
Optimal path planning for surveillance
with temporal-logic constraints∗

The International Journal of
Robotics Research
30(14) 1695–1708
© The Author(s) 2011
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364911417911
ijr.sagepub.com

Stephen L Smith1, Jana Tůmová2,3, Calin Belta2 and Daniela Rus4

Abstract
In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifi-
cations. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by
an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment.
The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we
seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment
model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is moti-
vated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at
all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method
utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-
logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We
present an implementation for a robot performing data collection in a road-network platform.

Keywords
Motion planning, optimal path planning, temporal logic

1. Introduction

The goal of this paper is to plan the optimal motion of a
robot subject to temporal-logic constraints. This problem
arises in many applications where a mobile robot has
to perform a sequence of operations subject to external
constraints. For example, in a persistent data-gathering
task, the robot is required to gather data at several locations
and then visit a different set of upload sites to transmit the
data. Referring to Figure 1, we would like to enable tasks
such as ‘Repeatedly gather data at locations g1, g2, and
g3. Upload data at either u1 or u2 after each data-gather.
Follow the road rules, and avoid the road connecting i4 to
i2’. We wish to determine a robot motion that completes the
task and minimizes a cost function, such as the maximum
time between data uploads.

Motion and path planning have been studied extensively
in the robotics literature (LaValle, 2006). Much of the
work has focused on point-to-point navigation, where a
mobile robot must travel from a source to a destination,
while avoiding obstacles. Many effective solutions have
been proposed for this problem, including discretized
approaches that utilize graph-search algorithms such as
A∗ (see, for example, Russell and Norvig, 2003; LaValle,
2006); continuous approaches involving navigation func-
tions and potential fields (Rimon and Koditschek, 1992);

and sampling-based methods such as Rapidly-Exploring
Random Trees (RRTs) (LaValle and Kuffner, 2001; Tedrake
et al., 2010). However, the above approaches do not address
more complex planning objectives, where robots must visit
multiple locations in an environment, subject to logical or
temporal constraints.

Recently there has been an increased interest in
using temporal logic to specify mission plans for robots
(Antoniotti and Mishra, 1995; Loizou and Kyriakopoulos,
2004; Quottrup et al., 2004; Belta et al., 2005; Fainekos
et al., 2009; Kress-Gazit et al., 2009; Wongpiromsarn et al.,

1Department of Electrical and Computer Engineering, University of
Waterloo, Canada
2Department of Mechanical Engineering, Boston University, USA
3Faculty of Informatics, Masaryk University, Czech Republic
4Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, USA

∗Based on Optimal Path Planning Under Temporal Logic Constraints by
S. L. Smith, J. Tumova, C. Belta, and D. Rus which appeared in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). © 2010 IEEE.

Corresponding author:
Stephen L. Smith, Department of Electrical and Computer Engineering,
University of Waterloo, 200 University Avenue West, Waterloo ON, N2L
3G1 Canada
Email: stephen.smith@uwaterloo.ca

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364911417911&domain=pdf&date_stamp=2011-10-10

1696 The International Journal of Robotics Research 30(14)

Fig. 1. An environment consisting of roads, intersections, and
parking lots. An example mission in the environment is ‘Repeat-
edly gather data at locations g1, g2, and g3. Upload data at either
u1 or u2 after each data-gather. Follow the road rules, and avoid
the road connecting i4 to i2.’

2010). Temporal logic is appealing because it provides for-
mal high-level languages in which to describe a complex
mission. In addition, tools from model checking (Vardi and
Wolper, 1986; Holzmann, 1997; Clarke et al., 1999; Bar-
nat et al., 2009) can be used to verify the existence of a
robot path satisfying the specification, and they can produce
a satisfying path. However, frequently there are multiple
robot paths that satisfy a given specification. In this case,
one would like to choose the optimal path according to a
cost function. The current tools from model checking do
not provide a method for doing this. In this paper we con-
sider linear temporal-logic specifications, and a particular
form of cost function, and provide a method for computing
optimal paths.

In terms of optimizing paths, the most closely related
work has been on the vehicle-routing problem (VRP) (Toth
and Vigo, 2001). In vehicle routing, the problem is to plan
routes for vehicles to optimally service customers. The
VRP generalizes the well-known traveling salesman prob-
lem (TSP) by considering aspects such as multiple vehi-
cles, vehicles with capacity constraints, and vehicles that
must depart and return to specified depot locations. Such
aspects can be thought of as specific examples of logical
or temporal constraints. While the vehicle-routing problem
is NP-hard, many effective heuristics have been developed
that provide good solutions to moderately sized problems
(Laporte, 2009).

Recent results (Karaman and Frazzoli, 2008a,b) present
extensions of vehicle-routing problems to more general
classes of temporal constraints (see also Karaman et al.,
2009). In Karaman and Frazzoli (2008b), the authors con-
sider vehicle routing with metric temporal-logic specifica-
tions. The goal is to minimize a cost function of the vehicle
paths (such as total distance traveled). The authors present
a method for computing an optimal set of paths by convert-
ing the problem to a mixed integer linear program (MILP).
While the approach is computationally intensive, it has been
used to solve problems of real-world significance. However,
their method cannot be applied to the persistent-monitoring
and data-gathering applications that are of interest in this

paper. This is due to the fact that their method applies only
to specifications where the temporal operators are applied
directly to atomic propositions. Thus, it does not allow for
specifications of the form ‘always eventually,’ which appear
when specifying that a robot should repeatedly perform a
task. Because of this, in this paper we take an entirely dif-
ferent approach to optimizing robot motion. The approach
that we present leads to an optimization problem on a graph,
rather than a MILP.

The contribution of this paper is to present an algorithm
that generates optimal robot paths satisfying general lin-
ear temporal-logic (LTL) formulas. The cost function that
we minimize is motivated by problems in monitoring and
data-gathering, and it quantifies the time between satisfying
instances of a single optimizing proposition. Our solution,
summarized in the OPTIMAL-RUN algorithm of Section 4,
operates as follows. We represent the motion of the robot
in the environment as a weighted transition system. Then,
we convert the LTL specification to a Büchi automaton. We
synchronize the transition system with the Büchi automaton
to create a product automaton. In this automaton, a satis-
fying run is any run that visits a set of accepting states
infinitely often. We show that there exists an optimal run
that is in ‘prefix–suffix’ structure, implying that we can
search for runs with a finite transient, followed by a periodic
steady state. Thus, we create a polynomial-time graph algo-
rithm based on solutions of bottleneck shortest-path prob-
lems to find an optimal cycle containing an accepting state.
We implement our solution on the physical testbed shown
in Figure 1. A preliminary version of this work appeared as
Smith et al. (2010). Here we expand this preliminary ver-
sion by including technical details, analysis of complexity,
and more extensive experiments.

For simplicity of presentation, we assume that the robot
moves among the vertices of an environment modeled as
a graph. However, by using feedback controllers for facet
reachability and invariance in polytopes (Habets and van
Schuppen, 2004; Habets et al., 2006; Belta and Habets,
2006), the method developed in this paper can be easily
applied for motion planning and control of a robot with
‘realistic’ continuous dynamics (e.g. a unicycle) travers-
ing an environment partitioned using popular partitioning
schemes such as triangulations and rectangular partitions.

The organization of the paper is as follows. In Section 2,
we give some temporal-logic preliminaries. In Section 3,
we formally state the robot-motion planning problem, and
in Section 4 we present our solution. In Section 5 we present
results of an experimental case study for a robot perform-
ing data-gathering missions in a road-network environment.
Finally, in Section 6, we discuss some promising future
directions.

