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Optimal Motion Generation for
Groups of Robots: A Geometric
Approach
In this paper we generate optimal smooth trajectories for a set of fully-actuated m
robots. Given two end configurations, by tuning one parameter, the user can choo
interpolating trajectory from a continuum of curves varying from that corresponding
maintaining a rigid formation to motion of the robots toward each other. The idea be
our method is to change the original constant kinetic energy metric in the configura
space and can be summarized into three steps. First, the energy of the motion as a
structure is decoupled from the energy of motion along directions that violate the
constraints. Second, the metric is ‘‘shaped’’ by assigning different weights to each
Third, geodesic flow is constructed for the modified metric. The optimal motions g
ated on the manifolds of rigid body displacements in 3-D space~SE~3!! or in plane
~SE~2!! and the uniform rectilinear motion of each robot corresponding to a tota
uncorrelated approach are particular cases of our general treatment.
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1 Introduction
Multi-robot systems have applications in exploration missio

military surveillance, and cooperative manipulation tasks. Rec
research on such systems include work on multi-robot mo
planning@1#, cooperative manipulation@2#, mapping and explora-
tion @3#, behavior-based formation control@4#, and software archi-
tectures for multi-robotic systems@5#. In all these paradigms, on
is interested in planning the motion for a team of robots, and
many cases it is important for the robots to maintain a formati
In multi-robot manipulation, for example, it is necessary for t
robots to maintain constraints on the relative position and or
tation to guarantee form, force, or object closure@6#. In multi-
robot mapping or target tracking, it is essential for the robots
maintain an optimal formation to minimize the errors associa
with the estimation process@7#. Finally, it is well known that
formation flying results in great benefits in terms of fuel efficien
@8#. In addition, there are also strategic benefits to be derived f
maintaining formation in military operations in air, ground,
water @9#.

In this paper, we first consider the formation of robots as a ri
body, and investigate the motion of such a formation. Virtu
structures@10# have been used for motion planning, coordinati
and control of space-crafts@11#. Our definition of a rigid forma-
tion requires that distances between chosen reference poin
robots remain fixed. The relative orientations of each robot are
restricted in such a formulation. To this end, we build on t
results from@12# to generate trajectories that satisfy the rigid
constraint and minimize the overall energy. The optimizat
problem is reduced to generating geodesics on the Lie gro
SO(3) and SE(3). Due to thegeometrical framework that we
use, the generated trajectories are left invariant i.e., indepen
of the choice of the inertial frame$F%.

However, the rigid formation constraint is too restrictive
many applications. We would like the robots to be able to bre
formation, cluster together or string themselves out to avoid
stacles, and to regroup to achieve a desired goal formation a
destination. We next develop a family of trajectories ranging fr
the ones that are optimal for a rigid formation on one hand
independent trajectories that are optimal for each robot on

Contributed by the Mechanisms and Robotics Committee for publication in
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other. This is done by constructing a new metric which is obtain
from the naturally induced~constant! kinetic energy metric de-
rived from the inertial properties of the robots. The tangent sp
at each point of the configuration space is decomposed into
metric-orthogonal subspaces. We then assign different weigh
the terms corresponding to rigid and nonrigid instantaneous
tions to derive a new ‘‘shaped’’ metric. This idea of a ‘‘decomp
sition’’ and a subsequent ‘‘modification’’ is closely related to th
methodology of controlled Lagrangians described in@13,14#. Op-
timal curves derived from this metric yield the planned trajec
ries for individual robots.

The rest of the paper is organized as follows. We state the m
problem and introduce the notation in Section 2. A brief overvi
of the geometry of rigid body motion is given in Section 3. Se
tion 4 gives a mathematical description of the constraint that a
of points in 3D are rigidly connected, in terms of a smooth
varying distribution in the configuration space. This distributi
and its orthogonal complement in the kinetic energy metric
used to separate rigid and non-rigid motions in Section 5 and
define ‘‘shaped’’ metrics in Section 7. Section 6 is concerned w
optimal motion plans for virtual structures while Section 7 sho
how continua of trajectories can be constructed by using me
shaping. The paper concludes with final remarks and outline
future work in Section 8.

