
Optimality and Robustness in
Multi-Robot Path Planning with
Temporal Logic Constraints

The International Journal of
Robotics Research
32(8) 889–911
© The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364913487931
ijr.sagepub.com

Alphan Ulusoy1, Stephen L. Smith2, Xu Chu Ding3, Calin Belta1, and Daniela Rus4

Abstract
In this paper we present a method for automatic planning of optimal paths for a group of robots that satisfy a common
high-level mission specification. The motion of each robot is modeled as a weighted transition system, and the mission
is given as a linear temporal logic (LTL) formula over a set of propositions satisfied at the regions of the environment.
In addition, an optimizing proposition must repeatedly be satisfied. The goal is to minimize a cost function that captures
the maximum time between successive satisfactions of the optimizing proposition while guaranteeing that the formula is
satisfied. When the robots can follow a given trajectory exactly, our method computes a set of optimal satisfying paths that
minimize the cost function and satisfy the LTL formula. However, if the traveling times of the robots are uncertain, then
the robots may not be able to follow a given trajectory exactly, possibly violating the LTL formula during deployment. We
handle such cases by leveraging the communication capabilities of the robots to guarantee correctness during deployment
and provide bounds on the deviation from the optimal values. We implement and experimentally evaluate our method for
various persistent surveillance tasks in a road network environment.

Keywords
optimal path planning, optimal multi-robot path planning, temporal logic, formal methods

1. Introduction

In the classical reach–avoid robotic path planning problem
(Choset et al., 2005; LaValle, 2006), the aim is to steer a
robot from a given initial position to some final position
while avoiding any obstacles along the way. Many methods
based on the configuration space approach (Lozano-Perez,
1983) have been proposed to find such collision-free paths.
If the dimension of the configuration space permits, one
can use discretized approaches that utilize various graph
search algorithms (Choset et al., 2005; LaValle, 2006)
or continuous methods (Rimon and Koditschek, 1992) to
solve this problem. Alternatively, randomized sampling-
based algorithms such as probabilistic road map (PRM)
(Kavraki et al., 1996) or rapidly-exploring random trees
(RRT) (Kuffner and LaValle, 2000) can be used to find
admissible paths. However, due to the limited scope of the
problem that they address, classical path planning algo-
rithms cannot handle more complex temporal and logic
mission requirements.

Complex robotic missions need a precise as well as
user-friendly language for requirement specification. In this
regard, linear temporal logic (LTL) provides a very attrac-
tive formalism that can capture the infinite behavior of a
dynamic system in an intuitive but mathematically pre-
cise manner (Baier and Katoen, 2008). Using LTL one can

easily specify complex robotic missions such as “Repeat-
edly visit region 1. Go to region 3 before each visit to
region 1. Always avoid region 2.”. Current literature on
path planning and control synthesis using LTL specifica-
tions considers finite systems, which may be abstractions of
their infinite counterparts (Tabuada and Pappas, 2006; Yor-
danov et al., 2012). Given a finite system and an LTL mis-
sion specification, paths and control strategies that satisfy
the mission can be automatically computed for determin-
istic (Kloetzer and Belta, 2010; Kress-Gazit et al., 2011),
non-deterministic (Thomas, 2002; Kress-Gazit et al., 2007;
Kloetzer and Belta, 2008; Yordanov et al., 2012), and proba-
bilistic systems (Bianco and de Alfaro, 1995; Kwiatkowska
et al., 2002; Ding et al., 2011). Nevertheless, finding a path

1Division of Systems Engineering, Boston University, Boston, MA, USA
2Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON, Canada
3Embedded Systems and Networks, United Technologies Research Center,
East Hartford, CT, USA
4Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, USA

Corresponding author:
Alphan Ulusoy, Division of Systems Engineering, Boston University,
Boston, MA 02215, USA.
Email: alphan@bu.edu

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364913487931&domain=pdf&date_stamp=2013-07-11

890 The International Journal of Robotics Research 32(8)

that accomplishes a mission is only part of the robotic path
planning problem, as there remains the question of picking
a particular path from all of those paths that satisfy given
specifications. In this case, one can either break the tie by
making an arbitrary choice or pick the best alternative in
terms of safety, speed, efficiency, or some other relevant
metric.

The goal of this paper is to compute optimal paths for
a group of robots subject to general LTL specifications.
Our approach is motivated by persistent monitoring and
pickup–delivery problems, where there is an optimizing
task that must be repeatedly completed. We aim to com-
pute paths that satisfy the LTL specification while minimiz-
ing the maximum time between successive completions of
this optimizing task. Previously, we provided a method that
solves this problem for a single robot (Smith et al., 2011).
Then, we extended our approach to multiple robots by uti-
lizing timed automata (Ulusoy et al., 2011), and provided
improved methods that are robust to uncertainties in the
speeds of robots (Ulusoy et al., 2012b,a). Moving from a
single robot to multiple robots requires special care, as the
model of the robotic team must capture the asynchronous
motion of its members. Kloetzer and Belta (2010) proposed
a method for decentralized motion of multiple robots sub-
ject to LTL specifications. Their method, however, results in
sub-optimal performance as it requires the robots to travel
synchronously, blocking the execution of the mission before
each transition until all robots are synchronized. The vehi-
cle routing problem (VRP) (Toth and Vigo, 2001) and its
extensions to more general classes of temporal constraints
(Karaman and Frazzoli, 2008a,b) also deal with finding sat-
isfying optimal paths for a given specification. Karaman
and Frazzoli (2008b) considered optimal vehicle routing
with metric temporal logic specifications by converting the
problem to a mixed integer linear program (MILP). How-
ever, their method does not apply to the missions where
robots must repeatedly complete some task, as it does not
allow for specifications of the form “always eventually”.
Furthermore, none of these methods are robust to timing
errors that can occur during deployment, as they rely on the
ability of the robots to follow generated trajectories exactly
for satisfaction of the mission specification. Quottrup et al.
(2004) proposed a method for synthesizing controls for a
team of robots subject to a computational tree logic (CTL)
formula. But, they do not consider optimizing the paths of
the robots. Chen et al. (2012) proposed a method for auto-
matic synthesis of control and communication strategies for
a team of robots. However, they consider finite horizon tasks
given as regular expressions as opposed to infinite horizon
tasks expressed in LTL that are of our interest. Moreover,
their method does not consider the costs of the generated
team trajectories and thus, in general, does not provide opti-
mal solutions. Even though Chen et al. (2011) consider LTL
as the specification language for the same problem, they
again do not consider optimal solutions.

The contribution of this paper is threefold. First, we pro-
vide an algorithm to capture the asynchronous motion of
a group of robots. Given a team of robots modeled as
weighted transition systems, this algorithm constructs a
new transition system that models the joint behavior of all
members as a whole. Second, we provide an algorithm to
compute communication strategies for a team of robots so
that we can still guarantee correctness even if the robots
cannot follow generated trajectories exactly during deploy-
ment. Finally, building on these two algorithms, we present
a method for generating optimal paths for a group of robots
satisfying general LTL formulas. Our method is general
enough to address problems involving robotic teams with
different capabilities. The first case that we consider is when
the members of the robotic team can follow generated paths
arbitrarily closely and their models have exact timing infor-
mation. One such example would be a team of robots that
have accurate position information and can regulate their
speeds to track moving set-points that correspond to gener-
ated paths. We address such problems with our exact solu-
tion that generates optimal satisfying paths. However, there
might also be cases where the robots lack accurate speed
control and traveling times between the regions of the envi-
ronment is an unknown quantity within a given interval.
If this is the case, one cannot generally guarantee satis-
faction of the LTL formula without additional measures.
Intuitively, if during deployment the robot speeds differ
from those used for planning, then the order of events can
switch, which may result in the violation of the global mis-
sion specification. For such cases we propose a robust solu-
tion that leverages the communication capabilities of the
robots to guarantee correctness and to maintain field per-
formance in the presence of timing errors. Paths generated
using this approach are robust to uncertainties in the speeds
(traveling times) of robots. In addition, we characterize the
performance of the robust paths with respect to the exact
solutions. Preliminary versions of parts of our approach
appeared in conference proceedings (Ulusoy et al.,
2012b, 2011, 2012a). Here, we extend these preliminary
works by presenting a unified approach that can han-
dle cases with both exact and non-deterministic traveling
times. We also provide full proofs, new case studies, and
experiments.

The organization of the paper is as follows. In Section 2,
we give some preliminaries in formal methods and trace-
closed languages. In Section 3, we formally state the opti-
mal motion planning problem for a team of robots and give
an overview of our approach. In Section 4, we present the
parts of our approach that are common to the two cases
that we consider in this paper. We present our exact solu-
tion in Section 5, which applies to the cases where the
models of the robots have exact timing information and
the robots can follow generated trajectories exactly. In Sec-
tion 6, we present our robust solution, which applies to the
cases where the traveling times of the robots are uncertain

Ulusoy et al. 891

and the robots communicate to guarantee correctness dur-
ing deployment and maintain field performance. In Section
7, we present experimental case studies for a team of robots
performing persistent data gathering missions in a road net-
work environment followed by numerical case studies that
investigate the scalability of our approach considering a
small academic example. We conclude with final remarks
in Section 8.

2. Preliminaries

In this section, we introduce the notation that we use in
the rest of the paper and give some definitions. We refer
the reader to Clarke et al. (1999), Hopcroft et al. (2007),
Baier and Katoen (2008) and references therein for a more
complete and rigorous treatment of these topics.

For a set �, we use |�| and 2� to denote its cardinality
and power set, respectively.

Definition 2.1 (Transition system). A (weighted) transi-
tion system (TS) is a tuple T :=(QT, q0

T, δT,�T,LT, wT),
where:

(i) QT is a finite set of states;

(ii) q0
T ∈ QT is the initial state;

(iii) δT ⊆ QT ×QT is the transition relation;

(iv) �T is a finite set of atomic propositions;

(v) LT : QT → 2�T is a map giving the set of atomic
propositions satisfied in a state;

(vi) wT : δT → N>0 is a map that assigns a positive integer
weight to each transition.

We define a run of T as an infinite sequence of states
rT = q0, q1, . . . such that q0 = q0

T, qk ∈ QT and
(qk , qk+1)∈ δT for all k ≥ 0. A run generates an infinite
word ωT = LT(q0) ,LT(q1) , . . . where LT(qk) is the set of
atomic propositions satisfied at state qk . A prefix of a run
is a finite path from an initial state to a state q. A periodic
suffix is an infinite run originating at the state q reached by
the prefix, and periodically repeating a finite path, which
we call the suffix cycle, originating and ending at q. A run
is in prefix–suffix form if it consists of a prefix followed by
a periodic suffix.

Definition 2.2 (LTL formula). An LTL formula φ over
a set of atomic propositions � is defined inductively as
follows (Clarke et al., 1999; Baier and Katoen, 2008):

φ := � | p | φ ∨ φ | φ ∧ φ | ¬φ | Xφ | φ U φ
where� is a predicate true in each state of a system, p ∈ �
is an atomic proposition, ¬ (negation), ∨ (disjunction) and
∧ (conjunction) are standard Boolean connectives, and X
and U are temporal operators.

LTL formulas are interpreted over infinite words (gen-
erated by the TS T from Definition 2.1 with �T = �).

Informally, Xp states that at the next position of a word,
proposition p is true. Formula p1 U p2 states that there is a
future position of the word when proposition p2 is true, and
proposition p1 is true at least until p2 is true. From these
temporal operators we can construct two other temporal
operators: Eventually (future), F, defined as Fφ := �U φ,
and Always (globally), G, defined as Gφ := ¬F¬φ. For-
mula Gφ states that φ is true at all positions of the word;
formula Fφ states that φ eventually becomes true in the
word. More expressivity can be achieved by combining the
temporal and Boolean operators. We say a run rT satisfies
φ if and only if the word generated by rT satisfies φ. An
LTL formula φ over a set � can be represented by a Büchi
automaton, which is defined next.

Definition 2.3 (Büchi Automaton). A Büchi automaton is
a tuple B :=(QB,Q0

B,�B, δB,FB), where:

(i) QB is a finite set of states;

(ii) Q0
B ⊆ QB is the set of initial states;

(iii) �B is the input alphabet;

(iv) δB ⊆ QB ×�B ×QB is a non-deterministic transition
relation;

(v) FB ⊆ QB is the set of accepting (final) states.

A run of B over an input word ω = ω0,ω1, . . . is
a sequence rB = q0, q1, . . ., such that q0 ∈ Q0

B, and
(qk ,ωk , qk+1)∈ δB, for all k ≥ 0. A Büchi automaton
B accepts a word over �B if and only if at least one of
the corresponding runs intersects with FB infinitely many
times. For any LTL formula φ over a set �, one can con-
struct a Büchi automaton with input alphabet �B = 2�

accepting all and only words over 2� that satisfy φ. The
set of all of the words accepted by a Büchi automaton B
is called the language recognized by the automaton and is
denoted by LB.

Given a set �, the collection of subsets �i ⊆ �, ∀ i =
1, . . . , m is called a distribution of � if ∪m

i=1�i = �. For
a word ω over 2� generated by m TSs {T1, . . . , Tm} with
∪m

i=1�i = �, ω�i denotes the projection of ω onto Ti, which
is the portion of ω generated by Ti over 2�i .

Definition 2.4 (Trace-closed language). Given m TSs
{T1, . . . , Tm} such that {�1, . . . ,�m} is a distribution of �
and words ω,ω′ ∈ 2�, ω′ is trace-equivalent to ω, denoted
ω′ ∼ ω, iff their projections onto each one of the TSs
are equal, i.e. ω �i= ω′ �i for each i = 1, . . . , m. For
{T1, . . . , Tm}, the trace-equivalence class of ω is given by
[ω] = {ω′ : ω′ ∈ 2�,ω′ �i= ω �i ∀ i = 1, . . . , m}.
Finally, a trace-closed language is a language L such that
[ω] ⊆ L, ∀ ω ∈ L.