2. Preliminaries

In this section we briefly review some aspects of LTL. LTL
considers a finite set of variables �, each of which can be

Smith et al. 1697

5

3

5
10

7 8

q1

q3q2

q0

Π = {recharge, gather, upload}

L(q0) = ∅

L(q2) = {gather}

L(q1) = {upload}

L(q3) = {upload, recharge}

Fig. 2. An example of a weighted transition system. A correct run
of the system is for instance q0q2q1q0q2q3q0 . . ., producing the
word ∅{gather}{upload}∅{gather}{upload,recharge}∅

either true or false. The variables αi ∈ � are called atomic
propositions. In the context of robots, propositions can cap-
ture properties such as ‘the robot is located in region 1,’ or
‘the robot is recharging.’

Given a system model, LTL allows us to express the time
evolution of the state of the system. We consider a type of
finite model called the weighted transition system.

Definition 2.1 (Weighted Transition System). A weighted
transition system is a tuple T :=(Q, q0, R,�,L, w), con-
sisting of (i) a finite set of states Q; (ii) an initial state q0 ∈
Q; (iii) a transition relation R ⊆ Q×Q; (iv) a set of atomic
propositions �; (v) a labeling function L : Q → 2�; and
(vi) a weight function w : R→ R>0.

We assume that the transition system is non-blocking,
implying that there is a transition from each state. The tran-
sition relation has the expected definition: given that the
system is in state q1 ∈ Q at time t1, the system is in state q2

at time t1+w
(
(q1, q2)

)
if and only if (q1, q2)∈ R. The label-

ing function defines for each state q ∈ Q, the set L(q) of all
atomic propositions valid in q. For example, the proposition
‘the robot is recharging’ will be valid for all states q ∈ Q
containing recharging stations.

For our transition system we can define a run rT to be
an infinite sequence of states q0q1q2 . . . such that q0 is the
initial state, qi ∈ Q, for all i, and (qi, qi+1)∈ R, for all i. A
run rT defines a word L(q0)L(q1)L(q2) . . . consisting of
sets of atomic propositions valid at each state. An example
of a weighted transition system is given in Figure 2.

Definition 2.2 (Formula of LTL). An LTL formula φ over
the atomic propositions � is defined inductively as follows:

(i) � is a formula,
(ii) every atomic proposition α ∈ � is a formula, and
(iii) if φ1 and φ2 are formulas, then φ1∨φ2, ¬φ1, Xφ1, and
φ1 Uφ2 are each formulas,

where � is a predicate true in each state of a system,
¬ (negation) and ∨ (disjunction) are standard Boolean
connectives, and X and U are temporal operators.

LTL formulas are interpreted over infinite runs, as those
generated by the transition system T from Definition 2.1.
Informally, Xα states that at the next state of a run, propo-
sition α is true (i.e. α ∈ L(q1)). In contrast, α1 Uα2 states
that there is a future moment when proposition α2 is true,

and proposition α1 is true at least until α2 is true. From these
temporal operators we can construct two other useful oper-
ators: Eventually (i.e. future), F defined as Fφ := �Uφ,
and Always (i.e. globally), G, defined as Gφ := ¬F¬φ.
The formula Gα states that proposition α holds at all states
of the run, and Fα states that α holds at some future time
instance.

An LTL formula can be represented in an automata-
theoretic setting as a Büchi automaton, defined as follows.

Definition 2.3 (Büchi Automaton). A Büchi automaton is a
tuple B :=(S, S0,�, δ, F), consisting of

(i) a finite set of states S;
(ii) a set of initial states S0 ⊆ S;
(iii) an input alphabet �;
(iv) a non-deterministic transition relation δ ⊆ S×�×S;
and
(v) a set of accepting (final) states F ⊆ S.

The semantics of Büchi automata are defined over infi-
nite input words. Setting the input alphabet � = 2�, the
semantics are defined over the words consisting of sets of
atomic propositions, that is, those produced by a run of
the transition system. Let ω = ω0ω1ω2 . . . be an infinite
input word of automaton B, where ωi ∈ � for each i ∈ N

(for example, the input ω = L(q0)L(q1)L(q2) . . . could
be a word produced by a run q0q1q2 . . . of the transition
system T).

A run of the Büchi automaton over an input word ω =
ω0ω1ω2 . . . is a sequence rB = s0s1s2 . . ., such that s0 ∈ S0,
and (si,ωi, si+1)∈ δ, for all i ∈ N.

Definition 2.4 (Büchi acceptance). A word ω is accepted
by the Büchi automaton B if and only if there exists a run
rB over ω so that inf(rB)∩F
= ∅, where inf(rB) denotes
the set of states appearing infinitely often in run rB.

The Büchi automaton allows us to determine whether or
not the word produced by a run of the transition system
satisfies an LTL formula. More precisely, for any LTL for-
mula φ over a set of atomic propositions �, there exists
a Büchi automaton Bφ with input alphabet 2� accepting
all and only the infinite words satisfying formula φ (Vardi
and Wolper, 1986). Translation algorithms were proposed
in Vardi and Wolper (1994) and efficient implementations
were developed in Gerth et al. (1995) and Gastin and Odd-
oux (2001). The size of the obtained Büchi automaton is, in
general, exponential with respect to the size of the formula.
However, many rich behaviors can be described using rela-
tively small LTL formulas, and in these cases the exponen-
tial complexity is not prohibitive. An example of a Büchi
automaton is given in Figure 3.

3. Problem statement and approach

Consider a single robot in an arbitrary environment, rep-
resented as a transition system (as defined in Section 2)

1698 The International Journal of Robotics Research 30(14)

Π = {recharge, gather, upload}

gather ∧ upload

gather

gather ∧ upload

upload
s0 gather s2s1

Fig. 3. A Büchi automaton corresponding to LTL formula
(G F gather∧G F upload) over the alphabet�. The illustration of
the automaton is simplified. In fact, each transition labeled with
� represents |2�| transitions labeled with all different subsets
of atomic propositions. Similarly, a transition labeled with gather
represents |2�|/2 transitions labeled with all subsets of atomic
propositions containing the proposition gather, etc.

T =(Q, q0, R,�,L, w). A run in the transition system start-
ing at q0 defines a corresponding path of the robot in
the environment. The time to take transition (q1, q2)∈ R
(i.e. the time for the robot to travel from q1 to q2 in the
environment) is given by w(q1, q2).

To define our problem, we assume that there is an atomic
proposition π ∈ �, called the optimizing proposition. We
consider LTL formulas of the form

φ := ϕ ∧G Fπ . (1)

The formula ϕ can be any LTL formula over �. The sec-
ond part of the formula specifies that the proposition π
must be satisfied infinitely often, and will simply ensure
well-posedness of our optimization.

Let each run of T start at time t = 0, and assume that
there is at least one run satisfying LTL formula (1). For each
satisfying run rT = q0q1q2 . . ., there is a corresponding
word of sets of atomic propositions ω = ω0ω1ω2 . . ., where
ωi = L(qi). Associated with rT there is a sequence of time
instances T := t0t1t2 . . ., where t0 = 0, and ti denotes the
time at which state qi is reached (ti+1 = ti + w

(
(qi, qi+1)

)
).

From this time sequence we can extract all time instances at
which the proposition π is satisfied. We let Tπ denote the
sequence of satisfying instances of the proposition π .

Our goal is to synthesize an infinite run rT (i.e. a robot
path) satisfying LTL formula (1), and minimizing the cost
function

C(rT)= lim sup
i→+∞

(Tπ (i+ 1)−Tπ (i)) , (2)

where Tπ (i) is the ith satisfying time instance of propo-
sition π . Note that a finite cost in (2) ensures that G Fπ
is satisfied. Thus, the specification appears in φ merely to
ensure that any satisfying run has finite cost. In summary,
our goal is the following:

Problem Statement 3.1. Determine an algorithm that
takes as input a weighted transition system T , an LTL for-
mula φ over its set of atomic propositions in form (1),

and an optimizing proposition π , and outputs a run rT
minimizing the cost C(rT) in (2).