2 Problem Statement and Notation
ConsiderN robots moving~rotating and translating! in 3-D

space with respect to an inertial frame$F%. We choose a referenc
point on each robot at its center of massOi . A moving frame
$Mi% is attached to each robot atOi ~see Fig. 1!.

Robot i has massmi and matrix of inertiaHi with respect to
frame$Mi%. Let RiPSO(3) denote the rotation of$Mi% in F and
qiPIR3 the position vector ofOi in $F%. Let v i denote the ex-
pression in$Mi% of the angular velocity of$Mi% with respect to
$F%. The formation is defined by the reference pointsOi . The
moving formation is called rigid if the relative distance betwe
any of the pointsOi is maintained constant. Sometimes it is al
useful to define a formation frame$M %, attached at some virtua
point O8 and with pose (R,d)PSE(3) in $F%. Let qi

0 denote the
position vectors ofOi in $M %.

The configuration space is the 6N-dimensional manifold,
SE(3)3SE(3)3 . . . SE(3), given by the poses of each robo

the
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Given two configurations at timest50 andt51 respectively, the
goal is to generate smooth interpolating motion for each robo
that the total kinetic energy is minimized.

The kinetic energyT of the system of robots is the sum of th
individual energies. Since the frames$Mi% are placed at the cen
troids Oi of the robots,T can be written as the sum of the tot
rotational energyTr and the total translational energyTt in the
form:

T5Tr1Tt , Tr5
1

2 (
i 51

N

~v i
THiv i !, Tt5

1

2 (
i 51

N

~miq̇i
Tq̇i !

(1)

Since our definition of a formation only involves the referen
points Oi , a formation requirement will only constrain theqi ’s
from the above equation. Therefore, due to the decompositio
Eq. ~1!, minimizing the total energy is equivalent to solvingN
11 independent optimization subproblems:

min
s i

E
0

1

v i
THiv idt, i 51, . . . ,N, (2)

min
qi51, . . . ,N

E
0

1

Ttdt (3)

wheres i is some parameterization of the rotation of$Mi% in $F%,
i.e., some local coordinates onSO(3). Thesolutions to Eqs.~2!
are given byN geodesics onSO(3) with left invariant metrics
with matricesHi . Two different methods to obtain the solutio
are given in@12,15# and a short example is given in Section 6.

The main focus in this paper is solving problem~3! while sat-
isfying constraints on the positions of the reference pointsOi that
may be imposed by the requirements on the task. Thus the
figuration space we are interested in is just the 3N dimensional
Q5$quq5(q1 , . . . ,qN)%, which collects all the position vector
of the chosen reference points. Maintaining a rigid formation~a
virtual structure! imposes constraints on the configuration spa
Q, and these constraints may be relaxed as necessary.

3 Background
In this section we give a brief overview of the geometry of rig

body motion, mainly to introduce the notation. The special E
clidean groupSE(3) is the set of all rigid displacements in IR3:

SE~3!5H gug5FR d

0 1G ,RPIR333,RRT5I ,detR51,dPIR3J .

The Lie algebra ofSE(3), denoted byse(3), is given by:
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se~3!5H ŝuŝ5F v̂ v

0 0G ,v̂PIR333,v̂T52v̂,vPIR3J
where v̂ is the skew-symmetric matrix form of the vectorv
PIR3 ands5(v,v)PIR6. Given a curveg(t)5(R(t),d(t)), an
elements(t) of the Lie algebrase(3) can be associated to th
tangent vectorġ(t) by:

ŝ~ t !5g21~ t !ġ~ t !5F v̂~ t ! RTḋ

0 0
G (4)

wherev̂(t)5RTṘ.
Consider a rigid body moving in free space. Assume any in

tial reference frame$F% fixed in space and a frame$M % fixed to
the body at pointO8. A curve onSE(3) physically represents a
motion of the rigid body. If$v(t),v(t)% is the vector pair corre-
sponding tos(t), thenv corresponds to the angular velocity of th
rigid body whilev is the linear velocity ofO8, both expressed in
the frame$M %.

For anys1 ,s2Pse(3) andG a positive definite matrix, we can
define a metrics1

TGs2 on the Lie algebrase(3) and extend it
through left translation throughout the manifoldSE(3). Let m be
the mass of a rigid body andH its matrix of inertia with respect to
a body frame$M %, assumed at the center of mass. Then, with

G5
1

2 FH 0

0 mI3
G (5)

the norm induced by the above metricsTGs is exactly the kinetic
energy of the moving~rotating and translating! rigid body. More-
over, if $M % is aligned with the principal axes, thenH is diagonal.

