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Abstract. In this paper, we consider discrete-time continuous-space
Piecewise Affine (PWA) systems with parameter uncertainties, and study
temporal logic properties of their trajectories. Specifically, given a PWA
system with polytopal parameter uncertainties, and a Linear Temporal
Logic (LTL) formula over linear predicates in the states of the system,
we attempt to find subsets of parameters guaranteeing the satisfaction
of the formula by all trajectories of the system. We illustrate our method
by applying it to a PWA model of a two-gene network.
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1 Introduction

Temporal logics and model checking [1] are customarily used for specifying and
verifying the correctness of digital circuits and computer programs. However, due
to their resemblance to natural language, expressivity, and existence of off-the-
shelf algorithms for model checking, temporal logics have the potential to impact
several other areas. Examples include analysis of systems with continuous dy-
namics [2], control of linear systems from temporal logic specifications [3,4], task
specification and controller synthesis in mobile robotics [5,6] and specification
and analysis of qualitative behavior of genetic circuits [7,8,9].

In this paper we focus on piecewise affine systems (PWA) that evolve along
different affine dynamics (in discrete time) in different polytopal regions of the
(continuous) state space. PWA systems are widely used as models in many areas,
including systems and synthetic biology, where they are particularly fitting for
describing gene circuits [8]. PWA systems are also attractive because of the
existence of tools for model identification [10]. Additionally, PWA systems are
quite general, since they can approximate nonlinear dynamics with arbitrary
accuracy [11], and are proven to be equivalent with several other classes of hybrid
systems [12]. Even so, a PWA system with fixed parameters might not provide
a good model of a real system. This is especially true for gene networks, where
processes depend on various, hard to control external factors such as temperature
and concentrations of chemicals not part of the system. To develop a model that
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can capture the rich behavior of systems under a range of conditions, a PWA
model with uncertain parameters can be used. For such models, the dynamics
in each region of the state space can take on parameters from a polytopal range.

A rich spectrum of properties of dynamical systems are naturally expressed in
Linear Temporal Logic (LTL) [1] formulas over linear predicates in the state vari-
ables. Examples include remaining within certain regions (invariance), getting to
certain target regions (reachability), or avoiding dangerous regions (safety). In
this paper, we consider a parameter synthesis problem: given a PWA system with
polytopal parameter uncertainties, and a Linear Temporal Logic (LTL) formula
over linear predicates in the states of the system, we attempt to find subsets of
parameters guaranteeing the satisfaction of the formula by all trajectories of the
system. Our approach is based on the construction of finite simulation quotients,
model checking, and use of counterexamples for determining ranges of allowed
parameters.

From a theoretical and computational point of view, this work can be seen
in the context of literature focused on the construction of finite quotients of
infinite systems (see [13] for a review), and is closely related to [14,3,4] and our
previous work on formal analysis of PWA systems with fixed parameters [15].
Unlike counterexample guided refinement [16], where violating trajectories of
the quotient are checked against the concrete model and, if spurious, removed
by refinement, we use counterexamples to remove a set of (possibly spurious)
violating transitions from the quotient. From an application point of view, this
paper relates to [8,17,18,19,9], where temporal logics are used to specify prop-
erties of biomolecular networks. These works analyze whether the trajectories
of a system satisfy a temporal logic formula. In contrast, we search parameter
sets guaranteeing the satisfaction of a formula. We implemented our method as
a software tool for parameter synthesis in PWA systems, which is freely down-
loadable from http://iasi.bu.edu/∼cbelta/software.htm.

2 Preliminaries

2.1 Transition Systems, Simulations, and Bisimulations

Definition 1. A transition system is a tuple T = (Q, Q0,→, Π, �), where Q is
a set of states, Q0 ⊆ Q is the set of initial states, →⊆ Q × Q is a transition
relation, Π is a finite set of atomic propositions, and �⊆ Q×Π is a satisfaction
relation.

A transition (q, q′) ∈→ is also denoted by q → q′. The transition system T is
called finite if its set of states Q is finite, and infinite otherwise. The transition
system T is called non-blocking if, for every state q ∈ Q, there exists q′ ∈ Q
such that (q, q′) ∈→ (i.e., the relation → is total). The transition system T is
called deterministic if, for all q ∈ Q, there exists at most one q′ ∈ Q such that
(q, q′) ∈→ (the case q = q′ is included in the definitions above).