We now make a few remarks, motivating this problem.

Remarks 3.2 (Comments on Problem Statement). Cost
function form: The transition system produces infinite runs
and the cost function (2) evaluates the steady-state time
between satisfying instances of π . This form of the cost is
motivated by persistent-monitoring tasks, where we seek to
optimize the long-term behavior. In the upcoming sections
we design an algorithm that minimizes the time to reach the
optimal steady state: Thus, the runs produced will achieve
the cost in (2) in finite time. In addition, in Remark 4.12 we
discuss how we can optimize alternative cost functions that
consider both transient and steady-state behavior.

Expressivity of LTL formula (1): Many interesting LTL
specifications can be cast in the form of (1). For example,
suppose that we want to minimize the time between satis-
fying instances of a disjunction of propositions ∨iαi. We
can write this in the form of formula (1) by defining a new
proposition π that is satisfied at each state in which an αi is
satisfied.

In addition, the LTL formula ϕ in (1) allows us to spec-
ify various rich robot-motion requirements. An example of
such is global absence (G¬ψ , globally keep avoiding ψ),
response (G (ψ1 ⇒ Fψ2), whenever ψ1 holds true, ψ2

will happen in the future), reactivity (G Fψ1 ⇒ G Fψ2,
if ψ1 holds in the future for any time point, ψ2 has to
happen in the future for that time point as well), sequenc-
ing (ψ1 Uψ2 Uψ3, ψ1 holds until ψ2 happens, which holds
untilψ3 happens), and many others. For concrete examples,
see Section 5. �

4. Problem solution

In this section we describe our solution to Problem 3.1.
We leverage ideas from the automata-theoretic approach to
model checking.

4.1. The product automaton

Consider the weighted transition system T =(Q, q0, R,�,
L, w), and a proposition π ∈ �. In addition, consider an
LTL formula φ = ϕ ∧G Fπ over � in form (1), translated
into a Büchi automaton Bφ =(S, S0, 2�, δ, F). With these
two components, we define a new object, which we call the
product automaton, that is suitably defined for our problem.

Definition 4.1 (Product automaton). The product automa-
ton P = T × Bφ between the transition system T and
the Büchi automaton Bφ is defined as the tuple P :=
(SP , SP ,0, δP , FP , wP , SP ,π), consisting of

(i) a finite set of states SP = Q× S,
(ii) a set of initial states SP ,0 = {q0} × S0,
(iii) a transition relation δP ⊆ SP × SP , where(
(q, s) , (q̄, s̄)

) ∈ δP if and only if (q, q̄)∈ R and
(s,L(q) , s̄)∈ δ,

Smith et al. 1699

(iv) a set of accepting (final) states FP = Q× F,
(v) a weight function wP : δP → R>0, where
wP

(
((q, s) , (q̄, s̄))

) = w
(
(q, q̄)

)
, for all

(
(q, s) , (q̄, s̄)

) ∈
δP ,
(vi) a set of states SP ,π ⊆ SP in which the proposition π
holds true. Thus, (q, s)∈ SP ,π if and only if π ∈ L(q).

The product automaton (as defined above) can be seen as
a Büchi automaton with a trivial input alphabet. Since the
alphabet is trivial, we omit it. Thus, we say that a run rP in
product automaton P is accepting if inf(rP)∩FP
= ∅. An
example product automaton is illustrated in Figure 4.

As in the transition system, we associate with each run
rP = p0p1p2 . . ., a sequence of time instances TP :=
t0t1t2 . . ., where t0 = 0, and ti denotes the time at which the
ith vertex in the run is reached [ti+1 = ti + wP (pi, pi+1)].
From this time sequence we can extract a sequence TP ,π ,
containing time instances ti, where pi ∈ SP ,π (i.e. TP ,π is a
sequence of satisfying instances of the optimizing proposi-
tion π in T). The cost of a run rP on the product automaton
P [which corresponds to cost function (2) on transition
system T] is

CP (rP)= lim sup
i→+∞

(
TP ,π (i+ 1)−TP ,π (i)

)
. (3)

The product automaton can also be viewed as a weighted
graph, where the states define vertices of the graph and the
transitions define the edges. Thus, we at times refer to runs
of the product automaton as paths. A finite path is then a
finite fragment of an infinite path.

Each accepting run of the product automaton can be pro-
jected to a run of the transition system satisfying the LTL
formula. Formally, we have the following.

Proposition 4.2 (Product Run Projection, Vardi
and Wolper (1986)). For any accepting run
rP =(q0, s0) (q1, s1) (q2, s2) . . . of the product automaton
P , the sequence rT = q0q1q2 . . . is a run of T satisfying
φ. Furthermore, the values of cost functions CP and C are
equal for runs rP and rT , respectively.

Similarly, if rT = q0q1q2 . . . is a run of T sat-
isfying φ, then there exists an accepting run rP =
(q0, s0) (q1, s1) (q2, s2) . . . of the product automaton P ,
such that the values of cost functions C and CP are equal.

Finally, we need to discuss the structure of an accepting
run of a product automaton P .

Definition 4.3 (Prefix–Suffix Structure). A prefix of an
accepting run is a finite path from an initial state to an
accepting state f ∈ FP containing no other occurrence of f .
A periodic suffix is an infinite run originating at the accept-
ing state f reached by the prefix, and periodically repeating
a finite path originating and ending at f , and containing no
other occurrence of f (but possibly containing other ver-
tices in FP). An accepting run is in prefix–suffix structure
if it consists of a prefix followed by a periodic suffix.

Intuitively, the prefix can be thought of as the transient,
while the suffix is the steady-state periodic behavior.

Lemma 4.4 (Prefix–Suffix Structure). At least one of the
accepting runs rP of P that minimizes cost function CP (rP)
is in prefix–suffix structure.

Proof: Let rP be an accepting run that minimizes
cost function CP (rP) and is not in prefix–suffix structure.
We will prove the existence of an accepting run ρP in
prefix–suffix structure, such that CP (ρP)≤ CP (rP). The
idea behind the proof is that an accepting state must occur
infinitely many times on rP . We then show that we can
extract a finite path starting and ending at this accepting
state, which can be repeated to form a periodic suffix whose
cost is no larger than CP (rP).

To begin, there exists a state f ∈ FP occurring on rP
infinitely many times. Run rP consists of a prefix rfin

P ending
at state f followed by an infinite, non-periodic suffix rsuf

P
originating at the state f reached by the prefix. The suffix
rsuf
P can be viewed as an infinite number of finite paths of

form fp1p2 . . . pnf , where pi
= f for any i ∈ {1, . . . , n}. Let
R denote the set of all finite paths of the mentioned form
occurring on the suffix rsuf

P .
Note, that each path in the set R has to contain at least

one occurrence of a state from SP ,π . To see this, assume by
way of contradiction that there is a path fp1p2 . . . pnf that
does not contain any state from SP,π . The prefix rfin

P fol-
lowed by infinitely many repetitions of this path is indeed
an accepting run of P . However, if projected into run of
T , formula G Fπ and thus also formula φ is violated,
contradicting Proposition 4.2.

Similarly as for infinite paths, we associate with each
finite path of length n a sequence of time instances TP :=
t0t1t2 . . . tn, where t0 = 0, and ti denotes the time at which
the ith vertex in the run is reached [ti+1 = ti+wP (pi, pi+1)].
From this time sequence we can extract a sequence TP ,π ,
containing time instances ti, where pi ∈ SP ,π .