For a rigid system ofN particles with massesm1 , . . . ,mN and
position vectorsq1

0 , . . . ,qN
0 in the body fixed frame$M %, the

matrix of the ~left invariant! kinetic energy metric onSE(3) is
@16#:

M5F 2(
i 51

N

miq̂i
02

(
i 51

N

miq̂i
0

2(
i 51

N

miq̂i
0 (

i 51

N

miI 3

G (6)

The upper left 333 sub-matrix ofM is the inertia matrix of the
system of particles with respect to$M %. If frame $M % is placed at
the center of mass and aligned with the principal axes of
structure, thenM becomes diagonal.
Transactions of the ASME



r

d

r

s

t

-

ist

ed
l

,

tic

go-

-

’

is:

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/126/1/63/5603537/63_1.pdf by Boston U
niversity user on 28 D

ecem
ber 2023
The geodesics on a differentiable manifold can be defined
minimum length, or equivalently, minimum energy curves@17#. A
useful ~local! characterization of a geodesic curve on
n-dimensional Riemannian manifold~locally! parameterized by
x1 , . . . ,xn is the following set of differential equations:

ẍi1(
j ,k

G jk
i ẋ j ẋk50, i 51, . . . ,n (7)

where G jk
i are the Christoffel symbols of the unique symmet

connection associated to the metric on the manifold@17#.
In @12# it has been proved that a geodesicg(t) on SE(3)

equipped with a left invariant product metric of the type~5! is
composed of the geodesics in the component manifoldsSO(3)
and IR3 with the corresponding component metrics, and are
scribed by the following set of differential equations:

dv

dt
52H21~v3~Hv!! (8)

d̈50. (9)

If H5aI , an analytical expression for the geodesic pass
throughg(0)5(R(0),d(0)) andg(1)5(R(1),d(1)) at t50 and
t51 respectively, is given by@18# g(t)5(R(t),d(t)), where
R(t)5R(0)exp(v̂0t), d(t)5(d(1)2d(0))t1d(0) and v̂0

5 log(R(0)TR(1)). In the case whenHÞaI , there is no closed
form expression for the corresponding geodesic and nume
methods or the projection method@15,19# should be employed.

4 The Rigidity Constraint
The group ofN robots is said to form avirtual structureif the

relative distance between any of the reference pointsOi is main-
tained constant. Letq5@q1

T , . . . ,qN
T #T denote an arbitrary point in

Q. For an arbitrary pair of reference points with position vecto
qi andqj , i , j 51, . . . ,N, i , j , the constraints can be written a

~qi2qj !
T~qi2qj !5constant (10)

or, by differentiation:

~qi2qj !
Tq̇i2~qi2qj !

Tq̇j50

By lifting this constraint to the configuration manifoldQ, the
coordinates of the corresponding differential one form can
written as a 133N row vector:

v i j 5@0 . . . 0~qi2qj !
T 0 . . . 02~qi2qj !

T 0 . . . 0#

The non-zero 133 blocks in the above matrix are in positionsi
and j , respectively. If we consider all (N21)N/2 possible con-
straints, we can construct the codistributionvR as the span of all
the corresponding covectors:

vR5span$v i j ,i , j 51, . . . ,N,i , j %

It is obvious that not all the (N21)N/2 covectors~constraints! are
independent. To insure rigidity, it is necessary and sufficien
impose 2N23 constraints of the type~10! in plane, while in 3D,
the number is 3N26. By simple inspection, it is easy to prov
that the annihilating distribution ofvR (vR(DR)50) is:

DR5Range~A~q!!, A~q!5F 2q̂1 I 3

. . . . . .

2q̂N I 3

G (11)

Therefore, by lifting each constraint to the configuration manifo
Q, the virtual structure~rigidity! constraint can be written as

q̇PDR~q! (12)

If qi are not all contained in any proper hyperplane of IRd (d
52,3), it can be proved@20# that the distributionDR is regular,
and, therefore integrable, since involutivity is always guarante
Journal of Mechanical Design
as

a

ic

e-

ing

ical

rs
:

be

to

e

ld

ed.