Remark 2.5 (Optimal-Run Algorithm (Smith et al.,
2011)). The approach that we present in this paper uti-
lizes the OPTIMAL-RUN algorithm that we developed pre-
viously in Smith et al. (2011). The algorithm takes as input
a weighted TS modeling the motion of a robot and an LTL

892 The International Journal of Robotics Research 32(8)

formula of the form φ := ϕ ∧ GFπ . In formula φ, π is the
optimizing task that must be repeatedly satisfied and ϕ is an
arbitrary LTL formula for capturing other mission require-
ments. The OPTIMAL-RUN algorithm outputs an optimal
satisfying run that satisfies φ and minimizes the maximum
time between successive satisfying instances of π . We refer
the interested reader to Smith et al. (2011) for more details
on the OPTIMAL-RUN algorithm.

3. Problem formulation and approach

In this section we introduce the optimal multi-robot path
planning problem and motivate the need for solutions that
are robust to uncertain robot speeds. Let

E =(V ,→E ,�,L)

be a directed graph, where V is the set of vertices, →E⊆
V × V is the set of edges, � is a finite set of atomic propo-
sitions, and L is a map giving the set of atomic propositions
satisfied at a vertex. In this paper, E is the quotient graph of
a partitioned environment, where V is a set of labels for the
regions in the partition and→E is the corresponding adja-
cency relation. For example, V can be a set of labels for the
regions and intersections for a road network and →E can
give their connections (see Figure 4).

Consider a team of m robots moving in an envi-
ronment modeled by E . The motion capabilities of
robot i ∈ {1, . . . , m} are represented by a TS Ti =
(Qi, q0

i , δi,�i,Li, wi), where Qi ⊆ V ; q0
i is the initial ver-

tex of robot i; δi ⊆→E is a relation modeling the capa-
bility of robot i to move among the vertices; �i ⊆ �

is the set of propositions that can be satisfied by robot i
and {�1, . . . ,�m} is a distribution of �; Li is a mapping
from Qi to 2�i showing how the propositions are satisfied
at vertices; wi(q, q′) captures the time for robot i to go from
vertex q to q′, which we assume to be a positive integer. In
this model, each robot travels along the edges of the cor-
responding TS Ti, and spends zero time at its vertices. We
assume that the robots are equipped with motion primitives
that allow them to deterministically move from q to q′ for
each (q, q′)∈ δi.

We consider the case where this robotic team has a
mission in which some particular task must be repeatedly
completed and the maximum time in between successive
completions of this task must be minimized. For instance,
in a persistent surveillance mission (Smith et al., 2011), the
global mission could be to keep gathering data while obey-
ing traffic rules at all times, and the repeating task could
be gathering data. For this example, the robots would oper-
ate according to the mission specification while ensuring
that the maximum time between successive data gather-
ings is minimized. Consequently, we assume that there is an
optimizing proposition π ∈ � corresponding to this partic-
ular repeating task and consider missions specified by LTL
formulae of the form

φ := ϕ ∧GFπ , (1)

where ϕ can be any LTL formula over �, and GFπ means
that the proposition π must be repeatedly satisfied. Our aim
is to plan multi-robot paths that satisfy the mission specified
by φ and minimize the maximum time between successive
satisfying instances of π .

To state this problem formally, we assume that each run
ri = q0

i , q1
i , . . . of Ti (robot i) starts at t = 0 and generates a

wordωi = ω0
i ,ω1

i , . . . and a corresponding sequence of time
instances Ti := t0

i , t1
i , . . . such that ωk

i = Li(qk
i) is satisfied

at tk
i . To define the behavior of the team as a whole, we inter-

pret the sequences Ti as sets, take the union
⋃m

i=1 Ti and
order this set in an ascending order to obtain the sequence
T := t0, t1, Next, we define ωteam = ω0

team,ω1
team, . . . to

be the word generated by the team of robots where ωk
team is

the union of all propositions satisfied at tk . Then, we define
the infinite sequence Tπ = Tπ (1) , Tπ (2) , . . .where Tπ (k)
stands for the time instance when π is satisfied for the kth
time by the team.1 Finally, we define the cost function

J (Tπ)= lim sup
k→+∞

(Tπ (k + 1)−Tπ (k)) . (2)

The form of the cost function given in (2) is motivated
by persistent surveillance and pickup–delivery missions,
where one is interested in the long-term behavior of the
team. Given a sequence Tπ corresponding to a run of the
team, the cost function in (2) captures the maximum time
between satisfying instances of π once the team behavior
reaches a steady-state, which is achieved in finite time as
we will discuss in Section 4.2.

In this paper we are particularly interested in the imple-
mentability and robustness of our solutions. Thus, we con-
sider two cases for the traveling times given by the models
of the robots: the first case that we consider is when the
weight wi(q, q′) of each transition (q, q′)∈ δi is exactly the
time it takes for robot i to go from q to q′ for i = 1, . . . , m.
This corresponds to the case when the robots can follow any
given run exactly when deployed in the environment and Tπ

observed during deployment is identical to the planned Tπ .
The second case that we consider is when the robots lack
accurate speed control and the actual time it takes for robot
i to go from q to q′ is an uncertain quantity w̃i(q, q′) taking
values in known intervals non-deterministically. The inter-
val of each w̃i(q, q′) is given by [ρiwi(q, q′) , ρiwi(q, q′)],
where wi(q, q′) is the weight of the transition (q, q′)∈ δi, ρi

and ρi are the lower and upper deviation values of robot i,
and 0 < ρi ≤ 1 ≤ ρi. In this setting, we treat the weight
wi(q, q′) given by Ti as a nominal value, which determines
the bounds of the uncertain traveling time w̃i(q, q′) along
with ρi and ρi. We further assume that ρi and ρi of each
robot i are known a priori. In the following, we use x and
x̃ to denote the nominal and actual values of some variable
x, and use the expression “in the field” to refer to the model
with uncertain traveling times. Note that, for the case of
uncertain traveling times, J (Tπ) corresponds to the nomi-
nal value of the cost function, whereas J (T̃π) is the actual

Ulusoy et al. 893

maximum time between any two successive satisfactions of
π during deployment, i.e.

J (T̃π)= lim sup
k→+∞

(
T̃π (k + 1)−T̃π (k)

)
.

When the robots cannot follow generated trajectories
exactly, the order in which the propositions are satisfied may
switch during deployment. Then, the actual word ω̃team gen-
erated by the robotic team during its infinite asynchronous
run in the field may not be the planned word ωteam, but a
trace equivalent of ωteam instead, i.e. ω̃team ∈ [ωteam]. This
leads to the definition of critical words.

Definition 3.1 (Critical words). Given the language LB

of the Büchi automaton that corresponds to the LTL for-
mula φ over �, and a team of m robots modeled as TSs
{T1, . . . , Tm} such that {�1, . . . ,�m} is a distribution of�,
the wordωteam over 2� is a critical word if ∃ ω̃team ∈ [ωteam]
such that ω̃team �∈ LB, where [ωteam] is the trace-equivalence
class of ωteam (Definition 2.4).

Thus, we see that if the planned word is critical and the
traveling times of the robots are non-deterministic, then we
may not satisfy the specification in the field. This can be for-
malized by noting that the optimal runs that satisfy (1) are
always in a prefix–suffix form (Smith et al., 2011), where
the suffix cycle is repeated infinitely often. Using this obser-
vation and Definition 3.1 we can formally define the words
that can violate the LTL formula during the deployment of
a robotic team with uncertain traveling times.

Proposition 3.2. If the suffix cycle of the word ωteam is
a critical word and the traveling times of the robots are
non-deterministic, then the correctness of the motion of the
robotic team during its deployment cannot be guaranteed.

Proof. We denote the actual word generated by the robotic
team in the field by ω̃team, whereas ωteam stands for the
planned word. Suppose that for each robot ρi = 1 − ε,
ρi = 1 + ε, and in the suffix cycle of ωteam we have
α ⊆ ωk

team and β ⊆ ω
(k+τ)
team , where α and β are the propo-

sitions generated by robots i and j at positions k and k + τ
of ωteam, respectively. Further assume that β must not occur
before α, because if it does, ω̃team violates φ. Note that we
are guaranteed to find such α and β as we assume the suffix
cycle to be a critical word. In the worst case, for ω̃team to
violate φ, we must have (1 + ε) tk >(1 − ε) tk+τ , where tk

is the time at which ωk
team is satisfied. Solving for ε, we get

ε >(tk+τ − tk) /(tk+ tk+τ). However, as the suffix is an infi-
nite repetition of the suffix cycle, limk→∞(tk+τ − tk) /(tk +
tk+τ)= 0 and φ is violated for any ε > 0. �

Remark 3.3 (Worst-case performance in the field under
uncertain traveling times). In addition, we can consider
the performance of the team during deployment in terms
of the value of the cost function (2) observed in the field.
Using the same arguments presented in Proposition 3.2, it
can be easily shown that the worst-case field value of (2)

will be the minimum of (J (T̃π1) , . . . , J (T̃πm)), where T̃πi is
the time sequence of satisfactions of π by robot i and J (T̃πi)
is the maximum duration between any two successive satis-
factions of π by robot i in the field. This effectively means
that, in the worst case, there is no benefit in executing the
task with multiple robots, as at some point in the future the
overall performance of the team will be limited by that of a
single member.

Proposition 3.2 shows that we cannot solely rely on the
planned runs to satisfy the mission when the traveling times
are uncertain and the suffix cycle of the word ωteam is a crit-
ical word. Thus, for such cases, it is relevant to consider
the communication capabilities of the robots as one may
leverage them to guarantee correctness during deployment.
We can now formulate the problem that we consider in this
paper.

Problem 3.4. Given an LTL formula φ over � of the form
(1) and a team of m robots modeled as TSs {T1, . . . , Tm},
possibly with uncertain traveling times characterized by
deviation values ρi, ρi, i = 1, . . . , m; generate individual
runs and communication strategies for each robot such that
Tπ minimizes the cost function (2) subject to the constraint
that ωteam, or ω̃team in case of uncertain traveling times,
satisfies φ.

Since we consider LTL formulas containing GFπ , this
optimization problem is always well-posed. An overview
of our approach is given in Figure 1. Note that the exact
steps we take to solve Problem 3.4 depend on whether the
traveling times of the robots are uncertain or not. Never-
theless, in both solutions, we first construct the team TS T
that captures the joint asynchronous motion of the robots
in the environment (Section 4.1). Then, we find an optimal
satisfying run on T using the OPTIMAL-RUN algorithm we
previously developed in Smith et al. (2011), and project this
run back to the individual Ti, i = 1, . . . , m (Section 4.2).
In the next section, we discuss these common parts of our
approach before presenting our exact and robust solutions
in the sections that follow.

Remark 3.5 (Complexity of multi-robot optimal path
planning). LTL model checking is the problem of auto-
matically checking a given system model against some LTL
specification ψ . Sistla and Clarke (1985) showed that the
complexity of LTL model checking is PSPACE-complete.
The single-robot version of Problem 3.4, where the aim is
to find an optimal path that satisfies a given LTL specifi-
cation of the form (1) and minimizes (2), was previously
considered by Smith et al. (2011). Note that any instance of
the LTL model checking problem can be transformed to a
single-robot optimal path planning problem in polynomial
time by letting φ := ¬ψ∧GFπ and defining π on all states
of the model. Then, if one can find an optimal path that sat-
isfies φ, the system model violates ψ , and vice versa. Thus,
the single-robot version of Problem 3.4 is PSPACE-hard.
Since the multi-robot optimal path planning problem is at

894 The International Journal of Robotics Research 32(8)

Fig. 1. An overview of our approach.

least as hard as the single-robot case, Problem 3.4 is also
PSPACE-hard.

Remark 3.6 (Optimization objective). Another interest-
ing optimization objective would be to compute robot paths
that give the best performance for the worst case, i.e.
min max J (Tπ), where minimization is over all paths that
satisfy φ, and maximization is over all possible realiza-
tions of traveling times within the given intervals. How-
ever, it appears that this would entail the solution of an
additional optimization problem over a high-dimensional
continuous space (for discovering the worst-case travel-
ing times), potentially resulting in a further increase in the
complexity of this problem.

4. Modeling the team and finding optimal
satisfying runs

As given in Figure 1, there are two operations common to
both of our solutions: construction of the team TS T and
finding optimal satisfying runs for individual robots. In the
following, we discuss these operations.

4.1. Constructing the team transition system

In order to be able to optimize the motion of the team, we
must capture the joint asynchronous behavior of its mem-
bers as they move in the environment. Since traveling times
between regions are typically not identical, we need a way to
capture the states, or relative positions, of the robots regard-
less of whether they are at the regions in the environment or
traveling between the regions. This leads to the definition of
traveling states.

Definition 4.1 (Traveling state). Given the TS Ti :=
(Qi, q0

i , δi,�i,Li, wi) modeling robot i, we refer to a state
of the form qiq′ixi, where qi, q′i ∈ Qi and xi > 0, as a trav-
eling state, and use it to represent the instant where robot i
has traveled from qi to q′i for xi time units.

Algorithm 1: CONSTRUCT-TEAM-TS
Input: {T1, . . . , Tm}.
Output: Corresponding team transition system T.

1 q0
T :=(q0

1, . . . , q0
m).

2 dfsT(q0
T).

3 Function dfsT(state tuple q ∈ QT)

4 Define q[i] as the ith element of q.
5 Define→i as a transition of Ti, such that
→i∈ {(q[i], q′i) |(q[i], q′i)∈ δi} for q[i] ∈ Qi and
→i=(qi, q′i) for q[i] = qiq′ixi.

6 T is the set of all possible transition tuples
(→1, . . . ,→m) at q.

7 foreach transition tuple (→1, . . . ,→m) ∈ T do
8 w = Shortest time until a robot is at a vertex.
9 Find the q′ that corresponds to the new state of the

team.
10 if q′ /∈ QT then
11 Add state q′ to QT.
12 Set LT(q′)= ∪m

i=1Li(q′[i]).
13 Add (q, q′) to δT with weight w.
14 Continue search from q′: dfsT(q′).