For each finite path r ∈ R with n states and k occurrences
of a state from SP ,π we define the following three costs

• cf�(r)= TP ,π (0)−TP (0)
• c(r)= maxi∈{0,...,k−1}

(
TP ,π (i+ 1)−TP ,π (i)

)
• c�f (r)= TP (n)−TP ,π (k).

Further, we define an equivalence relation ∼ over R as
follows. Let r1, r2 ∈ R. r1 ∼ r2 if and only if

• cf�(r1)= cf�(r2),
• c(r1)= c(r2), and
• c�f (r1)= c�f (r2).

Costs cf�, c, and c�f can be extended to cf�
∼ , c∼, and

c�f
∼ in a natural way. For example, we define cf�

∼ ([r]∼)=
cf�(r), where r ∈ [r]∼. The other two costs are defined
analogously.

Let us extract a set Rinf/∼ from the set of equivalence
classes R/∼ such that each class in Rinf/∼ is infinite or
contains a finite path that is repeated in rP infinitely many

1700 The International Journal of Robotics Research 30(14)

10

10
10

10
8

8

8

q1, s0

q1, s1

q1, s2

q3, s0

q3, s1

q3, s2

7

5

7

7

7

7 5

5

5

5

q2, s2

q2, s1

q2, s0q0, s0

q0, s1

q0, s2

5 3

5
3

5
3

8

Fig. 4. Product automaton between the transition system in Figure 2 and the Büchi automaton in Figure 3.

times. As a consequence, for each class [r]∼ in Rinf/∼,
it holds that c∼([r]∼)≤ CP (rP). The set R/∼ is finite,
because there is only a finite number of different values
of costs. Furthermore, accepting run rP is infinite and thus
Rinf/∼ is non-empty.

Let [ρ]∼ ∈ Rinf/∼ now be a class such that cf�
∼ ([ρ]∼) is

minimal among the classes from Rinf/∼.
Each time a finite path in [ρ]∼ appears in rP , it is fol-

lowed by another finite path. So, infinitely many times the
‘following’ path comes from a class ([r]∼)∈ Rinf/∼. Then,
we must have c�f ([ρ]∼)+cf�([r]∼)≤ CP (rP). But,
cf�([r]∼)≥ c�f ([ρ]∼), and thus c�f ([ρ]∼)+cf�([ρ]∼)
≤ CP (rP).

Thus we can build the run ρP as the prefix rfin
P followed

by a periodic suffix ρsuf
P , which is obtained by infinitely

many repetitions of an arbitrary path ρ ∈ [ρ]∼. ρP is in
prefix–suffix structure and for its suffix ρsuf

P it also holds
that CP (ρP)= maxi∈N

(
TP ,π (i + 1)−TP ,π (i + 1)

) =
max

(
c(ρ) , cf�(ρ)+c�f (ρ)

) ≤ CP (rP).

Definition 4.5 (Suffix Cost). The cost of the suffix
p0p1 . . . pnp0p1 . . . of a run rP is defined as follows. Let
t0,0, t0,1, . . . , t0,n, t1,0, t1,1 . . . be the sequence of times at
which the vertices of the suffix are reached on run rP .
Extract the sub-sequence T

suf
P of times ti,j, where pj ∈ SP ,π

(i.e. the satisfying instances of proposition π in transition
system T). Then, the cost of the suffix is

Csuf
P (rP)= max

i∈N
(T

suf
P (i+ 1)−T

suf
P (i)) .

From the definition of the product automaton cost CP and
the suffix cost Csuf

P we obtain the following result.

Lemma 4.6 (Cost of a Run). Given a run rP in prefix–suffix
structure and its suffix
p0p1p2 . . . pnp0p1 . . ., the value of the cost function CP (rP)
is equal to the cost of the suffix Csuf

P (rP).

Our aim is to synthesize a run rT of T minimizing the
cost function C(rT) and ensuring that the word produced
by this run will be accepted by B. This goal now trans-
lates to generating a run rP of P , such that the run satis-
fies the Büchi condition FP and minimizes cost function

CP (rP). Furthermore, to find a satisfying run rP that mini-
mizes CP (rP), it is enough to consider runs in prefix–suffix
structure (see Lemma 4.4). From Lemma 4.6 it follows
that the whole problem reduces to finding a periodic suffix
rsuf
P = fp1p2 . . . pnfp1 . . . in P , such that:

(i) f is reachable from an initial state in SP ,0,
(ii) f ∈ FP (i.e. f is an accepting state), and
(iii) the cost of the suffix rsuf

P is a minimum among all the
suffixes satisfying (i) and (ii).

Finally, we can find the shortest prefix in P that starts at
an initial state in SP ,0 and ends at the state f in the suffix
rsuf
P . By concatenating the prefix and suffix, we obtain an

optimal run in P . By projecting the optimal run to T , via
Proposition 4.2, we obtain a solution to our stated problem.

4.2. Graph algorithm for shortest-bottleneck
cycles

We now focus on finding an optimal suffix in the product
automaton. We cast this problem as a path optimization on
a graph. To do this, let us define some terminology.

A graph G = (V , E, w) consists of a vertex set V , an edge
set E ⊆ V × V , and a weight function w : E → R>0.
A cycle in G is a vertex sequence v1v2 . . . vkvk+1, such that
(vi, vi+1)∈ E for each i ∈ {1, . . . , k}, and v1 = vk+1. Given
a vertex set S ⊆ V , consider a cycle c = v1 . . . vkvk+1

containing at least one vertex in S. Let (i1, i2, . . . , is) be
the ordered set of vertices in c that are elements of S (i.e.
indices with order i1 < i2 < · · · < im, such that vj ∈ S
if and only if j ∈ {i1, i2, . . . , is}). Then, the S-bottleneck
length is

max
�∈{1,...,s}

i�+1−1∑
j=i�

w(ej) ,

where is+1 = i1. In words, the S-bottleneck distance is
defined as follows.

Definition 4.7 (S-Bottleneck Length). Given a graph G =
(V , E, w), and a vertex set S ⊆ V, the S-bottleneck length

Smith et al. 1701

Fig. 5. The left figure shows a possible input to the MIN-
BOTTLENECK-CYCLE algorithm. In the directed graph, the edge
weights are given by the Euclidean distance. The set F is a single-
ton given by the diamond. The vertices in S are drawn as yellow
squares. The right figure shows an optimal cycle with a minimum
S-bottleneck length using thick edges.

of a cycle in G is the maximum distance between successive
appearances of an element of S on the cycle.1

The bottleneck length of a cycle is defined as the max-
imum length edge on the cycle (Korte and Vygen, 2007).
In contrast, the S-bottleneck length measures distances
between vertices in S. With the terminology in place, our
goal is to solve the following constrained S-bottleneck
problem.

Problem Statement 4.8. Given a graph G =(V , E, w),
and two vertex sets F, S ⊆ V, find a cycle in G contain-
ing at least one vertex in F, with minimum S-bottleneck
length.

Our solution, shown in Algorithm 1, is called the MIN-
BOTTLENECK-CYCLE algorithm. It utilizes Dijkstra’s algo-
rithm (Korte and Vygen, 2007) for computing shortest
paths between pairs of vertices (called SHORTEST-PATH),
and a slight variation of Dijkstra’s algorithm for computing
shortest-bottleneck paths between pairs of vertices (called
SHORTEST-BOT-PATH).

