3, d1, d2, d3 for an arbitrary element A ∈ SE(3):

A =
[

R d
0 1

]

so that d1, d2, d3 are the coordinates of d in IR3. Exponential coordinates are chosen as local parameterization
of SO(3). For R ∈ SO(3) sufficiently close to the identity (i.e excluding the points Tr(R) = −1 (Tr(A) =
0), or, equivalently, rotations through angles of π), we define the exponential coordinates:

R = exp(σ̂) = eσ̂, σ ∈ IR3

where σ̂ is the skew-symmetric matrix corresponding to σ = [σ1, σ2, σ3]T .
The time derivative of σ can be expressed in terms of the body velocity as [17]:

σ̇ =
(

I +
1
2
σ̂ + (1 − α(‖σ‖)) σ̂2

‖σ‖2

)
ω (7)

where α(y) = (y/2)cot(y/2).

2.4 Riemannian Metrics on SE(3)

If a smoothly varying, positive definite, bilinear, symmetric form < ., . > is defined on the tangent space
at each point on the manifold, such a form is called a Riemannian metric and the manifold is Riemannian
[15]. If the form is non-degenerate but indefinite, the metric is called semi-Riemannian. On a n dimensional
manifold, the metric is locally characterized by a n × n matrix of C∞ functions < Xi, Xj > where Xi are
basis vector fields.

On SE(3) (on any Lie group), an inner product on the Lie algebra can be extended to a Riemannian
metric over the manifold using left (or right) translation.

A metric that is attractive for trajectory planning can be obtained by considering the dynamic properties
of the rigid body. The kinetic energy of a rigid body is a scalar that does not depend on the choice of the
inertial reference frame. It thus defines a left invariant metric. For this metric, 1

2 < V, V > corresponds to
the kinetic energy of the rigid body moving with a velocity V . If the body-fixed reference frame is attached
at the centroid and aligned with the principal axes, then the matrix of this metric is given by:[

G 0
0 mI

]
, (8)

where m is the mass of the rigid body and G is the inertia matrix:

G = diag{Gxx, Gyy, Gzz}

with Gxx, Gyy , and Gzz denoting the moments of inertia about the x, y, and z axes, respectively. If {ω, v} is
the vector pair associated with the vector V , then its norm assumes the familiar expression:

< V, V >= ωT Gω + mvT v. (9)



3 Optimal Curves on SE(3)

In this section we summarize some results derived in [12].

3.1 Minimum Distance (Energy) Curves - Geodesics

The geodesics can be defined as minimum length curves. The length of a curve A(t) between the points A(a)
and A(b) is defined to be:

L(A) =
∫ b

a

< V, V >
1
2 dt (10)

where V = dA(t)
dt . It can be shown [15], that if there exists a curve that minimizes the functional L, this curve

also minimizes the so called energy functional:

E(A) =
∫ b

a

< V, V > dt (11)

In [12] it has been proved that a geodesic A(t) on SE(3) equipped with metric (8) is described by

dω

dt
= −G−1(ω × (Gω)) (12)

d̈ = 0. (13)

If G = αI , an analytical expression for the geodesic passing through

A(0) =
[

R(0) d(0)
0 1

]
, A(1) =

[
R(1) d(1)

0 1

]
(14)

at t = 0 and t = 1 respectively, is given by [12]:

A(t) =
[

R(t) d(t)
0 1

]
∈ SE(3) (15)

where

R(t) = R(0) exp(ω̂0t) (16)

d(t) = (d(1) − d(0)) t + d(0) (17)

ω̂0 = log(R(0)T R(1)) (18)

In the case when G �= αI , there is no closed form expression for the corresponding geodesic and numer-
ical methods or the projection method [14] should be employed.

3.2 Minimum Acceleration Curves

The necessary conditions for the curves that minimize the square of the L 2 norm of the acceleration are
derived by considering the first variation of the acceleration functional

La =
∫ b

a

< ∇V V,∇V V > dt, (19)



where V (t) = dA(t)
dt , A(t) is a curve on the manifold, and ∇ is the unique symmetric connection compatible

with the given metric. The initial and final point as well as the initial and final velocity for the motion are
prescribed.

If SE(3) is equipped with metric (8) and G = αI , the differential equations to be satisfied by a minimum
acceleration curve (15) are [12]:

ω(3) + ω × ω̈ = 0 (20)

d(4) = 0, (21)

As observed in [9], equation (20) can be integrated to obtain

ω(2) + ω × ω̇ = constant

However, this equation cannot be further integrated analytically for arbitrary boundary conditions. In [12]
it is shown that for special choice of the initial and final velocities, minimum acceleration curves are re-
parameterized geodesics. If G �= αI in metric (8), the differential equations to be satisfied by the minimum
acceleration curves are difficult to derive and not suited for numerical integration.