For an arbitrary state q ∈ Q, we define Πq = {π ∈ Π | q � π}, Πq ∈ 2Π

as the set of all atomic propositions satisfied at q. A trajectory or run of T

http://iasi.bu.edu/~cbelta/software.htm
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starting from q ∈ Q0 is an infinite sequence r = r(1)r(2)r(3) . . . with the property
that r(1) = q, r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory
r = r(1)r(2)r(3) . . . defines a word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i).
The set of all words generated by the set of all trajectories starting at q ∈ Q0 is
called the language of T originating at q and is denoted by LT (q). The language
of the transition system T is defined as LT (Q0) or LT for simplicity.

A subset X of the state set Q (X ⊆ Q) is called a region of T . For an arbitrary
region X , we define the set of states Post(X) that can be reached from X in
one step as

Post(X) = {q′ ∈ Q | ∃q ∈ X, q → q′} (1)

and the set of states that can reach X in one step as

Pre(X) = {q′ ∈ Q | ∃q ∈ X, q′ → q} (2)

An equivalence relation ∼⊆ Q × Q over the state space of T is proposition
preserving if for all q1, q2 ∈ Q and all π ∈ Π , if q1 ∼ q2 and q1 � π, then q2 � π.
Among the several proposition preservation equivalence relations that can be
defined, propositional equivalence defined as q1 ∼ q2 if and only if Πq1 = Πq2

is of special interest. A proposition preserving equivalence relation naturally
induces a quotient transition system T/

∼
= (Q/

∼
, Q0/∼

,→
∼

, Π, �
∼
). Q/

∼
is the

quotient space (the set of all equivalence classes) and Q0/∼
= {X ∈ Q/

∼
| ∃q ∈

X such that q ∈ Q0} is the set of all initial equivalence classes. The transition
relation →

∼
is defined as follows: for X1, X2 ∈ Q/

∼
, X1 →

∼
X2 if and only if

there exist q1 ∈ X1 and q2 ∈ X2 such that q1 → q2. The satisfaction relation is
defined as follows: for X ∈ Q/

∼
, we have X �

∼
π if and only if there exist q ∈ X

such that q � π. It is easy to see that LT (X) ⊆ LT/
∼

(X), for any X ∈ Q0/∼

(with a slight abuse of notation, we use the same symbol X to denote both
a state of T/

∼
and the corresponding region of equivalent states of T ). The

quotient transition system T/
∼

is said to simulate the original system T , which
is written as T/

∼
≥ T .

Definition 2. A proposition preserving equivalence relation ∼ is a bisimulation
of a transition system T = (Q, Q0,→, Π, �) if, for all states p, q ∈ Q, if p ∼ q
and p → p′, then there exist q′ ∈ Q such that q → q′ and p′ ∼ q′.

If ∼ is a bisimulation, then the quotient transition system T/
∼

is called a bisim-
ulation quotient of T , and the transition systems T and T/

∼
are called bisimilar,

denoted by T/
∼

∼= T . An immediate consequence of bisimulation is language
equivalence, i.e., LT (X) = LT/

∼

(X), for all X ∈ Q0/∼
.

2.2 Linear Temporal Logic and Model Checking

To specify temporal logic properties for trajectories of PWA systems, in this
paper we use Linear Temporal Logic [1]. Informally, the LTL formulas are recur-
sively defined over a set of atomic propositions Π , by using the standard Boolean
operators (e.g., ¬ (negation), ∨ (disjunction), ∧ (conjunction)) and temporal
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operators, which include U (“until”), � (“always”), ♦ (“eventually”). LTL for-
mulas are interpreted over infinite words in 2Π , as are those generated by the
transition system T from Definition 1. If φ1 and φ2 are two LTL formulas over
Π , formula φ1Uφ2 intuitively means that (over some word) φ2 will eventually
become true and φ1 is true until this happens. For an LTL formula φ, formula
♦φ means that φ becomes eventually true, whereas �φ indicates that φ is true
at all positions of a word. More expressiveness can be achieved by combining the
mentioned operators. For example, ♦�φ means that φ will eventually become
true and then remain true forever, while �♦φ means that φ is true infinitely
often.

Given a finite transition system T = (Q, Q0 →, Π, �) and a formula φ over
Π , checking whether the words of T starting from a region X satisfy φ (written
as T (X) � φ) is called model checking [1]. If we denote by Lφ the set of all
words (language) satisfying φ, then model checking means deciding the language
inclusion LT (X) ⊆ Lφ. We also say that a transition system satisfies a formula
(T � φ) if and only if T (Q0) � φ.