15 else if (q, q′) /∈ δT then
16 Add (q, q′) to δT with weight w.

To model the asynchronous motion of the
team in the environment, we use a team TS
T =(QT, q0

T, δT,�T,LT, wT), where QT is the set of
states of the form q =(q[1], . . . , q[m]) where q is a
tuple and its ith element q[i] is the state of robot i;
q0

T =(q0
1, . . . , q0

m) is the initial state of the team; δT is the
set of transitions; �T = ∪m

i=1�i is the set of propositions;
LT is a mapping from QT to 2�T ; wT(q, q′) is the weight
of the transition from q to q′. The states of T correspond
to the instants where at least one member of the team has
completed a transition on its individual TS and is currently
at a vertex while other robots may still be traveling. When
robot i is at some region in the environment, we have
q[i] ∈ Qi. If, on the other hand, robot i is traveling from qi

to q′i and it has been xi time units since it left qi, we have
q[i] = qiq′ixi. Using this, we construct T by running a depth
first search on the TSs of the individual members of the
team as given in Algorithm 1.

Algorithm 1 is essentially a recursive depth first search
(lines 4–16) that starts at the initial state of the team TS T
(line 2). The initial state q0

T of T is defined as the tuple of
the initial states of the m TSs (line 1). Given a state q of
T, the function dfsT first generates all possible tuples of
transitions that can be taken at the current states of the TSs
{T1, . . . , Tm} (lines 4–6). The current state of TS Ti is given
by the ith element q[i] of the current state q of T. At line 5
of Algorithm 1, we consider all possible transitions out of
the current states of all TSs {T1, . . . , Tm}. If q[i] ∈ Qi, i.e.

Ulusoy et al. 895

q[i] is a regular state of Ti, then all transitions going out
of this state in Ti will be considered in the transition tuples
that we will construct. Otherwise, q[i] is a traveling state
of Ti of the form qiq′ixi, and the only transition that can be
taken is the one that is being taken, i.e. the transition from
qi to q′i. Then, we construct the set of all possible tuples of
transitions that can be taken at the current states of the TSs
(line 6) and process each tuple one by one (lines 7–16). In
a transition tuple (→1, . . . ,→m), the ith element→i gives
the transition that is being taken at the current state of Ti.
In lines 8 and 9, we find the next instant where at least one
transition from the current tuple (→1, . . . ,→m) has been
completed and the next state q′ of T has been reached. The
ith element q′[i] of the next state q′ of T corresponds to the
next state of Ti w time units after starting taking the tran-
sition→i at q[i]. Suppose that, the source and target states
of transition→i are qi and q′i, respectively. If the transition
→i has been completed at this point, then q′[i] = q′i, i.e.
we set the next state of Ti to the target state of →i. Oth-
erwise, q′[i] is a traveling state of the form qiq′ixi such that
xi = w if q[i] = qi, and xi = n + w if q[i] = qiq′in. If q′

is a new state (lines 10–14), we accordingly add it to QT

and define its propositions. Then, we add the transition that
has just been completed to δT and continue our search from
this new state q′. Otherwise, we add the transition that has
just been completed to δT if required and proceed to the
next transition tuple in T . The algorithm concludes when
all states and transitions of T have been discovered.

The following proposition provides a bound on the size
of the team TS T.

Proposition 4.2. The number of states |QT| of T is
bounded by

m∏
i=1

|Qi|+(wmax − 1)
m∏

i=1

|δi| (3)

where wmax is the largest edge weight in all TSs
{T1, . . . , Tm}.

Proof. The first term in (3) is the maximum number of
states that we can have in the Cartesian product of Ti, i =
1, . . . , m. The second term in (3) is an upper-bound on
the number of traveling states (Definition 4.1) that we can
define as we construct T. Here,

∏m
i=1 |δi| is the maximum

number of different transition tuples that we can consider
(Algorithm 1, line 7) and (wmax − 1) is the upper bound
on the number of new traveling states per transition tuple.
Thus, |QT| is bounded by the sum of these two terms as
given in (3). �

Remark 4.3 (Comparison with naive construction). One
can avoid going through Algorithm 1 and capture the joint
behavior of the team by discretizing each transition in
Ti, i = 1, . . . , m to unit-length edges and taking the syn-
chronous product of these m TSs. This approach, however,

yields a much larger model whose state count is bounded
by

m∏
i=1

⎛
⎝|Qi| +

∑
(q,q′)∈δi

wi(q, q′)−|δi|
⎞
⎠ .

For the case where we have m identical robots in an envi-
ronment with Q vertices,� edges and a largest edge weight
of wmax, the above given bound is O((Q + �wmax)m),
whereas the bound given by Proposition 4.2 is O(Qm +
�mwmax).

4.2. Finding optimal satisfying runs for individ-
ual robots

Once we have the TS T modeling the team, we can use the
OPTIMAL-RUN algorithm (Smith et al., 2011) to obtain an
optimal run r�team on T that minimizes the cost function (2)
and satisfies any mission specification φ of the form (1).
The optimal run r�team always consists of a finite sequence
of states of T (prefix), followed by infinite repetitions of
another finite sequence of states of T (suffix).

Given a run rteam of T, we can finally project it onto
individual robots to obtain their individual runs {r1, . . . , rm}.
Definition 4.4 (Projection of a run on T to Ti). Given a
run rteam on T where rteam = q0, q1, . . ., we define its pro-
jection on Ti as run ri = q0

i q1
i . . . for all i = 1, . . . , m, such

that qk
i appears in ri only if qk[i] ∈ Qi where qk[i] is the ith

element of tuple qk.

It can be easily seen that the set of runs {r1, . . . , rm}
obtained from rteam using Definition 4.4 and the run rteam on
T agree with each other: the projection given in Definition
4.4 simply breaks down a sequence of tuples of states into
a tuple of sequences of states, while preserving the order
of the states and filtering out the traveling states. Thus, the
word ω and the time sequence T generated by {r1, . . . , rm}
are exactly the word ωteam and the time sequence Tteam gen-
erated by rteam. Moreover, if the run rteam is in prefix–suffix
form, all individual runs ri projected from rteam are also in
prefix–suffix form. Therefore, the individual runs projected
from the optimal run r�team are always in prefix–suffix form.

5. Exact solution

In this section we consider the case where the models of the
robots have exact timing information and the time it takes
for the robots to travel between regions during deployment
is exactly the time captured in their models. Consequently,
if we plan a run based on the models of the robots, the
run that we will observe when the robots are deployed will
be exactly the planned run in the sense that the times at
which robots reach the regions in the run will be exactly as
planned.

To solve Problem 3.4 in this case, we first create a model
of the motion of the team in the environment. Given the

896 The International Journal of Robotics Research 32(8)

Fig. 2. (a), (b) The TSs T1 and T2 of two robots in an environment with three vertices. The states of the TSs correspond to vertices
{a, b, c} and the edges represent the motion capabilities of each robot. The weights of the edges represent the traveling times between
any two vertices. Propositions p1,p2,p3, and π are shown next to the vertices where they can be satisfied by the robots. (c) The team
TS capturing the joint behavior of the robots in 6 states. A state labeled (a, b) means robot 1 is at region a and robot 2 is at region b,
whereas a state labeled (ba1, c) means robot 1 has traveled from b to a for 1 time unit and robot 2 is at c.

individual TSs {T1, . . . , Tm} of the robots, we use Algo-
rithm 1 to construct the team TS T that captures the joint
asynchronous behavior of the robots.

Example 5.1. Figures 2(a) and 2(b) illustrate the TSs of
two robots, where �1 = {p1, π}, �2 = {p2, p3, π},
and � = {p1, p2, p3, π}. Using Algorithm 1 we con-
struct the team TS T (Figure 2(c)) that captures the joint
asynchronous behavior of the team in six states.

Next, given an LTL mission specification φ of the
form (1), we use our previous OPTIMAL-RUN algorithm
(Smith et al., 2011) to generate an optimal satisfying run
r�team on the team TS T. Then, we project the optimal sat-
isfying run r�team on T onto individual TSs using Definition
4.4 to obtain individual optimal satisfying runs {r�1, . . . , r�m}
of the robots.

Example 5.1 Revisited. Running the OPTIMAL-RUN algo-
rithm (Smith et al., 2011) for the team TS T given in Figure
2(c), and the formula φ := GFπ results in the optimal run

T 0 2 3 4 6 8 10 …

r�team a,a b,b ba1,c a,b b,a a,b b,a …
LT(·) p1,p2,π p3 p2,π p1,π p2,π p1,π …
r�1 a b a b a b …
r�2 a b c b a b a …

where the first row corresponds to the times when tran-
sitions occur, the second row corresponds to the run
r�team, the third row shows the propositions satisfied at
each position, and the last two rows correspond to the
individual runs of the robots. For this run, we see that
(a, a) , (b, b) , (ba1, c) , (a, b) is the prefix and (a, b) , (b, a)
is the suffix cycle and will be repeated an infinite num-
ber of times. Also, the time sequence of satisfactions of π
is Tπ = 2, 4, 6, 8, 10, . . . and the cost as defined in (2) is
J (Tπ)= 2. Note that, at time t = 3, the second robot has
arrived at c while the first robot is still traveling from b to
a, therefore r�1 has no state corresponding to time t = 3.

We finally summarize our exact solution in Algorithm
2, and show that this algorithm indeed gives a solution to

Problem 3.4 for the case where the models of the robots
have exact timing information. We analyze the overall
complexity of Algorithm 2 in Proposition 5.3.

Algorithm 2: EXACT-MULTI-ROBOT-OPTIMAL-RUN

Input: Transition systems {T1, . . . , Tm} and an LTL
specification φ of the form (1).

Output: A set of runs {r�1, . . . , r�m} that both satisfies φ
and minimizes (2).

1 Construct the team TS T using CONSTRUCT-TEAM-TS
(Algorithm 1).

2 Find the optimal run r�team on T using OPTIMAL-RUN

(Smith et al., 2011).
3 Project r�team onto {T1, . . . , Tm} to obtain runs
{r�1, . . . , r�m} (Definition 4.4).

Proposition 5.2. Algorithm 2 solves Problem 3.4.

Proof. Note that Algorithm 2 combines all steps outlined in
this section. Run r�team obtained from Algorithm OPTIMAL-
RUN both satisfies φ and minimizes (2) among all runs
of T (Smith et al., 2011). As discussed in Section 4.2,
there is a one-to-one correspondence between a set of runs
{r1, . . . , rm} obtained using Definition 4.4 and a run rteam

of T. Therefore, {r�1, . . . , r�m} as a projection of r�team onto
{T1, . . . , Tm} is a solution to Problem 3.4. �

Proposition 5.3. For the case where a group of m identical
robots are expected to satisfy an LTL specification φ in a
common environment with Q vertices,� edges and a largest
edge weight of wmax, the worst-case complexity of Algorithm
2 is O((Qm +�mwmax)3 ·2O(|φ|)).

Proof. For the above mentioned case, the worst-case size of
T as given in (3) is O(Qm + �mwmax). Smith et al. (2011)
gave the worst-case complexity of the OPTIMAL-RUN algo-
rithm as O(|T |3 ·2O(|φ|)) where |T | is the number of states of
the input TS and |φ| is the length of the LTL specification.
Then, the worst-case complexity of Algorithm 2 becomes
O((Qm +�mwmax)3 ·2O(|φ|)). �

Ulusoy et al. 897

6. Robust solution

In this section we consider the case where the actual
traveling times of the robots observed during deploy-
ment, denoted by w̃i(q, q′), are uncertain quantities
taking values in known intervals non-deterministically.
Recall from Section 3 that, w̃i(q, q′) lies in the interval
[ρiwi(q, q′) , ρiwi(q, q′)], where wi(q, q′) is the nominal
value given by Ti, ρi and ρi are the lower and upper devia-
tion values of robot i, and 0 < ρi ≤ 1 ≤ ρi. Thus, when the
robots execute a planned run in the field, the run observed
during deployment may be different from the one planned,
possibly violating the mission specification. As discussed
previously in Section 3, our solution in this case will also
comprise a communication strategy so that the satisfac-
tion of the mission specification will be guaranteed and the
deviation of the field performance from optimality will be
bounded.

6.1. Optimal satisfying runs and transition
systems with traveling states

Given the TSs {T1, . . . , Tm} of the robots and the mission
specification φ, we first construct the team TS T using
Algorithm 1 to model the team. Then, we use the OPTIMAL-
RUN algorithm (Smith et al., 2011) to obtain a run r�team on
T that satisfies φ and minimizes the cost function (2).

Example 6.1. Running the OPTIMAL-RUN algorithm
(Smith et al., 2011) on T given in Figure 2(c) for the for-
mula φ = G(p1 ⇒ X(¬p1 U p3))∧GFπ results in the
optimal run

T 0 2 3 4 5 6 …

r�team a,a b,b ba1,c a,b ab1,c b,b …

LT(·) p1,p2,π p3 p2,π p3 p1,p2,π …

where the first row shows when transitions occur, the second
row corresponds to the run r�team, and the last row shows the
satisfying atomic propositions. For this run, (a, a) , (b, b)
is the finite prefix and (b, b) , (ba1, c) , (a, b) , (ab1, c) is
the suffix cycle, which will be repeated an infinite num-
ber of times. Also, the time sequence Tπ of satisfactions
of π is Tπ = 2, 4, 6, 8, . . . and the cost as defined in (2) is
J (Tπ)= 2.