The distributionDR(q) determines a foliation ofQ with leaves
given by orbits ofSE(3). Indeed, assumeq(0)5q0 and q̇(0)
PDR(q0). Then, the rigidity constraint~12! is satisfied for allt
>0 if and only if

qi~ t !5d~ t !1R~ t !qi
0 , i 51, . . . ,N (13)

where (R(t),d(t)) is a trajectory of the left invariant control sys
tem

ġ~ t !5gŝ (14)

starting fromR(0)5I 3 , d(0)50.
Note that, under the rigidity assumption~12!, the coordinatesr

of the expansion ofq̇PDR(q) along the columns ofA(q), i.e.,
q̇5A(q)r , are exactly the components of the left invariant tw
of a virtual structure formed by (q1 , . . . ,qN) and $F% at that
instant.

Also, if ~12! is satisfied, thens from ~14! is the left invariant
twist of a moving rigid structure formed by (q1

0 , . . . ,qN
0 ) and

$M % and for which the mobile frame$M % was coincident with
$F% at t50. g5(R,d) is the pose of the moving frame$M % in
$F%. Moreover, we have

q̇i5R@2q̂i
0I #s (15)

It follows that motion planning~control! problems for a set ofN
robots in 3D required to maintain a rigid formation can be reduc
to motion planning~control! problems for a left invariant contro
system onSE(3).

5 Motion Decomposition: Rigid vs. Nonrigid
We first define a metriĉ,& in the position configuration space

which is the same at all pointsqPQ:

^Vq
1 ,Vq

2&5Vq
1T

MVq
2 , (16)

Vq5q̇PTqQ, M5
1

2
diag$m1I 3 , . . . ,mNI 3%

Metric ~16! is called thekinetic energy metricbecause its induced
norm (Vq

15Vq
25q̇) assumes the familiar expression of the kine

energy of the system 1/2( i 51
N miq̇i

Tq̇i .
If no restrictions are imposed onQ, the geodesic between

q(0)5q0 andq(1)5q1 for metric~16! is obviously a straight line
uniformly parameterized in time interpolating betweenq0 andq1

in Q.
At each pointq in the configuration spaceQ, DR(q) locally

describes the set of all rigid body motion directions. The ortho
nal complement toDR(q), DNR(q) will be the set of all directions
violating the rigid body constraints.1 For an arbitrary tangent vec
tor VqPTqQ, let RVq denote the projection ontoDR and NRVq
denote the projection ontoDNR .

Using metric~16!, the orthogonal complement of the ‘‘rigid’
distributionDR(q) is the ‘‘nonrigid’’ distribution

DNR~q!5Null~A~q!TM ! (17)

Let B(q) denote a matrix whose columns are a basis ofDNR(q).
Let c denote the components of the projection in this bas

NRVq5B(q)c. Therefore, the velocity at pointq can be written
as:

Vq5RVq1NRVq5A~q!r 1B~q!c (18)

Then, for anyVq
1 ,Vq

2PTqQ, we have:

1In @13,14#, the tangent space atq to the orbit ofSE(3) is called the vertical space
at q, Verq , and its orthogonal complement is the horizontal space atqPQ, Horq .
JANUARY 2004, Vol. 126 Õ 65
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Fig. 2 Geometry of the robots and of the virtual structure showing the initial and the final configura-
tions. The relevant dimensions are chosen to be: aÄcÄ2, bÄ10, hÄ20, lÄ10, XÄ20, ZÄ20, mÄ12.
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^Vq
1 ,Vq

2&5Vq
1T

MVq
25r 1T

ATMAr21r 1T
ATMBc21c1T

BTMAr2

1c1T
BTMBc25r 1T

ATMAr21c1T
BTMBc2

5^Bc1,Bc2&1^Ar1,Ar2&5^NRVq
1 ,NRVq

2&

1^RVq
1 ,RVq

2&

because bothATMB and BTMA are zero from~17!. Also, note
that

r 5~ATMA!21ATMV,

c5~BTMB!21BTMV (19)

where the explicit dependence ofA andB on q was omitted for
simplicity. Therefore, the translational kinetic energy~which is the
square of the norm induced by metric~16! becomes:

Tt~q,q̇!5q̇TMq̇5r TATMAr1cTBTMBc (20)

In ~20!, r TATMAr captures the energy of the motion of the syste
of particles as a rigid body, while the remaining partcTBTMBc is
the energy of the motion that violates the rigid body restrictio
For example, in the obvious case of a system ofN52 particles,
the first part corresponds to the motion of the two particles c
nected by a rigid massless rod, while the second part would
respond to motion along the line connecting the two bodies.