4 Motion Generation

As shown in the previous section, closed form solutions for optimal curves on SE(3) with metric (8) are
known only for geodesics with G = αI . In all the remaining cases, numerical methods (shooting, relaxation)
should be employed. We implemented two methods to generate smooth rigid body motion: the relaxation
method (Section 4.1) and the projection method (Section 4.2). For the relaxation method, the local chart
defined in Section 2.3 is used to parameterize SE(3). The projection method uses the entries in the matrix as
coordinates.

4.1 Relaxation Method

The relaxation method [18] is used to generate geodesics when G �= αI and minimum acceleration curves
when G = αI . The translational parts (13) and (21) are easily integrable leading to polynomial solutions.
Three more differential equations described by (7) will augment systems (12) and (20) to solve for the ro-
tational part. Boundary conditions are imposed at times 0 and 1. In the relaxation method, the ODE’s are
replaced by finite difference equations on a mesh of points corresponding to the time domain. If we define

x1 = σ, x2 = ω, x3 = ω̇, x4 = ω̈,

the geodesic (subscript g) and the minimum acceleration (subscript a) ODE’s can be written as

ẋi = fi(xi), i ∈ {g, a} (22)

where
xg = [xT

1 xT
2 ]T , xa = [xT

1 xT
2 xT

3 xT
4 ]T

fg(xg) = [fT
1 fT

g2
]T , fa(xa) = [fT

1 fT
a2

fT
a3

fT
a4

]T

f1 =
(

I +
1
2
x̂1 + (1 − α(‖x1‖)) x̂2

1

‖x1‖2

)
x2 (23)

fg2 = −G−1(x2 × (Gx2)), fa2 = x3, fa3 = x4, fa4 = −x2 × x4



Note that the expression of f1 is in accordance with the time derivative of exponential coordinates on SO(3)
as in (7) where α(y) = (y/2)cot(y/2). If N is the number of coupled first order differential equations in (22)
and M is the number of mesh points, a solution consists of values for N dependent functions at each of the
M mesh points, i.e. N × M variables in all. The relaxation method determines the solution by starting with
a guess and improving it iteratively. At each step, the method produces a matrix equation whose solution
is increments for each entry in the N × M matrix of interest. When this increments are sufficiently small,
we say that the method has converged, or the matrix has relaxed to the true solution. For more details the
interested reader is referred to [18].

If (23) is used, the relaxation method does not converge. The Jacobian of f 1 is very involved and the error
propagation becomes significant. An approximation of (23) is used in the actual implementation, which is
much simpler, although accurate for angular displacements σ in a (rather large) neighborhood of the origin.
Equation (7) can be written equivalently as:

σ̇ =

(
I +

1
2
σ̂ +

∞∑
n=1

B2n

(2n)!
σ̂2n

)
ω (24)

where Bi are the Bernoulli numbers (B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = 1
30 ,...). Bn/n! are the coefficients of

the Taylor expansion of the function x/(ex − 1) and therefore form a sequence convergent to zero. Limiting
σ to a neighborhood of zero in IR3, it makes sense to replace (24) with

σ̇ =
(

I +
1
2
σ̂ +

1
12

σ̂2 +
1

720
σ̂4

)
ω (25)

and, therefore, (23) with

f1 =
(

I +
1
2
x̂1 +

1
12

x̂2
1 +

1
720

x̂4
1

)
x2

4.2 Projection Method

The idea of the projection method [14] is to generate optimal curves in some ambient space with a constant
metric and project the obtained trajectories on SE(3).

We consider SE(3) to be a submanifold (and a subgroup) of GA(3) (the Lie group of affine maps in
IR3). The method involves two key steps: (1) the generation of optimal trajectories in GA(3); and (2) the
projection of the trajectories from GA(3) to SE(3). Due to the fact that the metric we define in GA(3) is the
same at all points, the corresponding Christoffel symbols [15] are all zero. Consequently, the optimal curves
in the ambient space assume simple analytical forms (i.e geodesics - straight lines, minimum acceleration
curves - cubic polynomial curves, minimum jerk curves - fifth order polynomial curves, all parameterized by
time). The overall procedure is invariant with respect to both the local coordinates on the manifold and the
choice of the inertial frame. The benefits of the method are three-fold. First, it is possible to apply any of the
variety of well-known, efficient techniques to generate optimal curves on GA(3) [1, 19]. Second, the method
yields solutions for general choices of Riemannian metrics on SE(3). Third, from a computational point of
view, the method is less expensive than traditional methods, as shown in Section 6. The interested reader is
referred to [14] for details.

An approximate geodesic for metric (8) (G is any rigid body inertia matrix) with boundary conditions
given by (14) at t = 0 and t = 1 respectively, is given by (15) where

d(t) = d(0) + (d(1) − d(0))t, R(t) = U(t)V T (t)

with U and V determined from

M(t) = R(0) + (R(1) − R(0))t, M(t)W = U(t)Σ(t)V T (t), W =
1
2
Tr(G)I3 − G



An approximate minimum acceleration curve for the same position end conditions and velocity boundary
conditions Ṙ(0), ḋ(0), Ṙ(1), ḋ(1) is given by (15) with

d(t) = d0 + d1t + d2t
2 + d3t

3, R(t) = U(t)V T (t)

where

d0 = d(0), d1 = ḋ(0), d2 = −3d(0) + 3d(1) − 2ḋ(0) − ḋ(1), d3 = 2d(0) − 2d(1) + ḋ(0) + ḋ(1).