Since T captures the asynchronous motion of the robots,
the optimal satisfying run r�team on T may contain some
traveling states (Definition 4.1) which do not appear in the
individual TSs {T1, . . . , Tm} that we started with. In our
exact solution (Section 5), we pruned such states as we pro-
jected r�team onto {T1, . . . , Tm} to obtain {r�1, . . . , r�m}. But we
cannot ignore such traveling states in this case, as each one
of them is a candidate synchronization point for the corre-
sponding robot as we discuss in the following subsections.
Instead, we insert those traveling states into individual TSs
so that the robots will be able to synchronize with each
other at those points if needed. In the following, we use

Fig. 3. (a), (b) The TSs with new traveling states and transitions
that correspond to the optimal run r�team that we compute for
Example 6.1. (a) The new traveling states and transitions of T1
are highlighted in red.

qk[i] to denote the ith element of the kth state tuple in r�team,
which is also the state of robot i at that position of r�team.
As given in Definition 4.1, a traveling state of robot i has
the form qiq′ixi. First, we construct the set S = {(i, qk[i]) |
qk[i] = qiq′ixi ∀ k, i} of all traveling states that appear in
r�team. Elements of S are ordered pairs where the second
element is a traveling state and the first element gives the
TS this new traveling state will be added to. Next, we
construct the set T = {(i, (qk[i], qk+1[i]) , x) |((i, qk[i])∈
S)∨((i, qk+1[i]) ∈ S) , x = wT(qk , qk+1) ∀ k, i} of all
transitions that involve any of the traveling states in r�team.
Elements of T are triplets where the second element is a
transition, the third element is the weight of this transition,
and the first element shows the TS that this new transi-
tion will be added to. Then, we add the traveling states
in S and the transitions in T to their corresponding TSs.
Finally, using Definition 4.4, we project the run r�team onto
{T1, . . . , Tm} to obtain the individual runs r�i , i = 1, . . . , m.

Example 6.1 Revisited. For the optimal run
r�team we obtained for this example, we have
S = {(1, ab1) , (1, ba1) } and T = {(1, (a, ab1) , 1),
(1, (ab1, b) , 1) , (1, (b, ba1) , 1) , (1, (ba1, a) , 1) }. Figure
3 illustrates the corresponding TSs with new travel-
ing states and transitions highlighted in red. Then,
we have runs of individual robots from Definition
4.4 as r�1 = a, b, ba1, a, ab1, b, ba1, a, ab1, . . . and
r�2 = a, b, c, b, c, b, c, b, c,

Remark 6.2. For most applications, adding new states and
transitions to the models of the robots may imply intro-
ducing new waypoints or motion primitives at lower lev-
els. Since the exact way in which these model changes are
accommodated at lower levels is strictly application spe-
cific, we do not discuss these details here assuming that
such necessary changes can be implemented.

6.2. Synchronization for trace-closed
specifications and optimality bounds

After obtaining individual runs of the robots, we proceed
by checking whether the mission specification φ is trace-
closed using an algorithm adapted from Peled et al. (1998).

898 The International Journal of Robotics Research 32(8)

We say an LTL formula φ is trace-closed if the language LB

of the corresponding Büchi automaton is trace-closed in the
sense of Definition 2.4.

Proposition 6.3. If the LTL formula φ over the set �
is a trace-closed formula with respect to the distribution
{�1, . . . ,�m} given by TSs {T1, . . . , Tm}, then it will not
be violated in the field due to uncertain traveling times.

Proof. From Definitions 2.4 and 3.1, we know that if we
can find a run that satisfies a trace-closed LTL formula, then
the word ωteam corresponding to the run will not be a criti-
cal word. We use ω̃team to denote the actual word generated
by the team during deployment. Since ωteam is not a crit-
ical word, � ω̃team ∈ [ωteam] such that ω̃team �∈ LB. Thus,
regardless of the deviation values of the robots, φ will not
be violated in the field due to uncertain traveling times as
any ω̃team ∈ [ωteam] will also be in LB. �

Corollary 6.4. If the LTL formula φ over the set � is not
trace-closed with respect to the distribution {�1, . . . ,�m}
given by TSs {T1, . . . , Tm}, then φ may be violated during
deployment due to uncertain traveling times.

Proof. The proof follows directly from Proposition
6.3. �

If φ is not trace-closed, we cannot guarantee correctness
during deployment in general as shown in Corollary 6.4. In
cases where the traveling times of the robots are uncertain
and φ is not trace-closed, we compute individual synchro-
nization sequences {s1, . . . , sm} for the robots to guarantee
correctness during deployment. We discuss how we gen-
erate these synchronization sequences in greater detail in
Section 6.3. If, on the other hand, the mission specification
φ is trace-closed, we can guarantee correctness in the field
without any additional measures as shown in Proposition
6.3. Nevertheless, as given in Remark 3.3, the field perfor-
mance of the team will invariably deviate from its planned
value, and in the worst case, the field performance of the
team will be limited by that of a single member. To address
this issue, we propose a periodic synchronization protocol
(Algorithm 3). As the robots execute their infinite runs in
the field, they synchronize with each other periodically at
the beginning of each repetition of the suffix cycle.

Using this protocol, we can define a bound on the devi-
ation from optimality, i.e. the value of the cost function (2)
observed in the field, as given in the following proposition.

Proposition 6.5. Suppose that each robot’s deviation val-
ues are bounded by ρ and ρ where ρ ≥ 1 ≥ ρ > 0 (i.e.
ρi ≥ ρ and ρi ≤ ρ for each robot i). Let J (Tπ) be the cost

of the planned robot paths and let J (T̃π) be the actual value
of the cost observed during deployment. Then, if the robots
follow the protocol given in Algorithm 3 the field value of
the cost satisfies

J (T̃π)≤ J (Tπ) ρ + ds(ρ − ρ)

where ds is the planned duration of the suffix cycle.

Algorithm 3: TRACE-CLOSED-SYNC-RUN

Input: A run ri = q0
i , q1

i , . . . of robot i in prefix–suffix
form.

1 qsync ← First state in the suffix cycle.
2 k← 0.
3 while True do
4 if current state is qsync then
5 Notify all robots.
6 Wait until notification messages of all robots are

received.

7 Make transition to rk+1
i .

8 k← k + 1.

Proof. The suffix consists of an infinite number of repeti-
tions of the suffix cycle, which we denote by Sc. As given
in Algorithm 3, each repetition of Sc begins with a synchro-
nization point where all robots synchronize with each other.
Let ds be the planned duration of Sc, let ns be the number
of optimizing propositions satisfied in Sc. Let us redefine
t = 0 to be the time when the suffix starts, and let T̄π

be a sequence of length ns recording the ns times that the
optimizing proposition is satisfied in the first repetition of
Sc. Note that, as we consider infinite runs and as the pro-
cess restarts itself at the beginning of each Sc by means
of the synchronization protocol given in Algorithm 3, we
only need to consider the first two repetitions of Sc. We first
define

Ti = T̄π (i) ρ

Ti = T̄π (i) ρ

tw = dsρ

where Ti and Ti are the earliest and latest times that the
ith optimizing proposition can be satisfied, respectively. The
value tw is the latest time that the second repetition of Sc can
begin. Then, for 0 < i ≤ ns, the worst-case time between
satisfying the ith optimizing proposition and the (i + 1)th
optimizing proposition is

τ i,i+1 =
{

Ti+1 − Ti if 0 < i < ns,

tw + T1 − Tns if i = ns.
(4)

Next, in the planned paths, multiple robots may simulta-
neously satisfy the ith optimizing proposition. In the field,
these satisfactions will not occur simultaneously. The max-
imum amount of time between the first and last of these
satisfying instances for the ith proposition, for 0 < i ≤ ns,
is

τ i = Ti − Ti. (5)

Finally, using (4) and (5) we obtain the upper bound on the
value of the cost function (2) that will be observed during
deployment as

J (T̃π) = max{max
i
{τ i,i+1}, max

i
{τ i}}. (6)

Ulusoy et al. 899

Substituting the definitions for Ti, Ti, and tw into (4) we
obtain

τ i,i+1 =
{

T̄π (i+ 1) ρ − T̄π (i) ρ if 0 < i < ns,(
ds + T̄π (1)

)
ρ − T̄π (ns) ρ if i = ns

But we have that J (Tπ)≥ T̄π (i+ 1)−T̄π (i), and J (Tπ)≥
ds + T̄π (1)−T̄π (ns). In addition, T̄π (1)≤ J (Tπ) and
T̄π (i)≤ ds for all i ∈ {2, . . . , ns}. Using these expressions
we obtain τ i,i+1 ≤ J (Tπ) ρ + ds(ρ − ρ). Similarly, we get

τ i ≤ ds(ρ−ρ), and thus J (T̃π)≤ J (Tπ) ρ+ds(ρ−ρ). �

Remark 6.6 (Exact bound on J (T̃π)). In Proposition 6.5,
we have provided a conservative bound for ease of presen-
tation. However, we can also calculate an exact bound on
the field value of the cost J (T̃π) using a treatment similar
to the proof of Proposition 6.5.

6.3. Synchronization for general specifications
and guarantee of correctness

If the traveling times of the robots are uncertain and φ

is not trace-closed, we compute individual synchronization
sequences {s1, . . . , sm} for the robots to guarantee correct-
ness during deployment. As the robots execute their infinite
runs in the field, they synchronize with each other accord-
ing to the synchronization sequences that we generate using
Algorithm 4. The synchronization sequence si of robot i is
an infinite sequence of pairs of sets. The kth element of si,
denoted by sk

i , corresponds to the kth element qk
i of r�i . Each

sk
i is a pair of two sets of robots: sk

i =(sk
i,wait, sk

i,notify), where

sk
i,wait and sk

i,notify are the wait-set and notify-set of sk
i , respec-

tively. The wait-set of sk
i is the set of robots that robot i

must wait for at state qk
i before satisfying its propositions

and proceeding to the next state qk+1
i in r�i . The notify-set of

sk
i is the set of robots that robot i must notify as soon as it

reaches state qk
i . As we discussed earlier in Section 4.2, the

optimal run r�team of the team and the individual optimal runs
r�i , i = 1, . . . , m of the robots are always in prefix–suffix
form. Consequently, individual synchronization sequences
si of the robots are also in prefix–suffix form.

Algorithm 4 is essentially a loop (lines 3–16) that com-
putes the wait-sets for each position of the runs of the robots
to guarantee correctness in the field. Initially, synchroniza-
tion sequences are set so that the robots wait for each other
at every position of their runs (line 2). At line 4 of Algo-
rithm 4, if k is the first position of the runs, we do not
modify this initial value of sk

i,wait. This ensures that all robots
start executing their runs in a synchronized way. We also
keep this initial value of sk

i,wait if k is the beginning of the
suffix cycle, so that all robots synchronize with each other
globally at the beginning of each suffix cycle. This lets us
define a bound on the deviation from optimality, i.e. the
value of the cost function (2) observed in the field, as given
in Proposition 6.5. For all other positions of the runs, we
try to shrink the wait-set of each sk

i so that communication

Algorithm 4: SYNC-SEQ

Input: Individual runs {r�1, . . . , r�m}, Büchi automaton
B¬φ of ¬φ, and models of the robots.

Output: Synchronization sequence for each robot
{s1, . . . , sm}.

1 I = {1, . . . , m}, beg = beginning of suffix cycle,
end = end of suffix cycle.

2 sk
i,wait = I \ i for i ∈ I and k = 0, . . . , end.

3 foreach k = 0, . . . , end do
4 if k �= 0 and k �= beg then
5 Set sk

i,wait = ∅ ∀ i ∈ I.
6 Construct the TS W that generates every possible

ω̃team (Algorithm 6).
7 if the language of B¬φ ×W is empty then
8 Continue to next position k in run.

9 else
10 Set sk

i,wait = I \ i ∀ i ∈ I.
11 foreach i ∈ I do
12 foreach j ∈ I \ i do
13 Remove j from sk

i,wait.
14 Construct the TS W that generates every

possible ω̃team (Algorithm 6).
15 if the language of B¬φ ×W is not empty

then
16 Add j back to sk

i,wait.

17 Define each sk
i,notify such that

i ∈ sk
j,wait ⇒ j ∈ sk

i,notify ∀ i ∈ I, j ∈ I, k = 0, . . . , end.

18 The rest of each si is an infinite repetition of its suffix

cycle, i.e. sbeg
i , . . . , send

i , ∀ i ∈ I.

effort is minimized while we can still guarantee correctness
in the field (lines 5–16). To this end, we first consider the
case where robots do not wait for each other at this posi-
tion of the run (lines 5–8). This is actually a heuristic based
on the observation that in most missions robots synchronize
only occasionally. We set all wait-sets corresponding to this
position to empty sets. Then, given the runs, TSs, devia-
tion values, and wait-sets of the robots, we use Algorithm
6 to construct the TS W that generates all possible words
ω̃team that can be observed in the field due to the uncertain-
ties in the traveling times. Next, we construct the product
B¬φ ×W, where B¬φ is the Büchi automaton correspond-
ing to the negation of the LTL formula φ. If the language
of this product is empty, then the robots indeed do not need
to synchronize at this position. Otherwise, we restore the
previous values of the wait-sets of this position (line 10)
and consider each one of the robots in robot i’s kth wait-set
sk

i,wait one by one (lines 11–16). After removing some robot
j from sk

i,wait, we construct W and check whether the lan-
guage of B¬φ ×W is empty (lines 13–15). If the language

900 The International Journal of Robotics Research 32(8)

Algorithm 5: SYNC-RUN

Input: The run ri and synchronization sequence si of
robot i .

1 k← 0.
2 while True do
3 Notify all robots in sk

i,notify.

4 Wait until notification messages of all robots in
sk

i,wait are received.

5 Make transition to rk+1
i after satisfying the

propositions at rk
i .