If T/
∼

is a quotient of T , then for any equivalence class X ∈ Q0/∼
and

formula φ, we have:
T/

∼
(X) � φ ⇒ T (X) � φ. (3)

In addition, if ∼ is a bisimulation, then

T/
∼

(X) � φ ⇔ T (X) � φ (4)

Properties (3) and (4) allow one to model check finite quotients and extend
the results to the (possibly infinite) original transition system.

3 Problem Formulation

Let X ,Xl, l ∈ L be a set of open polytopes in R

N and Pl be a set of open
polytopes in R

(N2+N), where L is a finite index set, such that Xl1

⋂Xl2 = ∅ for
all l1, l2 ∈ L, l1 �= l2 and

⋃
l∈L cl(Xl) = cl(X ), where cl(X ) is the closure of X .

A discrete-time continuous-space piecewise affine (PWA) system Σ with poly-
topal parameter uncertainty is defined as:

Σ : xk+1 = A(p)xk +b(p), x0 ∈ Xin, xk ∈ Xl, p ∈ Pl, l ∈ L, k = 0, 1, , . . . (5)

where Xin ⊆ X is a set of initial conditions and Pl is the allowed set of parameters
in region l ∈ L. The linear functions A : R

(N2+N) → R

N×N and b : R

(N2+N) →
R

N×1 simply take the first N2 and the last N components of p ∈ R

(N2+N) and
form a N × N matrix and N × 1 vector, respectively.

X is assumed to be an invariant for the trajectories of Σ under all values of
the parameters. We are interested in studying properties of trajectories of system
(5) specified in terms of a set of linear predicates of the form

Π = {πi |πi : aT
i x + bi < 0, i = 1, . . . , K}, (6)
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where x, ai ∈ R

N and bi ∈ R, i = 1, . . . , K. Without loss of generality, we assume
that the set of initial states Xin from the definition of the PWA system (5) is a
union of polytopes from the set of polytopes determined by the regions Xl and
the linear predicates from Π (if this is not the case, more linear predicates can
be added to Π in Equation (6)).

Informally, the semantics of system (5) can be understood in the following
sense: a trajectory x0x1x2 . . . of the system can be obtained by selecting an
initial condition x0 ∈ Xin, finding an l ∈ L, such that x0 ∈ Xl, selecting a
parameter p ∈ Pl, applying the affine map of Equation (5) and repeating this
procedure for each subsequent step. A trajectory produces a word w0w1w2 . . .,
where each wi ∈ 2Π lists the propositions from Π which are satisfied by xi.
Then, such words can be checked against satisfaction of LTL formula φ over
Π . A formal definition is given in Section 4 through an embedding transition
system. We consider the following problem:

Problem 1. Given a PWA system (Equation (5)) and an LTL formula φ over a
set of linear predicates Π (Equation (6)), find sets of parameters such that all the
trajectories of the system satisfy the formula, under all identified parameters.

In other words, we are interested in excluding parameters from the allowed sets
for each region, for which the formula is not satisfied. As it will become clear
later, for each region l ∈ L, the solution will be in the form of a union of disjoint
open subpolytopes of the allowed polytope Pl.

To provide a solution to Problem 1, we first embed the PWA system (5) into
an infinite transition system Te. By using the equivalence classes induced by the
predicates from (6), we then construct a finite overapproximation quotient tran-
sition system Te/∼

whose language includes the language of Te (see Section 4).
We then use model checking to cut transitions from Te/∼

(see Section 5.1) and,
correspondingly, sets of parameters from (5) (see Section 5.2), until all its tra-
jectories satisfy the formula. Alternatively, in Section 6, we propose a method
for the direct construction of a bisimulation quotient. In both approaches, our
method is conservative, as it will become clear later.

Remark 1. There are several simplifying assumptions that we make in the for-
mulation of Problem 1. First, we assume that the polytope X is an invariant
for all trajectories of (5). However, this assumption is not restrictive, since X
can be assumed large enough to contain all possible state values in a particular
process. Second, we assume that the predicates in Equation (6) are given over
strict inequalities, and only the reachability of open full dimensional polytopes
is captured in the semantics of the embedding and of the quotients1. However,
this seems to be enough for practical purposes, since only sets of measure zero
are disregarded, and it is unreasonable to assume that equality constraints can
be detected in a real world application.