SHORTEST-PATH takes as inputs a graph G = (V , E, w),
a set of source vertices A ⊆ V , and a set of destina-
tion vertices B ⊆ V . It outputs a distance matrix D ∈
R
|A|×|B|, where the entry D(i, j) gives the shortest-path dis-

tance from Ai to Bj. It also outputs a predecessor matrix
P ∈ V |A|×|V |, where P(i, j) is the predecessor of j on a short-
est path from Ai to Vj. For a vertex v ∈ V , the shortest
path from v to v is defined as the shortest cycle contain-
ing v. If there does not exist a path between vertices, then
the distance is +∞. SHORTEST-BOT-PATH has the same
inputs as SHORTEST-PATH, but it outputs paths that mini-
mize the maximum edge length, rather than the sum of edge
lengths.

Figure 5 (left) shows an example input to the algorithm.
The graph contains 12 vertices, with one vertex (diamond)
in F, and four vertices (square) in S. Figure 5 (right) shows
the optimal solution as produced by the algorithm. The
bottleneck occurs between the square vertices immediately
before and after the diamond vertex.

Algorithm 1: MIN-BOTTLENECK-CYCLE(G, S, F)

Input: A directed graph G, and vertex subsets F and S
Output: A cycle in G that contains at least one vertex

in F and minimizes the S-bottleneck distance.
Compute shortest paths between vertices in S:1

(D, P)← SHORTEST-PATH(G, S, S) .

Define a graph GS with vertices S and adjacency2

matrix D.
Compute shortest S-bottleneck paths between vertices3

in S:

(Dbot, Pbot)← SHORTEST-BOT-PATH(GS , S, S) .

Compute shortest paths from each vertex in F to each4

vertex in S, and from each vertex in S to each vertex in
F:

(DF→S , PF→S)← SHORTEST-PATH(G, F, S)

(DS→F , PS→F)← SHORTEST-PATH(G, S, F) .

Set DF→S(i, j)= 0 and DS→F(j, i)= 0 for all i, j such
that Fi = Sj.
For each triple (f , s1, s2)∈ F × S × S, set5

C(f , s1, s2) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

DF→S(f , s1)

+DS→F(s2, f) if f
= s1 = s2

max
{
DF→S(f , s1)

+DS→F(s2, f) , Dbot(s1, s2)
}
, otherwise.

Find the triple (f ∗, s∗1, s∗2) that minimizes C(f , s1, s2).6

If the minimum cost is +∞, then output ‘no cycle7

exists.’ Else, output cycle by extracting the path from
f ∗ to s∗1 using PF→S , the path from s∗1 to s∗2 using Pbot

and P, and the path from s∗2 to f ∗ using PS→F .

In the algorithm, one has to take special care that cycle
lengths are computed properly when f = s1, s1 = s2, or
f = s2. This is done by setting some entries of DF→S and
DS→F to zero in step 4, and by defining the cost differently
when f
= s1 = s2 in step 5. In the following theorem we
show the correctness of the algorithm.

Theorem 4.9 (MIN-BOTTLENECK-CYCLE Optimality).
The MIN-BOTTLENECK-CYCLE algorithm solves the con-
strained S-bottleneck problem (Problem 4.8).

Proof: Every valid cycle must contain at least one ele-
ment from F and at least one element from S. Let c :=
v1v2 . . . vkv1, be a valid cycle, and without loss of gener-
ality let v1 ∈ F. From this cycle we can extract the triple
(v1, va, vb)∈ F × S × S, where va, vb ∈ S, and vi /∈ S for all
i < a and for all i > b. (Note that, a = b = 1 is possible.)

1702 The International Journal of Robotics Research 30(14)

Consider the cycle c with corresponding triple
(f , s1, s2) :=(v1, va, vb) as defined above, and let L(c)
denote its S-bottleneck length. It is straightforward to
verify, using the definition of the S-bottleneck length, that
L(c)≥ C(f , s1, s2).

The cycle computed for the triple (f , s1, s2) in step 5 (as
given by the four predecessor matrices) takes the shortest
path from f to s1, the shortest S-bottleneck path from s1 to
s2, and the shortest path from s2 to f . However, the short-
est path from f to s1 (and from s2 to f) may contain other
vertices from S. Thus, the S-bottleneck length of this cycle,
denoted L(f , s1, s2), satisfies

L(f , s1, s2)≤ C(f , s1, s2)≤ L(c) , (4)

implying that C(f , s1, s2) upper bounds the length of the
computed cycle. However, if we take c to be a cycle
with minimum length, then necessarily L(c)≤ L(f , s1, s2).
Hence, equation (4) implies that for an optimal cycle,
L(f , s1, s2)= C(f , s1, s2)= L(c). Thus, by minimizing the
cost function in step 5 we compute the minimum length
cycle.

Computational complexity. Finally, we characterize the
computational complexity of the MIN-BOTTLENECK-
CYCLE algorithm. Let n, m, nS , and nF be the number of
vertices (edges) in the sets V , E, S, and F, respectively.
Dijkstra’s algorithm can be implemented to compute the
shortest paths from a source vertex v ∈ V , to all other ver-
tices in V in O(n log n+m) run time. Thus, for sparse graphs
(which includes many transition systems), the run time is
O(n log n).

Proposition 4.10 (MIN-BOTTLENECK-CYCLE Run Time).
The run time of the MIN-BOTTLENECK-CYCLE algorithm
is O

(
(nS+nF) (n log n+m+n2

S)
)
. Thus, in the worst-case,

the run time is O(n3). For sparse graphs with nS , nF � n,
the run time is O

(
(nS + nF) n log n

)
.

Proof: We simply look at the run time of each step
in the algorithm. Step 1 requires nS calls to Dijkstra’s
algorithm, and has run time O(nS(n log(n)+m)).
Step 3 requires nS calls to Dijkstra’s algorithm
on a smaller graph GS =(S, ES , wS), and has run
time O(nS(nS log(nS)+|ES|)). Step 4 has run time
O(nF(n log(n)+m)). Finally, steps 5 and 6 require search-
ing over all nF · n2

S possibilities, and they have run times
O(nFn2

S). Since |ES| ≤ n2
S , the run time in general is given

by O
(
(nS + nF) (n log n+ m+ n2

S)
)
.

4.3. The OPTIMAL-RUN Algorithm

We are now ready to combine the results from the pre-
vious section to present a solution to Problem 3.1. The
solution, the OPTIMAL-RUN algorithm, is summarized in
Algorithm 2.

The correctness of the OPTIMAL-RUN algorithm fol-
lows directly from Lemma 4.4, Theorem 4.9, and
Proposition 4.2.

Algorithm 2: OPTIMAL-RUN(T ,φ)

Input: A weighted transition system T , and
temporal-logic specification φ in form (1).

Output: A run in T that satisfies φ and minimizes (2).
Convert φ to a Büchi automaton Bφ .1

Compute the product automaton P = T × Bφ .2

Compute the cycle3

MIN-BOTTLENECK-CYCLE(G, SP ,π , FP), where
G =(SP , δP , wP).
Compute a shortest path from SP ,0 to the cycle.4

Project the complete run (path and cycle) to a run on T5

using Proposition 4.2.

Theorem 4.11 (Correctness of OPTIMAL-RUN). The
OPTIMAL-RUN algorithm solves Problem 3.1.

Remark 4.12 (Alternative Cost for Optimizing Prefix). The
OPTIMAL-RUN algorithm optimizes the cost of the repeated
suffix. For the prefix, we simply find the shortest path from
an initial state to the suffix. However, the cost of the pre-
fix is not optimized. This is due to the fact that the cost
function C was chosen with persistent-monitoring tasks in
mind, where the long-term behavior is of interest. How-
ever, in some applications, the transient behavior may be
of interest. In this case we can define an alternative cost
function C ′:

C ′(rT)= sup
i∈N

(Tπ (i+ 1)−Tπ (i)) . (5)

Then, we can consider two alternative problems: (i) Find a
run rT minimizing the cost C ′(rT); or (ii) Find a run rT
that minimizes the cost C ′(rT) among all the runs minimiz-
ing the cost C(rT). Both problems can be solved by slightly
modifying the MIN-BOTTLENECK-CYCLE algorithm.