M(t) = M0 + M1t + M2t
2 + M3t

3,

M0 = R(0), M1 = Ṙ(0), M2 = −3R(0)+3R(1)−2Ṙ(0)− Ṙ(1), M3 = 2R(0)−2R(1)+ Ṙ(0)+ Ṙ(1).

M(t)W = U(t)Σ(t)V T (t), W =
1
2
Tr(G)I3 − G

5 Simulation Results

A homogeneous parallelepipedic rigid body is assumed to move (rotate and translate) in free space. We
assume that the body frame {M} is placed at the center of mass and aligned with the principal axes of the
body. Let a, b and c be the lengths of the body along its x, y and z axes respectively, and m the mass of the
body.

For visualization, a small square is drawn on one of its faces and the center of the parallelepiped is shown
starred.

The matrix G of metric <, >SO is given by

G =

⎡
⎣ m

24 (b2 + c2) 0 0
0 m

24 (a2 + c2) 0
0 0 m

24 (a2 + b2)

⎤
⎦

(a) (b)

−2
0

2
4

6
8

10 −2

0

2

4

6

8

10

12

−5

0

5

10

15

y

x

z

−2
0

2
4

6
8

10 −2

0

2

4

6

8

10

12

−5

0

5

10

15

y

x

z

Figure 2: Minimum acceleration motion for a cube in free space: (a) relaxation method; (b) projection method.

The following boundary conditions were considered:

σ(0) =
[

0 0 0
]T

, σ(1) =
[

π
6

π
3

π
2

]T



ω(0) =
[

1 2 3
]T

, ω(1) =
[

2 1 1
]T

d(0) =
[

0 0 0
]T

, d(1) =
[

8 10 12
]T

ḋ(0) =
[

1 1 1
]T

, ḋ(1) =
[

1 5 3
]T
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Figure 3: Geodesics for a parallelepipedic body: (a) relaxation method; (b) projection method.

True and projected minimum acceleration motions for a cubic rigid body with a = b = c = 2 and m = 12
are given in Figure 2 for comparison. Note that for this case G = αI with α = 4.

Geodesics for the same boundary conditions and a parallelepipedic body with a = c = 2, b = 10 and
m = 12 are given in Figure 3. For this case,

G =

⎡
⎣ 52 0 0

0 4 0
0 0 52

⎤
⎦

As seen in Figures 2 and 3, even though the total displacement between the initial and final positions
on SO(3) is large (rotation angle of π

√
14/6), there is no noticeable difference between the true and the

projected motions.
Three frames from the geodesic motion of the same parallelepiped generated using the relaxation method

and JackTM 1 are shown for illustration in Figure 4. JackTM is a program which facilitates constructing
geometric objects, positioning figures in a scene, and describing motion of the figures. It also has facilities
for specifying lighting and surface property information.

6 Implementation and Computational Efficiency

It is not difficult to see that, from a computational point of view, it is less expensive to generate interpolating
motion using the projection method as opposed to the relaxation method. Recall that the complexity of the

1JackTM is a trademark of the University of Pennsylvania



Figure 4: Frames from a movie produced with JackTM

SVD of a n × n matrix is of order n3 [20]. If M is the number of uniformly distributed points in [0, 1], then
the number of flops required by the projection method in GL(n) is of order O(n 3M)

The relaxation method for generating solution at M mesh points of a system of N differential equations
with two boundary conditions implies solving a MN × MN linear system in the corrections iteratively
until the method relaxes to the solution (corrections converge to zero) [18]. Gaussian elimination, whose
complexity is cubic, is used to solve the linear systems. Therefore, the number of flops required in the
relaxation method is of order O(M 3N3).

Consider the problem of generating geodesics on SO(n). Here N = n(n − 1). The projection method
involves O(n3M) flops while the relaxation method has complexity of the order O(n 6M3). For M = 100,
as we used in this paper, the generation of geodesics on SO(3) (n = 3) requires millions of flops by the
relaxation method, while only thousands by the projection method.

The relaxation method has been programmed in C, using routines from [18]. The produced executable
file is called with line command arguments from a MATLABTM 2 file, so that the C code is transparent for the
user. For both the projection and the relaxation method, the MATLAB TM files ask for input data: position and
velocity boundary conditions, and mass and moments of inertia of the body. The output is the trajectory on
SE(3). The rotational part can be plotted separately in exponential coordinates. Files of type .frames to
generate motion in JackTM are also created.

7 Conclusion

This paper presents two methods for generating trajectories that minimize energy functionals on SE(3), the
group of rigid body displacements. The first method numerically integrates the Euler-Lagrange equations
using a relaxation procedure. The second method gives an approximate but much simpler solution of the
optimization problem. The two methods are compared and illustrative simulations are included.
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