1 Throughout the rest of the paper, unless clearly specified, we refer to an “open
polytope” simply as “polytope.”
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4 Construction of Finite Quotients

To formally define the satisfaction of a formula φ over Π by the PWA system
(5), we embed it into a transition system:

Definition 3. An embedding transition system for (5) and the set of predicates
Π can be defined as Te = (Qe, Q0e,→e, Πe, �e), where

– Qe =
⋃

l∈L Xl,
– Q0e = Xin,
– (x, x′) ∈→e if and only if there exist l ∈ L, x ∈ Xl and p ∈ Pl such that

x′ = A(p)x + b(p),
– Πe = L

⋃
Π,

– �e is defined as follows: if π = l ∈ L, then x �e π if and only if x ∈ Xl; if
π = πi ∈ Π, then x �e π if and only if aT

i x + bi < 0,

Definition 4. Given a subset X ⊆ Q0e, we say that all trajectories of system
(5) originating in X satisfy formula φ if and only if Te(X) satisfies φ (as defined
in Section 2.1).

The embedding transition system Te has infinitely many states and cannot be
model checked directly. Given a polytopal, proposition preserving equivalence
relation ∼ on Qe, one can try to construct (and model check) the quotient
transition system Te/∼

= {Qe/∼
, Q0e/∼

,→e∼
, Πe, �e} (see Section 2.1). The

construction of the states Qe/∼
and initial states Q0e/∼

amounts to checking
the non-emptiness of polyhedral sets and intersections of polyhedral sets, respec-
tively. Satisfaction of each state is induced directly from the equivalence relation.
If the Post() (or Pre()) operator can be computed, transitions in the quotient
can be assigned as follows: (Xi, Xj) ∈→e∼

if and only if Post(Xi) ∩ Xj �= ∅ (or
Pre(Xj) ∩ Xi �= ∅).

In our previous work [15], we focused on PWA systems with fixed parameters
(i.e., Pl in Equation (5) were singletons), and showed that for the propositional
equivalence relation ∼, the quotient Te/∼

can be efficiently constructed, based
on the computation of the Pre() operator, which was a polyhedral set. Moreover,
we showed that all the steps in the “bisimulation algorithm” for the iterative
construction of simulation quotients leading to the coarsest bisimulation quotient
[20,21] (if one exists) are implementable.

Under parameter uncertainty, Te/∼
cannot always be constructed, since in

general, there are no algorithms capable of exact computations of Pre() or Post()
operators. In fact, it can be proven that when parameters are allowed to vary in
polyhedral sets, both operators might return a non-convex set even when applied
to a polyhedral set [22].

If we denote by Poste() the “Post()” operator of the embedding transition
system Te, then from Equation (1) and Definition 3, for an arbitrary polytope
X ⊆ Xl, l ∈ L we have

Poste(X) = {x′ ∈ R

N | ∃p ∈ Pl, ∃x ∈ X such that x′ = A(p)x + b(p)} (7)
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Proposition 1. A polyhedral overapproximation of Poste(X) is given by

Poste(X) = Conv{A(w)v + b(w), w ∈ V(Pl), v ∈ V(X)} (8)

where V(X) and V(Pl) denote the sets of vertices of X and Pl, respectively.

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

Similarly to [23], we use the smallest convex set containing Poste() as an over-
approximation. Although a precise distance between the real set and its overap-
proximation has not been determined, it has been established through extensive
simulation that in general, the volume of Poste() is not significantly increased
by the approximation.

By using Poste(X) instead of the regular Poste() operator, transitions in
an overapproximation quotient can be efficiently obtained as described for the
general case.

Formally, if ∼ is the propositional equivalence relation, the overapproximation
quotient can be given as Te/∼

= {Qe/∼
, Q0e/∼

,→e∼
, Πe, �e}, where →e∼

⊆
→e∼

. This implies that
LTe ⊆ LTe/

∼

⊆ LTe/
∼

(9)

and therefore the overapproximation quotient simulates the exact quotient and
the embedding system. As a result, model checking can be performed on the
overapproximation quotient and satisfaction of a formula can be extended to the
embedding.