6 Motion Generation for Rigid Formations
In this section, we will assume that the robots are required

move in rigid formation, i.e., the distances between any two
erence pointsOi are preserved, or, equivalently, the referen
points form a rigid polyhedron.

In our geometric framework, the rigid body requirement mea
restricting the trajectoryq(t)PQ to be aSE(3)-orbit, or equiva-
lently, NRq̇50 or q̇PDR(q), for all q.

In this case, one can imagine a body frame$M % moving with
the virtual structure determined by theOi ’s. Initially ( t50), the
26, JANUARY 2004
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frame $M % is coincident with$F% and q(0)5q0. The position
vector of Oi in $M % is constant during this motion and equal
qi

0 .
From ~15! and ~1!, the kinetic energyTt becomes:

Tt5sTMs, M5A~q0!TMA~q0! (21)

wheresPse(3) is the instantaneous twist of the virtual structu
andA is given by~11!. The expression ofM in ~21! can be easily
seen to coincide with~6!.

Therefore, if the set of robots is required to move while ma
taining a constant shapeq0, the optimization problem is reduce
from dimension 6N to dimension 3N16, and consists of solving
for N geodesics onSO(3) with metricsHi ~individual rotations!
and one geodesic on theSE(3) of the virtual structure with left
invariant metricM as in ~21!. If M has a product structure as i
~5!, then the translational part of the geodesic onSE(3) is easily
solvable leading to a polynomial curve. To construct interpolat
geodesics onSO(3), a numerical method such as relaxation o
shooting@21# can be used to solve the corresponding bound
value problem. In this case, one needs to choose a paramete
tion of SO(3) and three more differential equations in these lo
coordinates will augment system~8!. An alternative is to use the
projection method described in@15,19#. The resulting computation
is less expensive but the trajectories are sub-optimal.

For illustration, we consider five identical parallelepipedic r
bots mi5m,i 51, . . . ,5 required to move in formation while
minimizing energy. The initial and final poses together with t
geometrical properties of the robots are given in Fig. 2. The b
frames and the formation frame placed at the center of mass
aligned with the principal axis are drawn. The inertial frame
coincident with the formation frame att50. As seen from the
inertial frame, the formation frame is translated by (X,0,Z) and
rotated by290 degrees around they-axis.

As outlined in the previous section, generating optimal mot
for this group of robots reduces to generating five geodesics
the SO(3) of each robot with left invariant metric
Transactions of the ASME
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Hi5
m

24F b21c2 0 0

0 a21c2 0

0 0 a21b2
G , i 51, . . . ,5

and one geodesic on theSE(3) of the virtual structure endowe
with a left invariant metric with matrix

G5
m

2 3
2l 2 0 0 0

0 l 21
4h2

3
0 0

0 0 l 21
4h2

3
0

0 0 0 3I 3

4
We used the relaxation method to solve the corresponding bo
ary value problem. Exponential coordinates were employed
local parameterization ofSO(3) @19#. The resulting motion is
presented in Fig. 3.

7 Motion Generation by Kinetic Energy Shaping
By shaping the kinetic energy, we mean smoothly changing

corresponding metric~16! at TqQ so that motion along some spe
cific directions is allowed while motion along some other dire
tions is penalized. The new metric will no longer be constant-
Christoffel symbols of the corresponding symmetric connect
will be non-zero. The associated geodesic flow gives optimal m
tion.