6 k← k + 1.

of the product is empty, then robot i indeed does not need to
wait for robot j at the kth position of its run. Thus, we keep
the new value of sk

i,wait. Otherwise, we restore sk
i,wait to its

previous value (line 16) and proceed with the next robot in
sk

i,wait. Once every robot in sk
i,wait is considered, we proceed

with the next robot in the team, and eventually next position
of the run. Note that, the synchronization sequences gener-
ated by Algorithm 4 are free from any dead-locks as line
17 ensures that if some robot j waits for robot i at posi-
tion k, then robot i notifies robot j at position k. As the
synchronization sequences of the robots are in prefix–suffix
form and the robots synchronize with each other globally
at the beginning of each suffix cycle (line 4), at line 18,
we define the rest of each synchronization sequence as an
infinite repetition of its first suffix cycle that we have just
generated. Let K denote the total length of the prefix and
the first suffix cycle. Then, the worst-case complexity of
Algorithm 4 is O(m2K(W + E)) where m is the number of
robots, W is the complexity of constructing W, and E is the
complexity of checking emptiness of W×B¬φ at each iter-
ation. If the robots need to synchronize only occasionally,
i.e. if the heuristic at lines 5–8 succeeds most of the time,
then the complexity is O(K(W + E)). The synchroniza-
tion protocol that the robots follow in the field is given in
Algorithm 5.

We use Algorithm 6 to construct the TS W that gener-
ates all possible words that can be observed in the field for
a given set of runs and synchronization sequences of the
robots. We must first define some new terms before getting
into the details of Algorithm 6. We use the term position to
refer to the current position of a robot in its run. If some
robot i has just reached the state rk

i in its run and satisfied
the corresponding propositions after waiting for all of the
robots in its wait-set sk

i,wait as given in Algorithm 5, then the
position of the robot is k. If, on the other hand, robot i has
left state rk−1

i , but one of the above conditions has not been
satisfied yet, then the position of the robot is (k − 1, k). A
robot–position pair is a pair of the form (i, p) meaning that
the position of robot i is p which can be either an integer
or a pair of integers, as discussed above. For instance, the
robot–position pair (i, (k−1, k)) means robot i is on its way

from state rk−1
i to state rk

i . An event is a set of one or more
robot–position pairs that give the new positions of the cor-
responding robots. In the case of multiple robot–position
pairs, all of these changes occur simultaneously. That is,
the event {(i, k) , (j, k) } means that robots i and j have just
reached position k in their runs. On the other hand, the event
{(i, k) } means that robot i has just reached position k and
gives no information about the position of robot j. Finally,
an event sequence is a list of events that occur sequentially.
Now we can begin discussing Algorithm 6. The states of
W are tuples of positions such that the ith element q[i] of
some state q ∈ QW gives the current position of robot i.
Consequently, at line 1 we set (0, . . . , 0) to be the initial
state of W as we assume that the robots start their runs syn-
chronously (Algorithm 4). Algorithm 6 is essentially a loop
(lines 2–12) that considers all possible sequences of events
that may occur in the field. To do this, Algorithm 6 relies on
Algorithm 8 to generate pairs of event sequences and cor-
responding sets of states of W where those event sequences
start. For an event sequence and the corresponding set of
start states generated using Algorithm 8, Algorithm 6 adds
the necessary states and transitions to W starting from each
possible start state (lines 3–12). Then, at line 5, we consider
all events in an event sequence one by one. At lines 6–9, we
compute the next state q′ after the event e occurs at state q.
If the position of some robot i changes due to event e, then
q′[i] is set to the new position given in e (line 7). Otherwise
we update the position of robot i to capture its progress. If
the position of robot i is already a tuple in q, i.e. if robot
i is already on road, then we do not change its position in
q′ (line 8). Otherwise, we update the position of robot i in
q′ such that it starts traveling towards the next state in its
run (line 9). Next, we add the new state q′ with the nec-
essary propositions and the new transition (q, q′) to W as
required (lines 10–11). Then, we set the current state q of
W to q′ and switch to the next event e in the event sequence.
Once we process all of the events in this event sequence for
all start states, we repeat the same procedure for the next
event sequence. Since the runs of the robots are in prefix–
suffix form, Algorithm 8 is designed such that it terminates
once the positions of the robots reach the end of the first
suffix cycle. Since the robots start each suffix cycle in a
synchronized way (Algorithm 4), at line 14 of Algorithm 6
we add a transition from all of those states with no outgo-
ing transitions to the state that corresponds to the beginning
of the suffix cycle. This final step concludes the construc-
tion of W by capturing the periodic structure of the runs of
the robots. In order not to interrupt the flow of the paper,
we present and discuss the complexity of Algorithms 8 and
9, which we use to generate the event sequences discussed
above, in Appendix A. Next, we characterize the complexity
of Algorithm 6.

Proposition 6.7. Let K denote the total length of the prefix
and the first suffix cycle. For the case where the intervals of

Ulusoy et al. 901

Algorithm 6: CONSTRUCT-FIELD-WORDS-TS
Input: {r1, . . . , rm}, {s1,wait, . . . , sm,wait}, {T1, . . . , Tm},

and ρi, ρi, i = 1, . . . , m.
Output: The field words TS W that generates all

possible words that can be observed in the
field.

1 Add q0
W =(0, . . . , 0) to QW.

2 foreach (event_seq, start_states) generated using
GENERATE-EVENT-SEQ (Algorithm 8) do

3 foreach qstart in start_states do
4 q = qstart.
5 foreach e in event_seq do
6 foreach i ∈ {1, . . . , m} do
7 if (i, knew)∈ e then q′[i] = knew.
8 else if q[i] is a tuple then q′[i] = q[i].
9 else q′[i] =(q[i], q[i]+ 1).

10 if q′ is not in QW then add q′ to QW with
LW(q′)= ∪(i,k)∈eLi(rk

i) .
11 if (q, q′) is not in δW then add (q, q′) to δW.
12 q = q′.

13 qsuffix =(beg, . . . , beg) where beg corresponds to the
beginning of the suffix cycle.

14 foreach q ∈ QW such that �(q, q′)∈ δW for any
q′ ∈ QW do add (q, qsuffix) to δW.

the robots corresponding to different positions do not over-
lap (discussed in greater detail in Appendix A), the com-
plexity of Algorithm 6 is O(4mm2m+7K2) and the number of
states of W is O(2mmm+3K).

Proof. From Propositions 8.1 and 8.3, for the given case,
we have at most O(2mmm+2K) event sequences in the pre-
fix and the first suffix cycle with at most m events each.
Since Algorithm 6 creates a new state for each new event,
the number of states of W is O(2mmm+3K). Consequently,
each of the event sequences generated by Algorithm 8
can have at most O(2mmm+3K) different start states. Also,
the complexity of the inner loop of Algorithm 6 (lines
5–9) is O(m2). Thus, the complexity of Algorithm 6 is
O(4mm2m+7K2). �

Remark 6.8. In Proposition 6.7 we assumed that the inter-
vals of the robots corresponding to different positions do
not overlap. Let tn denote the planned time until the robots
reach the nth position in their runs and K denote the total
length of the prefix and the first suffix cycle. The above con-
dition is satisfied when ρitn−1 < ρjtn holds for all i, j ∈
{1, . . . , m} and n = 1, . . . , K − 1. This is typically the case
where the deviation values of the robots are small enough
(with respect to the length of the suffix cycle and durations
between consecutive states in the run) such that the inter-
vals in which the robots can reach different positions in their
runs do not overlap. A more general complexity analysis

could be performed for the case where robots move to differ-
ent positions in a single interval, but at the cost of increased
difficulty of presentation and interpretation. We employ the
same assumption in Propositions 6.10, 8.1, and 8.3 for the
same reason.

Example 6.1 Revisited. For the example we have shown
throughout this section, we obtain the following individual
optimal runs and synchronization sequences.

T 0 2 3 4 5 6 …

r�1 a b ba1 a ab1 b …
s1 ({2}, {2}) (∅, ∅) ({2}, {2}) (∅, ∅) (∅, ∅) (∅, ∅) …
L1(.) p1,π p1,π …
r�2 a b c b c b …
s2 ({1}, {1}) (∅, ∅) ({1}, {1}) (∅, ∅) (∅, ∅) (∅, ∅) …
L2(.) p2,π p3 p2,π p3 p2,π …

In a line corresponding to a synchronization sequence si,
first and second elements of the tuple at position k are sk

i,wait

and sk
i,notify, respectively. The symbol ∅ denotes an empty

wait-set, or notify-set, i.e. the robot does not wait for, or
notify, any other robot at that position of its run.

We finally summarize our robust solution in Algorithm 7,
and show that it provides a solution to Problem 3.4. We ana-
lyze the overall complexity of Algorithm 7 in Proposition
6.10.

Algorithm 7: ROBUST-MULTI-ROBOT-OPTIMAL-RUN

Input: Transition systems {T1, . . . , Tm}, corresponding
deviation values and an LTL specification φ of
the form (1).

Output: A set of runs {r�1, . . . , r�m} that satisfies φ and
minimizes (2), a set of synchronization
sequences {s1, . . . , sm} that guarantees
correctness in the field (if applicable), and the
bound on the performance of the team in the
field.

1 Construct the team TS T using Algorithm 1.
2 Find an optimal run r�team on T using OPTIMAL-RUN

(Smith et al., 2011).
3 Insert new traveling states to TSs {T1, . . . , Tm} (see

Section 6.1).
4 Obtain individual runs {r�1, . . . , r�m} using Definition

4.4.
5 if φ is not trace-closed then
6 Generate synchronization sequences {s1, . . . , sm}

using SYNC-SEQ (Algorithm 4).

7 Find the bound on optimality as given in Proposition
6.5.

Proposition 6.9. Algorithm 7 solves Problem 3.4 when
the traveling times of the robots are uncertain during
deployment.

902 The International Journal of Robotics Research 32(8)

Proof. Note that Algorithm 7 combines all steps outlined in
this section. The planned word ωteam generated by the entire
team satisfies φ, and minimizes (2), as shown in Smith et al.
(2011). If the mission specification φ is trace-closed, cor-
rectness during deployment is guaranteed by construction
as given in Proposition 6.3. If φ is not trace-closed, the
synchronization sequences guarantee correctness by ensur-
ing that the ω̃team generated in the field never violates φ
for given deviation values. Therefore, Algorithm 7 solves
Problem 3.4. �

Proposition 6.10. Suppose that a group of m identical
robots are expected to satisfy an LTL specification φ in a
common environment with Q vertices,� edges and a largest
edge weight of wmax. Further assume that K is the total
length of the prefix and the first suffix cycle of the optimal
satisfying run, and the intervals of the robots correspond-
ing to different positions do not overlap. Then, for typical
cases where m � Q, K < Q, complexity of Algorithm 7 is
O((Qm +�mwmax)3 ·2O(|φ|)).

Proof. For the above mentioned case, the worst-case
complexity of lines 1–4 of Algorithm 7 becomes
O((Qm + �mwmax)3 ·2O(|φ|)) from Proposition 5.3. The
trace-closedness check (line 5) can be done in time
O(2O(|φ|)22O(|φ|)

) (Peled et al., 1998). If this check fails,
we generate synchronization sequences using Algorithm
4, which runs in time O(m2K(W + E)). From Proposi-
tion 6.7, W is O(4mm2m+7K2) and the number of states
of W is O(2mmm+3K). Thus, E is O(2O(|¬φ|)2mmm+3K)
(Baier and Katoen, 2008) and complexity of Algorithm 4
becomes O(4mm2m+9K3+2O(|¬φ|)2mmm+5K2). Note that the
check for trace-closedness at line 5 of Algorithm 7 can
be omitted for long formulas by simply assuming that the
result is false and proceeding with the generation of the
synchronization sequences using Algorithm 4. Then, the
complexity of Algorithm 7 is O((Qm +�mwmax)3 2O(|φ|) +
4mm2m+9K3 + 2O(|¬φ|)2mmm+5K2). For typical cases where
m � Q and K < Q, the complexity becomes O((Qm +
�mwmax)3 ·2O(|φ|)). �

Remark 6.11. In cases where the conditions given in
Propositions 6.7 and 6.10 do not hold, the computational
cost of computing synchronization sequences using Algo-
rithm 4 may be undesirably high. In such cases, one can
trade communication effort for computational complexity
by deploying the robots using the trivially correct synchro-
nization sequence given at line 2 of Algorithm 4 where
each robot waits for every other robot at each position of
the run. Note that the bound on field performance given in
Proposition 6.5 still holds in this case.

7. Implementation and case studies

We implemented our algorithms in Python as the LTL Opti-
mal Multi-Agent Planner (LOMAP) package, which is pub-
licly available online.2 LOMAP uses the NetworkX graph

package described by Hagberg et al. (2008) to represent
various models in our implementation and the LTL2BA
software described by Gastin and Oddoux (2001) to con-
vert LTL specifications to Büchi automata. LOMAP also
includes an enhanced version of the OPTIMAL-RUN algo-
rithm (Smith et al., 2011) which returns the path with the
shortest suffix cycle when there are multiple optimal paths
in terms of the cost function (2). Furthermore, this new ver-
sion can be executed on a computer cluster in a distributed
fashion to be able to solve problems with large resource
requirements. A typical usage of our package is as follows.

(i) The user defines the TSs {T1, . . . , Tm} that model the
robots moving in the environment in a plain text file
using LOMAP’s format.

(ii) Then, the user writes a short python script that defines
the mission specification expressed in LTL in the form
of (1) and calls the appropriate LOMAP function.

(iii)Finally, the trajectory of the team and the value of the
cost function are returned if the mission specification
can be satisfied. Otherwise, our implementation shows
an error message and quits.

7.1. Experimental case studies on persistent
surveillance

In the following, we present various case studies consid-
ering persistent surveillance missions in the environment
shown in Figures 4(a) and 4(b). This environment is a
road network consisting of roads, intersections, and regions
for data gathering and upload. In this network, road seg-
ments are connected to each other via intersections, and
the surveillance target is located in the middle, surrounded
by four data gathering locations. For our case studies, we
considered two Pololu m3pi robots with mbed develop-
ment boards. We realized the environment using lines of
black tape that correspond to the roads and intersections
of the road network. The robots can navigate in the envi-
ronment and can sense whether they are at an intersection
or not using their infrared reflection sensors. The robots
can also communicate with each other and a computer
using Xbee wireless modules. In our case studies, inter-
robot communication is used for synchronization of the
robots, whereas computer–robot communication is used for
deploying the robots according to the trajectory generated
using our implementation.