5 Counterexample Guided Parameter Synthesis

In Section 4 we showed that an overapproximation quotient Te/∼
can be con-

structed, and all operations involved are computable. In this section, we propose
to use LTL model checking to “cut” transitions from Te/∼

until we obtain a

transition system Te/∼

φ
satisfying the formula. Then we go back to the initial

system (5) and remove parameter values such that the language of the new em-

bedding transition system is included in the language of Te/∼

φ
, which guarantees

the satisfaction of the formula by the PWA system (5).

5.1 Construction of Satisfying Quotients

Using our LTL model checker described in [4], we start by searching for a shortest
run2 of Te/∼

satisfying the negation of the formula ¬φ. If such a run exists, then
we eliminate it by removing one of its transitions. Then we reiterate the process
until we obtain the transition system Te/∼

φ
satisfying φ.

2 A standard representation of an infinite run includes finite prefix and suffix, where
the suffix is repeated an infinite number of times. The length of a run is defined as
the sum of the lengths of the prefix and suffix.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
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Since, in general, several different transitions are taken during the generation
of a counterexample, removing any one of them will remove the counterexample
from the language of the quotient. It is impossible to determine which transition’s
removal will lead to a solution (or to the best solution when more than one
exists). Therefore, in this paper, we exhaustively generate all solutions. This
process can be seen as generating a tree, having the initial finite quotient as
its root. Each child node in the tree represents a quotient that has the same
set of states as the parent, but only a subset of its transitions. The children for
each node are generated by removing one different transition, appearing in the
shortest counterexample, from the parent.

When transitions are removed, a state of the quotient might become blocking,
resulting in the appearance of finite words in its language. Since the semantics
of LTL are defined only over infinite ω-words, we make all blocking states un-
reachable by removing all their incoming transitions. It is also possible that one
or more of the initial states become blocking, in which case we ignore the corre-
sponding quotient (further removal of transitions will not lead to a solution).

A leaf node in the tree represents a quotient for which computation stopped,
since no additional counterexamples can be generated. The quotients represented
by such nodes satisfy the LTL formula, since their languages are nonempty (all
initial states are non-blocking), do not contain finite words (no blocking states
are reachable), and have an empty set of counterexamples.

5.2 Parameter Synthesis

The finite quotient Te/∼
is constructed so that it captures all possible transitions

of the embedding Te. By Definition 3, transitions are included in the embedding if
and only if appropriate parameters for such a transition are allowed. Therefore,
we can relate the transitions present in the finite quotient to sets of allowed
parameters for the PWA system.

Definition 5. Given two polytopes X and Y in R

N , the set of parameters
PX �→Y , for which the image of X does not have an intersection with Y , is defined
as:

PX �→Y = {p ∈ R

(N2+N) | A(p)x + b(p) �∈ Y for all x ∈ X} (10)

Proposition 2. Let X and Y be polytopes in R

N given in V-representation as
X = Conv{v1, . . . vm} and H-representation as Y = {x ∈ R

N | cT
i x+di < 0, i =

1, . . . , n}, respectively. Then,

PX �→Y =
n⋃

i=1

{p ∈ R

(N2+N) | cT
i (A(p)vj + b(p)) + di > 0, for all j = 1, . . . , m}

is an underapproximation of PX �→Y (i.e., PX �→Y ⊆ PX �→Y )

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
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In other words, a conservative underapproximation PX �→Y of PX �→Y can be
obtained as the union of polyhedral sets from the V-representation of X and the
H-representation of Y .

We use the underapproximation from Proposition 2 to find sets of parameters
for each region l ∈ L, such that, for each node of the tree described in Section 5.1,
the corresponding PWA system is simulated by the quotient transition system
at that node. Specifically, for two polytopes X ⊆ Xl and Y , if the parameters
in region l ∈ L are restricted to the set Pl ∩ PX �→Y , then, by Proposition 2, the
transition x →e y will not appear in the embedding Te, for any x ∈ X and y ∈ Y .
This means that, in the corresponding quotient, the transition X →e∼

Y will
not exist. As already stated, we cannot compute Te/∼

. However, by restricting
the parameters as described above, we can ensure that, at every node of the
tree constructed in Section 5.1, the PWA system with restricted parameters is
simulated by the quotient transition system at that node. As previously stated,
the leaf nodes of the computation tree contain quotients satisfying the formula
and their corresponding PWA systems provide a solution to Problem 1.