In this work, the original metric~16! is shaped by putting dif-
ferent weights on the terms corresponding to the rigid and n
rigid motions:

^Vq
1 ,Vq

2&a5a^NRVq
1 ,NRVq

2&1~12a!^RVq
1 ,RVq

2& (22)

Using ~19! to go back to the original coordinates, we get t
modified metric in the form:

^Vq
1 ,Vq

2&a5Vq
1T

Ma~q!Vq
2 , (23)

where the new matrix of the metric is now dependent on
artificially introduced parametera and the point on the manifold
qPQ:

Ma~q!5aMA~ATMA!2TATM1~12a!MB~BTMB!2TBTM
(24)

The significance of the shaping parametera can be best under
stood by examining metric~22! when a increases from 0 to 1
First, note that fora50 and a51 matrix ~24! of metric ~22!
becomes singular and cannot be used to construct geodesic
Indeed, sinceM is nonsingular, the rank of the first term of th

Fig. 3 Optimal motion for five identical robots required to
maintain a rigid formation
Journal of Mechanical Design
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sum in ~24! is equal to the rank ofA, which is 6 if qi are not all
contained in a hyperplane, while the rank of the second term
the sum is equal to the rank ofB, which is 3N26. Making a
50 is equivalent to completely forbiding motions along orbits
SE(3). For example, for two bodies, they are only allowed
move along the line connecting them. Whena is slightly larger
than zero, matrix~24! of metric ~22! becomes non-singular an
motion can be generated between arbitrary initial and final p
tions. However, the motion along the rigid directions contained
the distributionDR are penalized. ‘‘Most’’ of the motion will be
along the non-rigid directions. The corresponding geodesics
metric ~24! will cause the robots to cluster together through m
of the duration of the trajectory. Asa approaches 0.5, the Chris
offel symbols become zero and the weights given to the rigid
nonrigid terms in metric~24! are equal. This case corresponds
optimal uncoordinated interpolating motions of the individual r
bots, i.e., straight lines uniformly parameterized in time. Asa
tends to 1, the non-rigid motion along the directions contained
the distributionDNR is penalized. What is left is ‘‘mostly rigid’’
motion, and the corresponding geodesics represent almostoptimal
rigid motion. a51 is equivalent to completely forbiding non-rigi
motions.

We use the geodesic flow of metric~23! to produce smooth
interpolating motion between two given configurations:

q05q~0!, q15q~1!PIR3N (25)

To simplify the notation, letxi , i 51, . . . ,3N denote the coordi-
natesqiPIR3, i 51, . . . ,N on the configuration manifoldQ. In
these coordinates, the geodesic flow is described by differen
Eqs. ~7! with n53N and G i j

k are the Christoffel symbols of the
unique symmetric connection associated to metric~23!:

G i j
k 5

1

2 (
h

S ]mh j

]xi 1
]mih

]xj 2
]mi j

]xh Dmhk (26)

mi j andmi j are elements ofMa andMa
21 , respectively.

Becausea50 anda51 make the metric singular,~2! can only
be used for 0,a,1.

7.1. Two Bodies in Plane. Consider two bodies of masse
m1 andm2 moving in thex2y plane. The configuration space
Q5R4 with coordinatesq5@x1 ,y1 ,x2 ,y2#T. TheA andB matri-
ces describingDR(q) andDNR(q) as in ~11! and ~17! are:

A5F 2y1 1 0

x1 0 1

2y2 1 0

x2 0 1

G , B53
m2~x22x1!

m1~y12y2!

2
m2

m1

x12x2

y12y2

1

4 (27)

From ~27!, ~24!, and ~26!, after some trivial but rather tediou
calculations, we get the 64 Christoffel symbolsGk5(G i j

k ) i j of the
connection associated with the modified metric atqPQ in the
form:

G15
2~122a!

a

m2

m11m2

dx

~dx
21dy

2!2 G

G25
2~122a!

a

m2

m11m2

dy

~dx
21dy

2!2 G

G352
2~122a!

a

m1

m11m2

dx

~dx
21dy

2!2 G

G452
2~122a!

a

m1

m11m2

dy

~dx
21dy

2!2 G
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Fig. 4 Three interpolating motions for a set of two planar robots as geodesics of a modified metric defined in the configura-
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where

G5F 2dy
2 dxdy dy

2 2dxdy

dxdy 2dx
2 2dxdy dx

2

dy
2 2dxdy 2dy

2 dxdy

2dxdy dx
2 dxdy 2dx

2

G
and dx5x12x2 , dy5y12y2 . It can be easily seen that, as e
pected, all Christoffel symbols are zero ifa50.5. Also, the actual
masses of the robots are not relevant, it’s only the ratiom1 /m2
which is important.