We can extend the proof of Lemma 4.4 to show that there
is a run in prefix–suffix form that minimizes C ′. By appro-
priately defining the cost of the prefix, we can also show
that the cost C′ is equal to the maximum of the prefix cost
and the suffix cost. Then, to solve problems (i) and (ii) we
add a step to the MIN-BOTTLENECK-CYCLE algorithm in
which we compute the shortest-bottleneck path from each
initial state v0 ∈ V to each state s ∈ S. We record the cost
of the path from v0 to s as Cp(v0, s). For problem (i) we
alter step 6 to find the tuple (v∗0, f ∗, s∗1, s∗2) that minimizes
max{Cp(v0, s1) , C(f , s1, s2) }. For problem (ii) we alter step
6 to find the tuple (v∗0, f ∗, s∗1, s∗2) that minimizes Cp(v0, s1)
among the tuples that minimize C(f , s1, s2). Finally, we
remove step 4 from the OPTIMAL-RUN algorithm. �

Computational Complexity of Optimal-Run. The worst-
case computational complexity of the OPTIMAL-RUN algo-
rithm can be characterized as follows. Any LTL formula
φ can be translated into a Büchi automaton in time 2O(|φ|)

computation time (Baier et al., 2008).2 The worst-case size
of the Büchi automaton (i.e. the number of states) is also

Smith et al. 1703

Fig. 6. The weighted transition system for the road network in Figure 1.

2O(|φ|). The size of the product obtained in step 2 of the
OPTIMAL-RUN algorithm is therefore O(|T |·2O(|φ|)), where
|T | is the number of states in the transition system. Then,
from Proposition 4.10, the worst-case complexity of the
OPTIMAL-RUN algorithm is O(|T |3 · 2O(|φ|)).

Thus, the worst-case complexity is quite restrictive, being
exponential in the size of the LTL formula. However, many
rich robot behaviors can be described using relatively small
LTL formulas. In addition, the time required to compute
the Büchi automaton, and the size of the Büchi automaton,
are frequently much smaller than the worst-case bound. In
the following section we show that the proposed approach
can be used to generate robot-motion plans that satisfy rich
requirements in complex environments.

5. Case studies and experiments

In this section, we present an implementation of the
OPTIMAL-RUN algorithm on a physical testbed. We focus
on a data-gathering mission in which a robot must repeat-
edly gather data at interesting locations, and then upload it
at designated sites. We also present a case study that out-
lines several different robot missions, and how they can
be expressed in LTL. The purpose of this section is to (i)
demonstrate the utility of the proposed approach in gener-
ating complex motion plans; (ii) illustrate the expressivity
of LTL and the class of optimizations considered in this
paper; (iii) highlight the subtleties and challenges that arise
when expressing a desired behavior in LTL; and, (iv) pro-
vide numerical data on the complexity and computation
time of our proposed approach.

5.1. The road-network testbed

We implemented the OPTIMAL-RUN algorithm on the road
network shown in Figure 1. This network is a collection
of roads, intersections, and parking lots (which serve as

data-gather and upload locations), connected by a simple
set of rules (e.g. a road connects two, not necessarily differ-
ent, intersections and the parking lots can only be located
on the side of a road). The city is easily reconfigurable
through re-taping. The robot used is a Khepera III minia-
ture car. The car can sense its entry into an intersection from
a road, its entry into a road from an intersection, when it
passes in front of a parking lot, when it is correctly parked
in a parking space, and when an obstacle is dangerously
close. The car is programmed with motion and commu-
nication primitives allowing it to safely drive on a road,
turn in an intersection, and park. The car can communicate
through Wi-Fi with a desktop computer, which is used as an
interface to the user (i.e. to enter the specification) and to
perform all the computation necessary to generate the con-
trol strategy. Once computed, this is sent to the car, which
executes the task autonomously by interacting with the
environment.

A model of the motion of the car in the road net-
work using a weighted transition system (Definition 2.1)
is depicted in Figure 6 and proceeds as follows. The set
of states Q is the set of labels assigned to the intersec-
tions, parking lots, and branching points between the roads
and parking lots. The transition relation R shows how the
regions are connected and the transitions’ labels give dis-
tances between them (measured in inches). In our testbed
the robot moves at constant speed ν, and thus the distances
and travel times are equivalent. For these experiments, the
robot can only move on the right-hand lane of a road and
it cannot make a U-turn at an intersection. To capture this,
we model each intersection as four different states. Note
that, in reality, each state in Q has an associated set of
motion primitives, and the selection of a motion primi-
tive (e.g. go_straight, turn_right) determines the transition
to one unique next state. This motivates our assumption
that the weighted transition system from Definition 2.1 is
deterministic, and therefore its inputs can be removed.

1704 The International Journal of Robotics Research 30(14)

i3

i4i2

u1

i1

g1 u2

g3
g2

Fig. 7. Schematic illustration of the road network. For each road,
the median is shown as a red line. The robot must drive on the
right-hand side of the road (i.e. the right-hand side of the median).
Intersections are labelled i1 through i4. Data-gather locations,
labeled g1, g2, and g3, are shaded green (dark). Data upload
locations, labeled u1 and u2, are shaded yellow (light).

5.2. An experimental case study of the
data-gathering missions

In our experiments, we have consider data-gathering mis-
sions of the following form. Parking lots u1 and u2 in
Figure 1 are data-upload locations (light-shaded regions in
Figure 7) and parking lots g1, g2, and g3 are data-gather
locations (dark-shaded regions in Figure 7). The optimizing
proposition π in LTL formula (1) is

π := u1 ∨ u2, (6)

that is we want to minimize the time between data uploads.
Assuming infinite runs of the robot in the environment, we
are able to describe the motion requirements as LTL for-
mulas, where atomic propositions are simply names of the
parking lots.

In this section we describe seven different data-gathering
cases. Each case describes a data-gathering mission, and
the cases are roughly ordered in increasing complexity. For
each case we have computed the optimal run according to
the OPTIMAL-RUN algorithm, and we have implemented
the run on our testbed. In Table 1 we summarize the key
statistics for each case. The summary data consists of (i) the
maximum distance between uploads on the optimal path,
(ii) the maximum time between uploads observed in the
robot experiment, (iii) the number of states in the Büchi
automaton, (iv) the number of states in the product automa-
ton, (v) the time to translate the LTL formula into a Büchi
automaton, and (vi) the time to compute the optimal path in
the product automaton. The computations were performed
on a desktop computer with a 2.8 GHz quad core processor
and 8 GB of RAM. We utilized the LTL2BA software by
Gastin and Oddoux (2001) to translate an LTL formula to a
Büchi automaton.

Fig. 8. The robot path (shown as lines with arrows) for Case A.
Green (dark shaded) areas are data-gathering locations, and yellow
(light shaded) areas are upload locations. The robot periodically
follows the path, which is composed of the illustrated fragments
as seen from left to right.

Case A. To begin, let us consider the following mission.
Repeatedly visit data-gather locations (g1, g2, or g3)
to gather data and repeatedly visit upload locations (u1

or u2) to upload data. The objective is to minimize
the time between visits to data upload locations, and
therefore the optimizing proposition π is given by the
LTL formula from Equation (6). We can specify this
behavior as the following LTL formula:

φA := G F (g1 ∨ g2 ∨ g3)∧G Fπ .