The robots that we consider in our experiments have
uncertain traveling times. In order to obtain their upper and
lower deviation values, we measured the time it takes for
both of the robots to complete the cycle “U2, 10, 11, 12,
1, 2, 21, 22, 23, 9, 10, U2” in Figure 4(c) and recorded
the maximum and minimum values among 20 trials. We
chose this cycle because it tests all the motion primitives of
the robots: “left-turn, right-turn, u-turn, and go-straight”.
The average time for both robots to complete this cycle
was approximately 17 seconds. We used this information
to obtain the weights of the model given in Figure 4(c),

Ulusoy et al. 903

which were used as the nominal values in our computa-
tions. The maximum and minimum times for robot 1 to
complete this cycle were 17.67 and 16.68 seconds, respec-
tively. The maximum and minimum times for robot 2 were
17.56 and 16.77 seconds, respectively. Using these mea-
surements we obtained the following deviation values: ρ1 =
1.039, ρ1 = 0.981, ρ2 = 1.033, ρ2 = 0.986. In the follow-
ing, we take these deviation values as ρ1 = ρ2 = 1.04 and
ρ1 = ρ2 = 0.98 after adding a small margin of safety.

Figure 4(c) illustrates the TSs T1 and T2 that model the
motion of the robots in this road network. The sets of states
Q1 and Q2 are the sets of labels assigned to intersections
and regions. The transition relations δ1 and δ2 give how
the intersections and regions are connected and the weight
maps w1 and w2 capture the time it takes for robots to take a
transition. For our experiments, we assume that the TSs T1

and T2 are identical except for their initial states and the sets
of propositions that can be satisfied at their states. To be able
to differentiate between data gatherings and uploads per-
formed at different locations by different robots we define
the set of propositions as

� ={gather,upload,r1gather,r2gather,
r1upload,r2upload,gather1,gather2,gather3,
gather4,upload1,upload2,r1gather1,
r1gather2,r1gather3,r1gather4,r2gather1,
r2gather2,r2gather3,r2gather4,r1upload1,
r1upload2,r2upload1,r2upload2}.

Propositions gather and upload mean data has been
gathered and uploaded, respectively, whereas proposi-
tions of the form gatherY and uploadY, where Y ∈
{1, 2, 3, 4}, capture the locations of data gather and upload
as well. For instance, gather3 means data has been
gathered at gather location 3. Propositions of the form
rXgather and rXupload, where X ∈ {1, 2}, mean
robot X has gathered and uploaded data, respectively.
Finally, we use propositions of the form rXgatherY and
rXuploadY, where X ∈ {1, 2} and Y ∈ {1, 2, 3, 4}, to cap-
ture both the location and the subject of the data gather and
upload, i.e. r2Upload1 means robot 2 has uploaded data
at upload location 1. Consequently, we define the sets �1

and �2 as

�1 ={gather,upload,r1gather,r1upload,
gather1,gather2,gather3,gather4,upload1,
upload2,r1gather1,r1gather2,r1gather3,

r1gather4,r1upload1,r1upload2}, and
�2 ={gather,upload,r2gather,r2upload,gather1,

gather2,gather3,gather4,upload1,
upload2,r2gather1,r2gather2,r2gather3,
r2gather4,r2upload1,r2upload2};

and assign the propositions in �1 and �2 to the states of
T1 and T2 as given in Table 1. Note that all propositions
in � can be written in terms of the propositions of the last

form, and therefore we could have a set � consisting of 12
propositions of the form rXgatherY and rXuploadY.
However, for the sake of clarity and simplicity, we choose to
define � as given above, because otherwise we would have
to use the long boolean expression r1Gather1 ∨ . . . ∨
r1Gather4∨r2Gather1∨. . .∨r2Gather4 to express
a data gather event, instead of using a single proposition, i.e.
gather.

For the case studies presented next, we ran LOMAP on
a computing cluster consisting of five m2.2xlarge Ama-
zon Elastic Compute Cloud3 instances each with 34.2 GB
of memory and 2.67 GHz quad-core processing power. As
shown in Figure 4(c) TSs T1 and T2 of both of the robots
have 26 states. Table 2 gives the state count of the team
TS, Büchi automaton and the product automaton (product
of the Büchi automaton and the team TS constructed by the
OPTIMAL-RUN (Smith et al., 2011) algorithm to solve the
path planning problem) along with total computation time
for each individual case study. Since we consider the same
robot model for all case studies presented in this section, the
state count of the team TS T is 2444 for all case studies. We
investigate the scalability of our approach in the number of
robots and the size of the environment considering a small
academic example in Section 7.2.

Case study 1. The first mission specification that we con-
sider is as follows: “Each robot must repeatedly visit data
gather locations to gather data and go to an upload loca-
tion to upload their data before gathering data again. The
maximum time between successive data gatherings must be
minimized.”. This mission specification can be expressed in
LTL in the form of (1) as

φ1 :=G(r1gather⇒ X(¬r1gather U r1upload)) ∧
G(r2gather⇒X(¬r2gather U r2upload))∧GFπ,

where π := gather is set as the optimizing proposition.
Since the traveling times of our robots are uncertain, we
use our robust solution (Section 6). It takes 32.5 minutes
for our method to obtain an optimal satisfying team trajec-
tory, and the cost in terms of (2) is 10. For this case, since
φ1 is trace-closed, the robots synchronize only at the begin-
ning of their suffix cycles. The upper bound on the value of
the cost as given by Proposition 6.5 is 11.6 seconds whereas
the maximum value of the cost observed in the field after 10
iterations of this trajectory was 10.66 seconds. For compar-
ison, it also takes approximately 32.5 minutes for our exact
solution to return the same trajectory with the same cost.
Figure 5(a) illustrates the optimal team trajectory that we
obtain for formula φ1. As discussed in Section 4.2, optimal
satisfying runs obtained using our approach always consist
of a finite prefix followed by infinite repetitions of a finite
suffix cycle. In the figures that we present in this section, we
omit the prefix for the sake of clarity, and use red and blue
lines to illustrate the infinite periodic runs of robots 1 and

904 The International Journal of Robotics Research 32(8)

Fig. 4. Figure 4(a) shows our experimental platform where the roads are marked by black tape and the robots are labeled 1 and 2. Figure
4(b) gives a schematic illustration of this road network. The surveillance target is in the middle. Regions highlighted in yellow are data
gathering locations and regions highlighted in green are data upload locations. The TS that models the motion of the robots is given in
Figure 4(c). The weight of each transition captures the time it takes for the robots to complete that transition.

Table 1. Assignment of the propositions to the regions in the environment.

Region Propositions of robot 1 Propositions of robot 2

G1 {gather,gather1,r1gather,r1gather1} {gather,gather1,r2gather,r2gather1}
G2 {gather,gather2,r1gather,r1gather2} {gather,gather2,r2gather,r2gather2}
G3 {gather,gather3,r1gather,r1gather3} {gather,gather3,r2gather,r2gather3}
G4 {gather,gather4,r1gather,r1gather4} {gather,gather4,r2gather,r2gather4}
U1 {upload,upload1,r1upload,r1upload1} {upload,upload1,r2upload,r2upload1}
U2 {upload,upload2,r1upload,r1upload2} {upload,upload2,r2upload,r2upload2}

Table 2. Quantitative information on the case studies presented in Section 7.1.

State count of State count State count of the Total computation
Case study the team tran. of the Büchi product automaton time

sys. automaton

1 2444 12 17,952 1946 s
2 2444 12 15,080 26 s
3 2444 12 15,072 47 s
4 2444 12 15,050 20 s
5 2444 5 9895 1404 s

2, respectively. We use filled circles to represent the begin-
ning of the suffix cycles of the robots and white triangles to
represent the synchronization points.

Case study 2. In some missions, sequential data gather-
ings at different locations may not be enough to obtain the
desired information about the surveillance target. In such
cases, synchronous data gatherings by multiple robots may
be more desirable. For instance, one can use photographs
taken synchronously from different angles to recover depth
information which may be used to construct an approximate
three-dimensional model of the surveillance target. Also,

time-synchronous eavesdropping of radio communications
at different locations may substantially increase the chances
of recovering useful information from surveillance data. An
example mission specification for such a case would be:
“Robots must repeatedly gather data in a synchronous fash-
ion, and upload their data before gathering data again.”.
This mission specification can be written in LTL as

φ2 := G(gather⇒(r1gather ∧ r2gather))

∧G(r1gather⇒ X(¬r1gatherUr1upload))∧
G(r2gather⇒ X(¬r2gatherUr2upload))∧GFπ

Ulusoy et al. 905

Fig. 5. Team trajectories for case studies 1, 2, and 3. Red and blue lines illustrate trajectories of robot 1 and 2, respectively. Yellow
regions are data gathering locations and green regions are data upload locations. Filled circles represent the beginning of the suffix
cycles of the robots and the white triangles represent synchronization points.

where π := r1gather ∧ r2gather. Both of our robust
(Section 6) and exact (Section 5) solutions take approxi-
mately 26 seconds to compute the trajectory illustrated in
Figure 5(b). The cost of this trajectory in terms of (2) is 20.
The significant drop in computation time from case study 1
can be explained by the reduction in the size of the solution
space in which the OPTIMAL-RUN algorithm has to work.
The previous case-study requires 4664 executions of Dijk-
stra’s algorithm, whereas this case study requires only 680
executions of Dijkstra’s algorithm on a significantly smaller
graph. We were, however, unable to execute this trajectory
as our experimental setup does not allow multiple robots to
be at the same region at the same time. Next, we discuss
how we can address this issue and obtain a more desirable
run.

Case study 3. Figure 5(b) shows that lock-step motion
of the robots is an optimal team trajectory for φ2. How-
ever, as our motivation for synchronous surveillance is to
gather data synchronously from different locations, we can
include this requirement in our specification to eliminate
such undesired behaviors. Then, the mission specification
can be written as

φ3 :=φ2 ∧G(¬(r1gather1 ∧ r2gather1)

∧ ¬(r1gather2 ∧ r2gather2)∧
¬(r1gather3 ∧ r2gather3)

∧ ¬(r1gather4 ∧ r2gather4))

where φ2 is the specification of the previous case study with
π := r1gather ∧ r2gather and the rest of φ3 for-
bids robots to gather data at the same place at the same
time. Figure 5(c) illustrates the optimal team trajectory we
obtain for φ3 using our robust approach. Note that in addi-
tion to synchronizing at the beginning of their suffix cycles,

Fig. 6. Team trajectories for case studies 4 and 5. Red and blue
lines illustrate trajectories of robots 1 and 2, respectively. Yel-
low regions are data gathering locations and green regions are
data upload locations. Filled circles represent the beginning of
the suffix cycles of the robots and the white triangles represent
synchronization points.

the robots also synchronize with each other before gather-
ing data in order not to violate the mission specification.
It takes 47 seconds for our robust solution to compute this
trajectory and the cost is 20. During 10 iterations of this
trajectory, the maximum value of the cost observed in the
field never exceeded the upper bound of 22 seconds given
by our approach. Extension 1 shows the execution of this
trajectory by the robots.

Case study 4. Now we consider the case where we need to
assign each robot a specific region for data gathering while
still requiring them to gather data synchronously. This is
typical in scenarios where data gathering capabilities of the

906 The International Journal of Robotics Research 32(8)

robots are not identical and the robots need to visit specific
regions to gather useful surveillance. An example specifica-
tion where robot 1 is assigned to G4 and robot 2 is assigned
to G2 would be

φ4 := G(gather⇒(r1gather4 ∧ r2gather2))

∧G(r1gather⇒ X(¬r1gatherUr1upload))∧
G(r2gather⇒ X(¬r2gatherUr2upload))∧GFπ

where π := r1gather4 ∧ r2gather2. Note that
it is the sub-formula G(gather ⇒(r1gather4 ∧
r2gather2)) in φ4 that enforces the first robot to gather
data at G4 and the second robot to gather data at G2. Figure
6(a) illustrates the optimal team trajectory we obtain for φ4

using our robust approach. For this case, total computation
time is 20 seconds and the cost is 24 with an upper bound
of 26.4 seconds. After 10 iterations of this trajectory, maxi-
mum value of the cost observed in the field never exceeded
25.3 seconds.

Case study 5. In all of the case studies that we have con-
sidered so far, some of the data gathering locations have not
been visited in order to optimize the team trajectory. Also,
we have had the requirement that the robots must go to a
dedicated upload region to upload their data before their
next data gathering. However, in many cases, robots have
uninterrupted links to their bases by means of some sort
of wireless communication channel, and are not required
to visit an upload location to upload their data. Now, we
consider the case where the robots are required to visit all
of the data gathering locations and are not required to visit
an upload region before each data gathering. This can be
expressed in LTL as

φ5 := GFgather1 ∧GFgather2 ∧GFgather3

∧GFgather4 ∧GFπ

where the optimizing proposition is set as π := gather.
Figure 6(b) illustrates the optimal team trajectory we obtain
for φ5. For this case, it takes 23.5 minutes for our robust
approach to obtain this trajectory. The cost of the trajectory
is 3, with an upper bound of 5.1 seconds. Since φ5 is trace-
closed, the robots synchronize only at the beginning of their
suffix cycles. It is interesting to note that the optimal solu-
tion for this case is to have robot 2 repeatedly gather data at
G4 while using robot 1 to visit the remaining data gathering
locations. Here, the trajectory of robot 2 minimizes the cost
by gathering data as frequently as possible whereas the tra-
jectory of robot 1 satisfies the rest of mission specification
by visiting the remaining data gathering locations.

7.2. Numerical case studies on scalability

In this section we investigate the scalability of our approach
both in the number of robots and in the size of the envi-
ronment considering a small patrolling example in an envi-
ronment with nine regions. Figure 7 illustrates the TS that
models the motion of the robots in a 3×3 grid environment,

Fig. 7. The TS that models the motion of the robots in the 3 × 3
environment that we consider in our scalability experiments. The
patrol proposition is defined at state 11 and the initial state
is 22.

where the center region (state 22) is the initial state of the
robots and the proposition patrol is assigned to the upper
left region (state 11). We assume that the robots are identical
to each other and can follow a given trajectory exactly, i.e.
we use our exact solution given in Section 5. We consider
the mission specification φ := GFπ where the optimizing
task is π := patrol. For the case studies presented next,
our implementation is run on an iMac i5 computer with 32
GB of RAM.