In this example, we assumem252m1 and the boundary condi
tions:

q05F 1
0

20.5
0

G , q153
32
&

2

2
&

2

31
&

4

&

4

4
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-

which correspond to a rigid body displacement so that we
compare our results to the optimal motion corresponding to a r
body.

If the structure was assumed rigid, then the optimal motion
described by uniform rectilinear translation of the center of m
between~0,0! and~3,0! and uniform rotation between 0 and 3p/4
around2z placed at the center of mass. The corresponding
jectories of the robots are drawn in solid line in all the pictures
Fig. 4. It can be easily seen that there is no difference between
optimal motion of the virtual structure solved onSE(2) and the
geodesic flow of the modified metric witha50.99 ~Fig. 4, bot-
tom!. If a50.5, all bodies move in straight line as expected~Fig.
4, middle!. For a50.2, the bodies go toward each other first, a
then split apart to attain the final positions~Figure 4, top!.

7.2. Three Bodies in Plane. The calculation of the trajecto
ries for three bodies moving in the plane is simplified by assum
that the robots are identical, and, without loss of generality,
assumem15m25m351. The rigid and the non-rigid spaces at
generic configuration

q5@x1 ,y1 ,x2 ,y2 ,x3 ,y3#TPQ5IR6

are given by
Transactions of the ASME
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DR5Range~A!, A53
2y1 1 0

x1 0 1

2y2 1 0

x2 0 1

2y3 1 0

x3 0 1

4 ,

DNR5Range~B!, B53
x32x1

y12y2

y22y3

y12y2

x22x1

y12y2

21 0 21

x12x3

y12y2

y32y1

y12y2

x12x2

y12y2

0 0 1

0 1 0

1 0 0

4
For simplicity, we omit the expressions of the modified metric a
of the Christoffel symbols, which are rather involved. The sim
lation scenario resembles the one in Section 7.1: the end p
correspond to a rigid structure consisting of a equilateral trian
with side equal to 1. The optimal trajectory solved onSE(2)
corresponds to rectilinear uniform motion of the center of ma
~line between~0,0! and~3,0! in Fig. 5! and uniform rotation from
angle 0 to 3p/4 around axis2z. The resulting motion of each
robot is shown solid, while the actual trajectory for the corr

Fig. 5 Three interpolating motions for a set of three planar
robots as geodesics of a modified metric defined in the con-
figuration space.
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sponding value ofa is shown dashed. First note fora50.99 the
trajectories are basically identical with the optimal traces p
duced by the virtual structure, as expected. In the casea50.5 the
bodies move in straight line~corresponding to the unmodifie
metric!. The tendency to cluster asa decreases is seen fora
50.2. Note also that due to our choicem15m25m3 , the geom-
etry of the equilateral triangle is preserved for all values ofa, it
only scales down whena decreases from 1.

In both Sections 7.1 and 7.2, the motions were produced u
the boundary value problem solver ‘‘bvp4c’’ from MATLAB
which is based on a relaxation type procedure@21#. Since the
differential equations of the geodesics~7! are of second order in
each coordinate, the state space form of the system of differe
equations was eight dimensional in the two body problem a
twelve dimensional in the three body problem. The converge
time for the relaxation method was at the order of seconds in b
cases on a Pentium III.

8 Conclusion and Future Work
We presented a strategy for generating a family of smooth

terpolating trajectories for a team of fully-actuated mobile robo
The family is parameterized by a scalara. As a becomes closer to
zero, the robots are pulled together as they move between
initial and final positions. The casea50.5 corresponds to a totally
uncoordinated strategy: each robot will move from its initial to
final position while minimizing its own energy. Finally, asa tends
to 1, the robots try to preserve the distances between them
minimize the overall energy of the motion. This constitutes
alternative to generating motion for virtual structures by solvi
an optimization problem on the manifold of rigid body displac
mentsSE(3) @5#.

While the paper provides a useful conceptual framework
optimal motion planning and generation of trajectories, there
practical limitation to this work. As the number of robots,N in-
creases, the generation of the Christoffel symbols and the s
tions to the two-point boundary value problems become v
complicated. Future work will be directed towards defining t
necessary tools necessary to solve motion planning and co
problems for large groups of robots. We believe that prope
defined maps from the configuration space of the robots to sm
dimensional spaces capturing the behavior of the group will
central in this endeavour.
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