Using the OPTIMAL-RUN algorithm, we compute the
robot path shown in Figure 8. This figure is inter-
preted as follows. The figure consists of a sequence of
environment snapshots, read from left to right. Each
snapshot shows a robot path as a line which starts and
ends at a data-upload location. The starting point of
the robot path on the (i + 1)th snapshot is given by
endpoint of the path on the ith snapshot. The endpoint
of the final snapshot connects with the starting point
of the first snapshot. Thus, the infinite robot path is
obtained by cycling through these snapshots.

The time to run the algorithm and the value of the cost
function are summarized in Table 1.

Case B. Looking at the results of Case A, we see that the
robot does not always gather new data before visiting
an upload location (in Figure 8 the robot visits two
upload locations in a row). To eliminate this behav-
ior, we should specify that the robot can only visit a
data-upload location if it has just gathered data. This
can be specified as follows:

φB := φA ∧G
(
(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2)

U (g1 ∨ g2 ∨ g3))
)
.

The corresponding robot path is shown in Figure 9.

Case C. In some situations the data-gather locations g1, g2,
and g3 may contain different information, and thus it is
beneficial to periodically visit each of them. To specify
this, we can build on Case B and write the following
formula:

φC := G F g1 ∧G F g2 ∧G F g3 ∧G Fπ ∧G(
(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2) U (g1 ∨ g2 ∨ g3))

)
.

Smith et al. 1705

Table 1. A summary of the seven data-gathering cases.

Case Length Time (min) # of states # of states Time (sec) Time (sec)
m travel Büchi product LTL to Büchi computation

A 6.23 2.5 3 78 ∼1 ∼1
B 6.23 2.5 7 182 ∼1 ∼1
C 9.13 3.6 11 286 ∼1 ∼1
D 9.13 3.6 17 442 ∼1 ∼1
E 9.13 3.6 49 1274 ∼1 ∼8
F 10.48 4.1 34 884 ∼1 ∼2
G 9.50 3.7 34 884 ∼1 ∼2

Fig. 9. The robot path for Case B. Note that the robot does not
visit two upload locations without visiting a download location in
between. The value of the optimization function is the same as in
Case A (6.23 m).

Fig. 10. The robot path for Case C. Note that the robot visits all
three download locations and only visits an upload location if it
has just gathered data. Extension 1 shows the robot executing the
first two snapshots.

Using the OPTIMAL-RUN algorithm, the computed
path of the robot is shown in Figure 10. Extension 1
shows the robot’s execution of this path. The video
ends at the completion of the second snapshot in Fig-
ure 10. The time to run the algorithm and the value
of the cost function are summarized in Table 1. Note
that this more restrictive formula results in a larger cost
function value than in Cases A or B.

Case D. Notice that in the last snapshot of Figure 10, the
robot visits data-gather location g3 twice in a row.
Such behavior does not increase the value of the cost
function, but may not be desirable in some circum-
stances. We can eliminate this behavior by specify-
ing that the robot must visit an upload location after
gathering data:

φD := φC ∧G ((g1 ∨ g2 ∨ g3)

⇒ X (¬(g1 ∨ g2 ∨ g3) U (u1 ∨ u2))) .

Fig. 11. The robot path for case D. One may observe that snap-
shots 1, 2, and 6 are redundant and it would be sufficient to peri-
odically repeat snapshots 3, 4, and 5 to satisfy the formula. Such
‘aesthetic’ changes do not improve the value of cost function.

The new path of the robot is shown in Figure 11.
Note from Table 1 that the maximum distance between
uploads does not change from Case C to Case D.

Case E. Now, suppose that we would like to require an
equal number of visits to each data-gather location. We
can observe that in Case D, some of the gather loca-
tions are visited more frequently than the others. To
formalize this idea of equality, we can specify an order
in which the data-gather locations should be visited:
g3, g1, and g2, in this order. The syntax for specify-
ing this order is somewhat complicated, and involves
nested ‘until’ operators. The specification becomes

φE :=(¬g1 ∧ ¬g2) U g3 ∧
G

(
g3 ⇒ X((¬g2 ∧ ¬g3) U (g1 ∧ X ((¬g1 ∧ ¬g3)

U (g2 ∧ X ((¬g1 ∧ ¬g2) U g3)))))
)∧

G
(
(u1 ∨ u2)⇒ X ((¬u1 ∧ ¬u2) U (g1 ∨ g2 ∨ g3))

)∧
G

(
(g1 ∨ g2 ∨ g3)⇒ X (¬(g1 ∨ g2 ∨ g3) U (u1 ∨ u2))

)∧
G Fπ .

The robot path for this case is shown in Figure 12.

Case F. We can also specify ‘safety’ constraints for the
robot. For example, consider the objective of Case D
with the additional constraint that the road connect-
ing i4 to i2 (illustrated in pink in Figure 13) should be
avoided. In this case, the specification becomes

φF := φD ∧G¬(i4 ∧ X i2) .

1706 The International Journal of Robotics Research 30(14)

Fig. 12. The robot path for Case E. The robot visits g1, then g2,
and then g3, periodically. The value of the optimization function
is 9.13 m, which is the same as in Case D.

Fig. 13. The robot path for Case F. The robot never uses the road
connecting i4 to i2. The value of the optimization function is 10.48
m, which is more than in Case D.

Fig. 14. The robot path for Case G. The robot uploads the data
in u2 after gathering them in g3. The value of the optimization
function is 9.5 m, which again exceeds that of Case D.

The robot path for this case is shown in Figure 13.

Case G. Another type of constraint may be that data from
location g3 must be uploaded at location u2. The
specification from Case D can easily be extended to
incorporate this constraint:

φG := φD ∧G (g3 ⇒(¬u1 U u2)) .

The robot path for this case is shown in Figure 14. Note
that from Table 1, the cost function value for this case
lies between that from Case D and from Case F.

Remark 5.1 (Modeling Robot Navigation Errors). In
implementing the robot paths on our testbed, there were
instances in which the robot failed to make the proper tran-
sition. This occurred when the robot was following a road,
turning at intersections, or entering/exiting data-gather and
upload locations. For example, in 50 trials of each motion
primitive, we observed three failures when performing left
turns, one failure when performing right turns, three fail-
ures when entering a gather/upload location, and one fail-
ure when exiting a gather/upload location. When such fail-
ures occur, the robot enters a different state than expected.
Our current method does not allow the robot to recover in
these situations.

Such failures can be modeled and dealt with formally by
allowing for non-determinism or probabilistic transitions.
For example, if in our experimental setup we observe that
applying a right-turn motion primitive at an intersection
may result in the robot going straight through it, then we
associate both going straight and right-turn outcomes with
this motion primitive. The transition system describing the
motion of the robot in the environment then becomes non-
deterministic. If, in addition, we could quantify the success
and failure rates of the motion primitives at different loca-
tions in the environment, then we could model the motion
of the robot as a Markov decision process (MDP). While
there are recent results for temporal-logic control of both
of these types of system (Ding et al., 2011; Tůmová et al.,
2010; Lahijanian et al., 2011), the connection with optimal-
ity is still an open problem and it is a future direction for our
research. �

6. Conclusions and future directions

In this paper we presented a method for planning the
optimal motion of a robot subject to temporal-logic con-
straints. Temporal logic provides a rich language in which to
describe complex robot missions. Motivated by persistent-
monitoring and data-gathering applications, we considered
temporal-logic specifications that contain a single optimiz-
ing proposition that must be repeatedly satisfied. We devel-
oped an algorithm for computing the optimal robot path that
minimizes the maximum time between satisfying instances
of the optimizing proposition. Experimental results show
the applicability of this approach for a robot moving in a
city-like environment.