In order to evaluate the scalability of our approach in the
number of robots, we run our implementation for increasing
number of robots starting from two robots going up to five
robots. A summary of these four case studies is presented
in Table 3. Note that as we consider the same mission, the
size of the Büchi automaton remains the same for all cases.
The last column of Table 3 gives the ratio of total compu-
tation times between the cases with m and m − 1 robots
for m = 3, 4, 5, as 117, 186, and 197. On the other hand,
the worst-case bounds on these values as given by Proposi-
tion 5.3 are 10,868 are 12,565, and 13,327. The state count
of the team TS (second column in Table 3) also remains
well below the worst-case bound of 9m, m = 2, 3, 4, 5,
given by Proposition 4.2. Thus, we see that for this example
our approach scales better in the number of robots than the
worst-case bounds.

Next, we evaluate the scalability of our approach in the
size of the environment by considering two robots moving
over grids of increasing size: 3 × 3, 5 × 5, 7 × 7, 9 × 9,
11 × 11, and 13 × 13. Each environment that we consider
here is basically a bigger version of the 3 × 3 environment
given in Figure 7, where the patrol proposition is defined
at the upper left region and the initial state of each robot is
the center of the grid. Table 4 gives a summary of these
six case studies. The last column of Table 4 gives the ratio

Ulusoy et al. 907

Table 3. Quantitative information on the scalability of our approach in the number of robots. We assume that robots are identical and
each one of them is modeled as given in Figure 7.

Number State count of State count State count of the Total computation Ratio to the
of robots the team of the Büchi product automaton time previous case

tran. sys. automaton

2 41 2 50 0.07 s —
3 189 2 250 8.2 s 117
4 881 2 1250 1530 s 186
5 4149 2 6250 301,734 s 197

Table 4. Quantitative information on the scalability of our approach in the size of the environment for two identical robots. Each 5× 5
and larger environment is a bigger version of 3× 3 grid given in Figure 7.

Environment State count of State count State count of the Total computation Ratio to the
size the team of the Büchi product automaton time previous case

tran. sys. automaton

3× 3 41 2 50 0.07 s —
5× 5 313 2 338 1 s 14
7× 7 1201 2 1250 7.8 s 7.8
9× 9 3281 2 3362 35.5 s 4.55
11× 11 7321 2 7442 122.5 s 3.45
13× 13 14,281 2 14,450 344.7 s 2.81

of total computation times between environments of size
n × n and (n − 2)×(n − 2) for n = 5, 7, 9, 11, 13, as 14,
7.8, 4.55, 3.45, and 2.81. The worst-case bounds of these
values as given by Proposition 5.3 are approximately 1222,
83, 25, 12.6, and 8. Thus, for this example, our algorithm
scales better also in the size of the environment than the
worst-case bounds.

These results suggest that, in practice, the computational
complexity of our approach depends very much on the
problem at hand and one can potentially observe much bet-
ter running times and scalability (both in the number of
robots and the size of the environment) than the worst-case
analysis given in Proposition 5.3. Such differences in run-
ning times can be attributed to the mission specification,
locations of the propositions, and connectivity between the
states of the robot models under consideration.

8. Conclusions and future work

In this paper we have presented a method for automatic
planning of optimal paths for a team of robots subject
to temporal logic constraints. We have considered mission
specifications expressed in LTL where an optimizing propo-
sition must repeatedly be satisfied. We have provided an
algorithm to model the asynchronous behavior of the team
as a whole, which let us extend our previous work on sin-
gle robot optimal path planning to multiple robots. The
motion plan that our method provides is optimal in the
sense that it minimizes the maximum time in between suc-
cessive satisfying instances of the optimizing proposition.
Our approach is general and robust enough to handle cases
where the robots cannot follow planned trajectories exactly.
If the traveling times observed in the field deviate from

those given by the models of the robots, our method lever-
ages the communication capabilities of the robots to guar-
antee that the mission specification is never violated while
the overall communication effort is minimized. Our method
also provides an upper bound on the difference between the
performance in the field and the optimal performance in
case of uncertain traveling times. We experimentally evalu-
ate our approach and demonstrate its relevance in persistent
surveillance missions in a road network environment

In order to be able to obtain a globally optimal team tra-
jectory, our method constructs a relatively large model that
captures all members of the team and the mission speci-
fication. Thus, the main drawback of this approach is its
complexity. While the method presented in this paper can be
extended to Markov decision processes (MDPs) and differ-
ent cost functions, the most rewarding direction for future
research seems likely to be in the area of distributed syn-
thesis of optimal multi-robot path plans for general mission
specifications.

Notes

1. Throughout the paper, we will denote TSs and automata with
boldface letters, e.g. T and B. We use the double-barred letter
T exclusively for referring to various time sequences that we
define in this section, e.g. Ti, T, and Tπ .

2. LTL Optimal Multi-Agent Planner (LOMAP) Python Package
is available at http://hyness.bu.edu/lomap/.

3. Amazon EC2 is a commercial cluster computing service
available at http://aws.amazon.com/ec2/.

Funding

This work was supported in part by the Office of Naval Research
(grant number MURI N00014-09-1051), Army Research Office

908 The International Journal of Robotics Research 32(8)

(grant number W911NF-09-1-0088), Air Force Office of Scien-
tific Research (grant number YIP FA9550-09-1-020), National
Science Foundation (grant number CNS-0834260), Singapore-
MIT Alliance for Research and Technology (SMART) Future of
Urban Mobility Project and by Natural Sciences and Engineering
Research Council of Canada.

References

Baier C and Katoen JP (2008) Principles of Model Checking.
Cambridge, MA: MIT Press.

Bianco A and de Alfaro L (1995) Model checking of proba-
bilistic and nondeterministic systems. In: Foundations of Soft-
ware Technology and Theoretical Computer Science (Lecture
Notes in Computer Science, vol. 1026). Berlin: Springer, pp.
499–513.

Chen Y, Ding XC and Belta C (2011) Synthesis of distributed
control and communication schemes from global LTL speci-
fications. In: 2011 IEEE Conference on Decision and Control
(CDC 2011), Orlando, FL, pp. 2718–2723.

Chen Y, Ding XC, Stefanescu A and Belta C (2012) A formal
approach to the deployment of distributed robotic teams. IEEE
Transactions on Robotics 28(1): 158–171.

Choset H, Lynch KM, Hutchinson S, et al. (2005) Principles
of Robot Motion - Theory, Algorithms, and Implementations.
Cambridge, MA: MIT Press.

Clarke EM, Peled D and Grumberg O (1999) Model checking.
Cambridge, MA: MIT Press.

Ding XC, Smith SL, Belta C and Rus D (2011) MDP optimal
control under temporal logic constraints. In: 2011 IEEE Con-
ference on Decision and Control (CDC 2011), Orlando, FL, pp.
532–538.

Gastin P and Oddoux D (2001) Fast LTL to Büchi automata
translation. In: CAV ’01 Proceedings of the 13th International
Conference on Computer Aided Verification (Lecture Notes in
Computer Science, vol. 2102). Berlin: Springer, pp. 53–65.

Hagberg AA, Schult DA and Swart PJ (2008) Exploring network
structure, dynamics, and function using NetworkX. In: Pro-
ceedings of the 7th Python in Science Conference (SciPy2008),
Pasadena, CA, pp. 11–15.

Hopcroft JE, Motwani R and Ullman JD (2007) Introduction
to Automata Theory, Languages, and Computation. Reading,
MA: Addison-Wesley.

Karaman S and Frazzoli E (2008a) Complex mission optimization
for multiple-UAVs using linear temporal logic. In: American
Control Conference, Seattle, WA, pp. 2003–2009.

Karaman S and Frazzoli E (2008b) Vehicle routing problem
with metric temporal logic specifications. In: IEEE Con-
ference on Decision and Control, Cancún, México, pp.
3953–3958.

Kavraki L, Svestka P, Latombe J and Overmars M (1996) Proba-
bilistic roadmaps for path planning in high-dimensional config-
uration spaces. IEEE Transactions on Robotics and Automation
12(4): 566–580.

Kloetzer M and Belta C (2008) Dealing with non-determinism in
symbolic control. In: Egerstedt M and Mishra B (eds.), Hybrid
Systems: Computation and Control: 11th International Work-
shop (Lecture Notes in Computer Science, vol. 4981). Berlin:
Springer, pp. 287–300.

Kloetzer M and Belta C (2010) Automatic deployment of dis-
tributed teams of robots from temporal logic specifications.
IEEE Transactions on Robotics 26(1): 48–61.

Kress-Gazit H, Fainekos G and Pappas GJ (2007) Where’s Waldo?
Sensor-based temporal logic motion planning. In: IEEE
International Conference Robotics and Automation, pp.
3116–3121.

Kress-Gazit H, Wongpiromsarn T and Topcu U (2011) Correct,
reactive robot control from abstraction and temporal logic
specifications. IEEE Robotics & Automation Magazine 18:
65–74.

Kuffner J and LaValle S (2000) Rrt-connect: An efficient approach
to single-query path planning. In: IEEE International Confer-
ence Robotics and Automation, pp. 995–1001.

Kwiatkowska M, Norman G and Parker D (2002) Probabilistic
symbolic model checking with PRISM: A hybrid approach.
In: International Journal on Software Tools for Technology
Transfer 6(2): 52–66.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge
University Press.

Lozano-Perez T (1983) Spatial planning: A configuration
space approach. IEEE Transactions on Computers 32(2):
108–120.

Peled D, Wilke T and Wolper P (1998) An algorithmic approach
for checking closure properties of temporal logic specifications
and omega-regular languages. Theoretical Computer Science
195(2): 183–203.

Quottrup MM, Bak T and Izadi-Zamanabadi R (2004) Multi-robot
motion planning: A timed automata approach. In: IEEE Inter-
national Conference Robotics and Automation, New Orleans,
LA, pp. 4417–4422.

Rimon E and Koditschek DE (1992) Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics
and Automation 8(5): 501–518.

Sistla AP and Clarke EM (1985) The complexity of proposi-
tional linear temporal logics. Journal of the Association for
Computing Machinery 32(3): 733–749.

Smith SL, Tůmová J, Belta C and Rus D (2011) Optimal path plan-
ning for surveillance with temporal logic constraints. The Inter-
national Journal of Robotics Research 30(14): 1695–1708.

Tabuada P and Pappas GJ (2006) Linear time logic control of
discrete-time linear systems. IEEE Transactions on Automatic
Control 51(12): 1862–1877.

Thomas W (2002) Infinite games and verification. In: Proceedings
of CAV, pp. 58–64.

Toth P and Vigo D (eds.) (2001) The Vehicle Routing Prob-
lem (Monographs on Discrete Mathematics and Applications).
Philadelphia, PA: SIAM.

Ulusoy A, Smith SL and Belta C (2012a) Optimal multi-robot
path planning with LTL constraints: Guaranteeing correctness
through synchronization. In: International Symposium on Dis-
tributed and Autonomous Robotic Systems, Baltimore, MD,
USA.

Ulusoy A, Smith SL, Ding XC and Belta C (2012b) Robust multi-
robot optimal path planning with temporal logic constraints.
In: IEEE International Conference Robotics and Automation,
St. Paul, MN, USA, pp. 4693–4698.

Ulusoy A, Smith SL, Ding XC, Belta C and Rus D (2011) Opti-
mal multi-robot path planning with temporal logic constraints.
In: IEEE/RSJ International Conference Intelligent Robots and
Systems, San Francisco, CA, pp. 3087–3092.

Yordanov B, Tumova J, Cerna I, Barnat J and Belta C (2012)
Temporal logic control of discrete-time piecewise affine
systems. IEEE Transactions on Automatic Control 57(6):
1491–1504.

Ulusoy et al. 909

Appendix A: Generation of event sequences

In this appendix, we discuss how we generate the event
sequences and corresponding sets of start states that we pro-
cess in Algorithm 6 (Section 6.3). We start by recalling the
definitions of the terms position, robot–position pair, event,
and event sequence as defined in Section 6.3. We use the
term position to refer to the current position of a robot in its
run. If some robot i has just reached the state rk

i in its run
and satisfied the corresponding propositions after waiting
for all of the robots in its wait-set sk

i,wait as given in Algo-
rithm 5, then the position of the robot is k. If, on the other
hand, robot i has left state rk−1

i , but one of the above con-
ditions has not yet been satisfied, then the position of the
robot is (k−1, k). A robot–position pair is a pair of the form
(i, p) meaning that the position of robot i is p which can be
either an integer or a pair of integers, as discussed above.
For instance, the robot–position pair (i, (k − 1, k)) means
robot i is on its way from state rk−1

i to state rk
i . An event is

a set of one or more robot–position pairs that give the new
positions of the corresponding robots. In case of multiple
robot–position pairs, all of these changes occur simultane-
ously. That is, the event {(i, k) , (j, k) } means that robots i
and j have just reached position k in their runs. On the other
hand, the event {(i, k) } means that robot i has just reached
position k and gives no information about the position of
robot j. Finally, an event sequence is a list of events that
occur sequentially.