Because of the overapproximation used in the construction of the quotient,
a spurious transition might appear in place of a deleted one ((X, Y ) ∈ →e∼

but (X, Y ) �∈→e∼). We prevent this by enforcing that a deleted transition never
reappears in the quotient. Additionally, the structure of PWA systems allows
different polytopes (determined by the set of linear predicates) to share the same
sets of parameters, and therefore, it is possible that other transitions are removed
from the quotient besides the target one. To account for this, we reconstruct the
quotient every time parameters are cut. If, during the removal of parameters, a
set Pl becomes empty, then we embed all polytopes from region l ∈ L as blocking
states, and make them unreachable.

Given only the purely discrete problem of modifying a quotient to satisfy
a formula by taking a subset of its transitions, our approach is guaranteed to
terminate, finding a solution when one exists, as it is exhaustive and follows a tree
of size limited by the total number of transitions in the initial quotient. In the
combined problem of transition and parameter removal, computation will still
terminate but a potential solution might be missed due to the approximations.
If a solution is found, however, it is guaranteed to be correct.

Going back to the tree construction from Section 5.1, in general, our algo-
rithm will produce more than one solution (each leaf corresponds to a satisfying
transition system). Selecting the ”best” solution is a non-trivial problem, and
might depend on the application. For example, it is possible to introduce ad-
ditional constraints (such as requiring that a particular transition is present in
the solution) or compare total number of transitions of the solutions, since more
reachable states from the initial one with more transitions result in a richer
language. In the case study presented at the end of this paper, we chose the
latter.

Our solution to Problem 1 is summarized in Algorithm 1.. In order to prevent
unnecessary computation, we first check the system from each initial state. If
there exists an initial state from which the negation of the formula is satisfied,
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then there are no satisfying trajectories originating there, so a solution will not
be found by refining the transitions (and corresponding parameters). As stated
earlier, the algorithm is guaranteed to terminate, as its execution follows at tree
of finite size.

Algorithm 1. Obtain subsets of parameters for a PWA system Σin such that
an LTL formula φ is satisfied.

Tsat = ∅;
Construct Te/∼

from the initial PWA system Σin;
for each X ∈ Q0e/∼

do
if Te/∼

(X) � ¬φ then
return ∅;

end if
end for
Tall = {(Σin, Te/∼

)};
while Tall �= ∅ do

for each pair (Σ, T ) ∈ Tall do
Tall = Tall \ (Σ, T );
generate the shortest counter-example c for T and formula φ;
if c = ∅ and LT �= ∅ then

add (Σ, T ) to Tsat;
else

for each transition X → Y of counterexample c do
Find Xl such that X ⊆ Xl;
Construct Σ′ from Σ by setting P ′

l = Pl ∩ P X �→Y ;
Reconstruct quotient T ′ from Σ′ and ensure no previously removed transi-
tions reappear;
Make blocking states of T ′ unreachable
if initial states in T ′ are non-blocking then

add (Σ′, T ′) to {Tall}
end if

end for
end if

end for
end while
return {Tsat};

Both the number of states and transitions in the embedding Te/∼
contribute

to the complexity of Algorithm 1.. A high dimensional system with many regions
of different dynamics and propositions would be embedded with a high number
of states. This, together with the complexity of the LTL formula affects the time
required to perform model checking on the system. The number of transitions
in the original embedding, on the other hand, depends on the dynamics of the
system and determines how many times model checking must be performed,
since the execution of the algorithm follows a finite tree described in Section 5.1.
As a result, Algorithm 1. can perform well even on high dimensional systems, as
long as the total number of transitions is low.
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6 Construction of Bisimulation Quotients

In this section we show that if the parameters of the PWA system (Equation (5))
are restricted to appropriate subsets, an exact finite bisimulation quotient can be
constructed without extensive iterative computation. Subsequently, satisfiability
of an LTL formula by the original PWA system can be proven if model checking
this quotient with the negation of the formula produces a counterexample. Of
course, by limiting the sets of parameters, certain transitions might disappear
from the system and, therefore, the richness of its language might be diminished.

Definition 6. Given two polytopes X and Y in R

N , the set of parameters for
which the image of X is completely included in Y is defined as:

PX→Y = {p ∈ R

(N2+N) | A(p)x + b(p) ∈ Y for all x ∈ X} (11)

Proposition 3. Let X and Y be polytopes in R

N given in the V-representation
as X = Conv{v1, . . . vm} and in the H-representation as Y = {x ∈ R

N | cT
i x +

di < 0, i = 1, . . . , n}, respectively. Then

PX→Y = {p ∈ R

(N2+N) | cT
i (A(p)vj +b(p))+di < 0, i = 1, . . . , n, j = 1, . . . , m}

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

In other words, the polyhedral set of parameters PX→Y can be computed im-
mediately from the V-representation of X and the H-representation of Y .