There are many promising directions for future work.
First, as discussed in Remark 5.1, since robot actions are
imprecise, we would like to extend the optimization in this
paper to MDPs. This would allow us to model actuator
failures, imprecise robot motion, and probabilistic proposi-
tions. We are also interested in the case of multiple robots.
The difficulty in this problem appears to be capturing the
relative positions of robots during their motion. It does
not appear that such information can be captured in the
transition-system model of this paper. A solution may be to
move to timed automata, which are rich enough to capture
the full configuration of a group of robots. The apparent
drawback of this approach is in the increased computa-
tional complexity. Finally, it would be interesting to identify
other types of optimization problems that could be solved
using this approach. This paper focused on the min-max
cost-function formulation since it gives a hard guarantee
for the time between satisfying instances. However, there
are other relevant costs, such as the average time between
satisfying instances. It seems likely that the approach used
in this paper could be extended to solve these alternate
cost functions, and in our future work we will explore this
direction.

Smith et al. 1707

Notes

1 If the cycle does not contain an element of S, then its
S-bottleneck length is defined as +∞.

2 The notation |φ| denotes the size of the LTL formula, and is
measured in terms of the number of operators (temporal and
Boolean) that appear in the formula.

Funding

This material is based upon work supported in part by ONR-
MURI (award N00014-09-1-1051), ARO (award W911NF-09-
1-0088), and Masaryk University (grant numbers LH11065
and GD102/09/H042), and other funding sources (AFOSR YIP
FA9550-09-1-0209, NSF CNS-1035588, NSF CNS-0834260).

Acknowledgement

The work by S. L. Smith was performed while at MIT. We thank
Yushan Chen and Samuel Birch at Boston University for their
work on the road-network platform and Alphan Ulusoy at Boston
University for his work on the implementation.

References

Antoniotti M and Mishra B (1995) Discrete event models + tem-
poral logic = supervisory controller: Automatic synthesis of
locomotion controllers. In: IEEE International Conference on
Robotics and Automation, Nagoya, Japan, pp. 1441–1446.

Baier C, Katoen J-P and Larsen KG (2008) Principles of Model
Checking. Cambridge, MA: MIT Press.

Barnat J, Brim L and Ročkai P (2009) DiVinE 2.0: High-
performance model checking. In: High Performance Compu-
tational Systems Biology. Los Alamitos, CA: IEEE Computer
Society Press, pp. 31–32.

Belta C and Habets LCGJM (2006) Control of a class of non-
linear systems on rectangles. IEEE Transactions on Automatic
Control 51: 1749–1759.

Belta C, Isler V and Pappas GJ (2005) Discrete abstractions for
robot motion planning and control in polygonal environment.
IEEE Transactions on Robotics 21: 864–875.

Clarke EM, Peled D and Grumberg O (1999) Model Checking.
Cambridge, MA: MIT Press.

Ding XC, Smith SL, Belta C and Rus D (2011) LTL control with
probabilistic satisfaction guarantees. In: IFAC World Congress,
Milan, Italy, to appear.

Fainekos GE, Girard A, Kress-Gazit H and Pappas GJ (2009)
Temporal logic motion planning for dynamic robots. Automat-
ica 45: 343–352.

Gastin P and Oddoux D (2001) Fast LTL to Büchi automata trans-
lation. In: Conference on Computer Aided Verification (Lecture
Notes in Computer Science, Vol. 2102). Berlin: Springer, pp.
53–65.

Gerth R, Peled D, Vardi M and Wolper P (1995) Simple on-the-
fly automatic verification of linear temporal logic. In: Protocol
Specification, Testing and Verification. London: Chapman &
Hall, pp. 3–18.

Habets LCGJM and van Schuppen JH (2004) A control problem
for affine dynamical systems on a full-dimensional polytope.
Automatica 40: 21–35.

Habets LCGJM, Collins PJ and van Schuppen JH (2006) Reach-
ability and control synthesis for piecewise-affine hybrid sys-
tems on simplices. IEEE Transactions on Automatic Control
51: 938–948.

Holzmann G (1997) The model checker SPIN. IEEE Transactions
on Software Engineering 25: 279–295.

Karaman S and Frazzoli E (2008a) Complex mission optimiza-
tion for multiple-uavs using linear temporal logic. In: American
Control Conference, Seattle, WA, pp. 2003–2009.

Karaman S and Frazzoli E (2008b) Vehicle routing problem
with metric temporal logic specifications. In: IEEE Con-
ference on Decision and Control, Cancún, México, pp.
3953–3958.

Karaman S, Rasmussen S, Kingston D and Frazzoli E (2009)
Specification and planning of uav missions: a process algebra
approach. In: American Control Conference, St Louis, MO, pp.
1442–1447.

Korte B and Vygen J (2007) Combinatorial Optimization: Theory
and Algorithms, 4th edn (Algorithmics and Combinatorics, Vol.
21). Berlin: Springer.

Kress-Gazit H, Fainekos GE and Pappas GJ (2009) Tempo-
ral logic-based reactive mission and motion planning. IEEE
Transactions on Robotics 25: 1370–1381.

Lahijanian M, Andersson SB and Belta C (2011) Temporal logic
control for Markov decision processes. In: American Control
Conference, San Francisco, CA, to appear.

Laporte G (2009) Fifty years of vehicle routing. Transportation
Science 43: 408–416.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge
University Press.

LaValle SM and Kuffner JJ (2001) Randomized kinodynamic
planning. International Journal of Robotics Research 20:
378–400.

Loizou SG and Kyriakopoulos KJ (2004) Automatic synthesis
of multiagent motion tasks based on LTL specifications. In:
IEEE Conference on Decision and Control, Paradise Island,
Bahamas, pp. 153–158.

Quottrup MM, Bak T and Izadi-Zamanabadi R (2004) Multi-
robot motion planning: A timed automata approach. In: IEEE
International Conference on Robotics and Automation, New
Orleans, LA, pp. 4417–4422.

Rimon E and Koditschek DE (1992) Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics
and Automation 8: 501–518.

Russell S and Norvig P (2003) Artificial Intelligence: A Modern
Approach, 2nd edn. Englewood Cliffs, NJ: Prentice Hall.

Smith SL, Tůmová J, Belta C and Rus D (2010) Optimal path
planning under temporal logic constraints. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots & Systems, Taipei,
Taiwan, pp. 3288–3293.

Tedrake R, Manchester IR, Tobenkin MM and Roberts JW (2010)
LQR-trees: Feedback motion planning via sums of squares
verification. International Journal of Robotics Research 29:
1038–1052.

Toth P and Vigo D, eds (2001) The vehicle routing problem.
In: Monographs on Discrete Mathematics and Applications.
Philadelphia, PA: SIAM.

Tůmová J, Yordanov B, Belta C, Černá I and Barnat J (2010) A
symbolic approach to controlling piecewise affine systems. In:
IEEE Conference on Decision and Control, Atlanta, GA, pp.
4230–4235.

1708 The International Journal of Robotics Research 30(14)

Vardi MY and Wolper P (1986) An automata-theoretic approach
to automatic program verification. In: Logic in Computer Sci-
ence, pp. 322–331.

Vardi MY and Wolper P (1994) Reasoning about infinite compu-
tations. Information and Computation 115: 1–37.

Wongpiromsarn T, Topcu U and Murray RM (2010) Receding
horizon control for temporal logic specifications. In: Hybrid
Systems: Computation and Control, Stockholm, Sweden, pp.
101–110.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://
www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Robot implementation of data-gathering
for case study C

http://www.ijrr.org/ijrr_2011/417911.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