Algorithm 6 relies on Algorithm 8 to construct the TS
W that generates all possible words that can be observed in
the field. Algorithm 8 is a loop (lines 3–25) that processes a
dictionary called tl, short for timeline, which we construct
using Algorithm 9 (line 1) presented later in this section. A
dictionary is a data structure that comprises a set of keys, a
set of values, and a function that maps each key to a value.
In the case of tl, the keys are time intervals and the values
are sets of robot–position pairs. Owing to non-deterministic
traveling times, the time at which the robots reach their new
positions in the field, in general, is not a single point but
an interval. The dictionary tl captures this information by
dividing the time from the beginning of the run until the
end of the first suffix cycle to disjoint intervals and by asso-
ciating a set of robot–position pairs with each interval. The
set of robot–position pairs that corresponds to some inter-
val in tl gives the new positions of the robots that can be
achieved in that interval. In tl, the sets of robot–position
pairs that correspond to different intervals are not guaran-
teed to be disjoint. Thus, new positions of the robots can
span multiple intervals and can be reached in either one of
the intervals that they span. Suppose that the sets of robot–
position pairs {(1, 1) }, {(1, 1) , (2, 1) }, {(1, 1) } correspond
to the intervals [0.8, 0.9), [0.9, 1.1], (1.1, 1.2], respectively.
Then, robot 1 can reach position 1 in either one of the three
intervals, whereas robot 2 can reach position 1 only in the
interval [0.9, 1.1].

The first part of Algorithm 8 (lines 6–12) takes this
fact into account while computing all possible position

Algorithm 8: GENERATE-EVENT-SEQ

Input: W, {r1, . . . , rm}, {s1,wait, . . . , sm,wait},
{T1, . . . , Tm}, and ρi, ρi, i = 1, . . . , m.

Output: Yields a valid event sequence and the
corresponding set of starting states.

1 Obtain dictionary tl using COMPUTE-TIMELINE

(Algorithm 9).
2 ivs = Sorted list of intervals of tl, lenivs = length of ivs.
3 foreach l = 1 . . . lenivs do
4 all_posthis = tl[ivs[l]], all_posprev = ∅,

all_posnext = ∅, robot_seq = array of m empty sets.
5 if l > 1 then all_posprev = tl[ivs[l − 1]], if l < lenivs

then all_posnext = tl[ivs[l + 1]].
6 foreach i ∈ {1, . . . , m} do
7 posthis = {p|(i, p)∈ all_posthis}.
8 posprev = {p|(i, p)∈ all_posprev∩all_posthis}∪{∼}.
9 posnext = {p|(i, p)∈ all_posnext∩all_posthis}∪{∼}.

10 foreach tuple (prev, next) in posprev × posnext do
11 pos′this = {p|p ∈ posthis, (p > prev∨ prev =∼) ,

(p < next ∨ next =∼) }.
12 Sort pos′this in ascending order and add to

robot_seq[i].

13 Set robot_seq[i] = {[]} if
robot_seq[i] = ∅ ∀ i ∈ {1, . . . , m}.

14 foreach seq_tuple in
robot_seq[1]× . . .× robot_seq[m] do

15 lenseq[i] = length of seq_tuple[i] ∀ i ∈ {1, . . . , m}.
16 max_event_cnt =∑m

i=1 lenseq[i], all_perms =
array of m empty sets.

17 all_perms[i] = all lenseq[i] ordered combinations
of {1, . . . , max_event_cnt} ∀ i ∈ {1, . . . , m}.

18 foreach perm_tuple in
all_perms[1]× . . .× all_perms[m] do

19 event_seq = array of max_event_cnt empty
sets.

20 foreach i ∈ {1, . . . , m} do
21 foreach n ∈ {1, . . . , lenseq[i]} do
22 Add event (i, seq_tuple[i][n]) to

event_seq[perm_tuple[i][n]].

23 Remove those entries with event_seq[i] = ∅
for i ∈ {1, . . . , max_event_cnt}.

24 Define start_states as the set of states of W at
which event_seq can start occurring.

25 Yield (event_seq, start_states) after
performing wait-set checks.

sequences that can be achieved by each robot at each inter-
val. At lines 7–9, we first construct three sets of positions
for each robot i: the set posthis of positions that the robot
can reach at this interval, the set posprev of positions that the
robot can reach at either this interval or the previous inter-
val, and the set posnext of positions that the robot can reach

910 The International Journal of Robotics Research 32(8)

at either this interval or the next interval. Then, at line 10,
we iterate over the elements of the product posprev×posnext.
For each element (prev, next) of this product set, we inter-
pret prev as the last position that is reached in the previous
interval and next as the first position that is reached in the
next interval, and we obtain the remaining set of positions
pos′this to be reached at this interval as given in line 11. Then,
we sort pos′this in ascending order and add it to robot_seq[i],
which gives the set of all possible position sequences that
can be achieved by robot i at this interval. In a given inter-
val, different robots can reach their new positions in any
order with respect to each other, including simultaneously.
The second part of Algorithm 8 (lines 14–25) addresses
this by generating all possible event sequences that can be
achieved by the robotic team. At line 14 we consider all
combinations of position sequences that can be achieved
by the robots by iterating over the elements of the product
robot_seq[1]×. . .×robot_seq[m]. An element seq_tuple of
this set is an m-tuple of position sequences whose ith ele-
ment is a position sequence that can be realized by robot
i and lenseq[i] (line 15) gives the length of this position
sequence. Next, we define max_event_cnt as the maximum
number of events that can occur in this interval, given by
the case where the robots reach the positions in seq_tuple
sequentially (line 16). In order to generate all possible event
sequences, we use the variable event_seq to interpret the
current interval as a box with max_event_cnt bins labeled
{1, . . . , max_event_cnt} (line 19). For each robot i, we com-
pute all lenseq[i] ordered combinations of the sequence
{1, . . . , max_event_cnt} (line 17) and iterate over the ele-
ments of the product all_perms[1] × . . . × all_perms[m]
(line 18). Each element of this product set is a tuple that
gives how the events of individual robots are ordered with
respect to the events of the other robots. Next, we obtain the
event sequence corresponding to each perm_tuple by plac-
ing the events of the robots into event_seq according to the
positions given by the perm_tuple (lines 20–22). Note that,
as events of different robots can occur simultaneously, we
may end up with some empty bins in event_seq. We remove
such empty entries of event_seq at line 23. Next, at line 24,
we compute the set of start states of W at which event_seq
can start occurring. Finally, at line 25 we yield the event_seq
along with the corresponding set of start states after making
sure that they do not violate the given wait-sets. At the next
call, Algorithm 8 continues execution from line 18 with the
next perm_tuple, then from line 14 with the next seq_tuple,
and eventually from line 3 with the next interval. Once all
of the intervals of tl are considered, Algorithm 8 terminates
causing the loop that it is called in Algorithm 6 to terminate
as well.

Proposition A.1. Let O(T) denote the time complexity of
constructing the timeline tl and let I denote the number
of intervals in tl. For the case where the intervals of the
robots corresponding to different positions do not overlap,
complexity of Algorithm 8 is O(I 2m mm+1 + T).

Proof. It follows from our assumption that there is at
most one robot–position pair per robot per interval. Then,
complexity of the first part of the algorithm (lines 6–
12) is O(m), and the maximum values of lenseq[i] and
max_event_cnt are 1 and m. As |all_perms[i]| is at most
m, the complexity of the inner loop at lines 18–25 becomes
O(mm+1). Since each |robot_seq[i]| is at most 2, the com-
plexity of the second part of the algorithm (lines 14–25)
is O(2m mm+1). As O(m)< O(2m mm+1), the complexity
of Algorithm 8 for each interval considered at line 3 is
also O(2m mm+1). After substituting I for the number of
intervals and O(T) for the time complexity of construct-
ing tl, the overall complexity of Algorithm 8 becomes
O(I 2m mm+1 + T).

Remark A.2. In Proposition A.1 we assumed that the inter-
vals of the robots corresponding to different positions do
not overlap. Let tn denote the planned time until the robots
reach the nth position in their runs and K denote the total
length of the prefix and the first suffix cycle. The above con-
dition is satisfied when ρitn−1 < ρjtn holds for all i, j ∈
{1, . . . , m} and n = 1, . . . , K − 1. This is typically the case
where the deviation values of the robots are small enough
(with respect to the length of the suffix cycle and durations
between consecutive states in the run) such that the inter-
vals in which the robots can reach different positions in their
runs do not overlap. A more general complexity analysis
could be performed for the case where robots move to differ-
ent positions in a single interval, but at the cost of increased
difficulty of presentation and interpretation. We employ the
same assumption in Proposition A.3 for the same reason.

We use Algorithm 9 to construct the dictionary tl, short
for timeline, that we use in Algorithm 8. As discussed ear-
lier, since the runs of the robots are periodic and the robots
synchronize at the beginning of each suffix cycle, we con-
sider only the prefix and the first suffix cycle of the runs
of the robots during the construction of tl. The first part
of Algorithm 9 (lines 1–7) computes the intervals in which
the robots can reach the next positions in their runs. The
interval in which robot i can reach position k is deter-
mined by the deviation values ρi and ρi, the nominal time

wi(rk−1
i , rk

i) it takes for the robot to reach rk
i from its previ-

ous state rk−1
i , wait-set sk

i,wait of the robot for position k, and
the interval in which the robot can depart from its previ-
ous position. In Algorithm 9, we use pos_ivs[i][k].start and
pos_ivs[i][k].end to denote the start and end points of the
interval in which robot i can reach position k. As the robots
start their runs in a synchronized way, we set the interval of
the first positions of all robots to [0, 0] at line 3. For all other
positions, we first construct the set waits_for that includes
both robot i itself and the robots that robot i has to wait for
at that position (line 4). Next, at lines 5–6 we calculate the
earliest and latest time that robot i can reach position k by
using the models of the robots in the set waits_for and the
intervals of their previous positions. Then, at line 7, we save
the interval of robot–position pair (i, k) in the pos_ivs array.

Ulusoy et al. 911

Algorithm 9: COMPUTE-TIMELINE

Input: Individual runs {r1, . . . , rm}, wait-sets
{s1,wait, . . . , sm,wait}, TSs {T1, . . . , Tm}, and
deviation values ρi, ρi, i = 1, . . . , m of the
robots.

Output: The dictionary tl of sets of robot–position
pairs keyed by disjoint intervals.

1 for k = 0, . . . , end do
2 for i = 1, . . . , m do
3 if k is 0 then pos_ivs[i][k] = [0, 0] else
4 waits_for = {i} ∪ sk

i,wait.
5 earliest = maxj∈waits_for(pos_ivs[j][k −

1].start + ρj ∗ wj(rk−1
j , rk

j)).

6 latest = maxj∈waits_for(pos_ivs[j][k − 1].end +
ρj ∗ wj(rk−1

j , rk
j)).

7 pos_ivs[i][k].start =
earliest, pos_ivs[i][k].end = latest.

8 for k = 0, . . . , end do
9 for i = 1, . . . , m do

10 projection_queue = {pos_ivs[i][k]}.
11 foreach new_iv ∈ projection_queue do
12 intersected = False.
13 foreach old_iv ∈ tl do
14 int_iv is the intersection of new_iv and

old_iv.
15 if new_iv intersects with old_iv then
16 intersected = True.
17 tl[int_iv] = tl[old_iv] ∪ {(i, k) }.
18 if old_iv.start < new_iv.start then
19 tl[[old_iv.start, new_iv.start)] =

tl[old_iv].
20 Remove old_iv from tl.

21 if old_iv.end > new_iv.end then
22 tl[(new_iv.end, old_iv.end]] =

tl[old_iv].
23 Remove old_iv from tl.

24 if new_iv.start < old_iv.start then
25 Add [new_iv.start, old_iv.start) to

projection_queue.

26 if new_iv.end > old_iv.end then
27 Add (old_iv.end, new_iv.end] to

projection_queue.

28 if intersected is False then
tl[new_iv] = {(i, k) }

29 Return tl.

The second part of Algorithm 9 (lines 8–28), projects the
intervals in pos_ivs to a common timeline by considering
each position k of each robot i. The variable tl is a dictio-
nary of sets of robot–position pairs keyed by intervals. To be

able to use this dictionary by iterating over its keys as dis-
cussed earlier, we need to make sure that its keys, which are
intervals, do not intersect with each other. To this end, we
maintain the queue projection_queue to hold the remaining
parts of the intersecting intervals that we may need to break
up during the projection. We start the projection by adding
the interval of the robot–position pair (i, k) to the projec-
tion queue. Then, for each interval new_iv in the projection
queue, we check all of the intervals in tl to see whether any
of them intersects with new_iv. If not, we add this interval
new_iv to the timeline along with its set of robot–position
pairs (line 28). If, on the other hand, the interval new_iv
intersects with some interval old_iv in tl, we set the interval
int_iv to be the intersection of new_iv and old_iv and add
it to the timeline with the appropriate set of robot–position
pairs (line 17). Next, at lines 18–27 we check to see whether
we need to break the old_iv or new_iv. If old_iv extends
beyond new_iv from the beginning or the end, we break
it appropriately by defining a new entry for the extending
parts and removing the old entry that corresponds to old_iv
from tl. If, on the other hand, new_iv extends beyond old_iv,
we do not add the extending parts to tl directly as they may
intersect with other intervals already in tl. Instead, we add
the extending parts of new_iv to the projection queue so
that they are processed in the coming iterations. Algorithm
9 terminates once it processes all positions of all robots up
to the end of the first suffix cycle of their runs.

Proposition A.3. Let K denote the total length of the prefix
and the first suffix cycle. For the case where the intervals
of the robots corresponding to different positions do not
overlap, complexity of Algorithm 9 is O(m2K2).

Proof. In the worst case, each robot waits for every other
robot, thus computation of each pos_ivs[i][k] at lines 4–
7 takes time O(m). Then, the complexity of the first part
of the algorithm (lines 1–7) is O(m2K). In the second part
of the algorithm (lines 8–28), each projected interval may
intersect with previously defined intervals resulting in up to
two additional intervals per projection. Thus, we have O(m)
intervals for each position and O(mK) intervals in total.
Consequently, the loop at lines 11–28 executes O(mK)
times for each projection, and complexity of the second part
of the algorithm (lines 8–28) becomes O(m2K2). Thus, the
overall complexity of Algorithm 9 is O(m2K2).

Appendix B: Index to Multimedia Extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Execution of the trajectory in case
study 3.

http://www.ijrr.org/ijrr_2013/487931.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