Proposition 4. If in each location l ∈ L, the parameters of the PWA system
(5), are restricted to Pl∩(

⋃
i∈L PXl→Xi), then the propositional equivalence quo-

tient Te/∼
is a bisimulation quotient, and it is computable.

Proof. The proof for bisimulation follows immediately from Definitions 2, 3 and
Proposition 3. On the computation of the quotient, the equivalence classes are
computed as above, and a transition (X, Y ) ∈→e∼

exists if and only if X ⊆ Xl

and Pl ∩ PX→Y �= ∅.

7 Analysis of a Genetic Toggle Switch

We illustrate the proposed method by analyzing the genetic network shown in
Figure 1 (A). The system is described by a two dimensional discrete time PWA
model, using ramp functions to represent gene regulation. A ramp function is
defined by two threshold values, which induce three regions of different dynamics.
At low concentrations of repressor (below threshold 1) the regulated gene is fully
expressed, while at high repressor concentrations (above threshold 2) expression
is only basal. For concentrations between the two thresholds expression is graded.
Since there are two repressors, two ramp functions are used and, therefore, the
system has a total of nine rectangular invariants. We use L = {1, 2, . . . , 9} as a

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
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A

B

Fig. 1. (A) A genetic switch consisting of two mutual repressors. High levels of one of
the products shut down the expression of the other gene. (B) Invariants of the system
determined by ramp functions, describing gene regulation.

set of labels and {X1, . . . ,X9} and {P1, . . . ,P9} to denote the invariants (Figure 1
(B)) and parameters of the system, respectively.

We are interested in analyzing the behavior of the system when it is initialized
with low concentrations of both genes. To specify this, we introduce two propo-
sitions Π = {π1, π2}, where π1 = {x1 − 10 < 0} and π2 = {x2 − 10 < 0} and we
set Xin as the region where both predicates are satisfied (Xin = X1 in Figure 2
(A)). We assume hyper-rectangular parameter sets and, by using Proposition 3,
we restrict the parameters for each region l ∈ L to subsets of PXl→X , ensuring
that X is an invariant. The parameter ranges of the system for all regions are
available at http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

First, we apply the method outlined in Section 6 in order to modify the pa-
rameters of the system and obtain a bisimulation quotient directly. The param-
eter ranges, computed by the algorithm, are available at http://iasi.bu.edu/
∼yordanov/papers/HSCC2008full.pdf and the resulting bisimulation quotient
is shown in Figure 2 (A). As expected, some transitions of the system are lost
when parameters are restricted to smaller sets, but a lot of its behavior is cap-
tured by the quotient. Due to the language equivalence with the initial PWA
system, inherent to the bisimulation quotient, it could provide an useful tool for
the analysis of the system.

Next, we apply the approach of Section 5.2 and find subsets of the param-
eters for each region of the system, such that the property ”eventually gene 2
is expressed in high concentrations, while gene 1 is expressed only basally” is
always satisfied. For this, we use the same initial PWA model as before. Dur-
ing the execution of Algorithm 1. a number of transitions are removed from
the quotient by removing appropriate sets of parameters of the system. The
quotient corresponding to a solution, obtained as a leaf node in the compu-
tation tree (see Section 5.2) is shown in Figure 2 (B). Regions of parame-
ters for the PWA system obtained as a solution to problem 1 are available at
http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
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A B

Fig. 2. (A) Graphical representations of the bisimulation quotient obtained from the
PWA model. (B) Satisfying simulation quotient. Only transitions for reachable states
are shown. Transitions shown in red were eliminated by the algorithm.

8 Conclusion

We showed that an iterative procedure can be used to efficiently obtain subsets of
parameters for a PWA system, such that an LTL formula is satisfied. Our method
relied on the computation of finite overapproximation simulation quotients and
generation of counterexamples. Additionally, we described an approach for the
synthesis of parameters, such that a bisimulation quotient can be constructed
for the system without extensive computation. We applied our methods to a
PWA model of a genetic switch and in the future plan to focus on models of
gene networks constructed from experimental data.
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