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We present a computationally attractive technique to study the reachability of rectangular
regions by trajectories of continuous multi-affine systems. The method is iterative. At each step,
finer partitions and finite quotients that over-approximate the reachability properties of the
initial system are produced. We exploit some convexity properties of multi-affine functions on
rectangles to show that the construction of the quotient at each step requires only the evaluation
of the vector field at the set of all vertices of all rectangles in the partition and finding the roots of a
finite set of scalar affine functions. This methodology can be used for formal analysis of bioche-
mical networks, aircraft and underwater vehicles, where multi-affine models are widely used.
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1. Introduction

The dynamics of processes found in nature or made by humans are traditionally
modelled using continuous systems, ie, by a set of differential equations capturing the
time evolution of quantities of interest. Discrete dynamics arise from integration of
embedded computers and action of valves, gears, and switches in man-made systems,
or occur naturally because of time scale separation. For example, in genetic networks,
genes are turned ‘on’ and ‘off’ and determine the continuous behaviour of very large
metabolic networks causing the phenotype of the cell. Such systems with both
continuous and discrete dynamics are called hybrid systems. With the increasing
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complexity of systems such as embedded controllers and engineered genetic
networks, safety is an important issue to be considered during the analysis and
even the design process. The goal of safety verification is to formally prove that a
system does not reach a set of ‘bad’, or ‘unsafe’ states.

Two central problems in formal analysis are reachability analysis and safety
verification. The goal of reachability analysis is to construct the set of states reached by
trajectories of the system originating in a given (possibly infinite dimensional) initial
set. Safety verification is the problem of proving that a system does not have any
trajectory from a given initial set to a given final (unsafe) set. For systems with finitely
many states, these problems are decidable, ie, can be solved by a computer in a finite
number of steps, since they reduce to searches on finite graphs. For continuous and
hybrid systems, these problems are very difficult (in general undecidable) because
of the uncountability of the state space.

One way to solve formal analysis problems for continuous and hybrid systems is to
construct the set of states reached by the system, or an over-approximation of this set,
by working directly in the continuous state space. Such methods are called direct and
are not the subject of this paper. Our work can be included into the group of indirect
methods, where a reachability problem for a continuous or hybrid system is mapped
to a reachability problem for a finite state discrete system through discrete abstractions.
The main idea in discrete abstractions is to iteratively partition the infinite
dimensional continuous state space and produce partition quotients whose
trajectories include the trajectories of the continuous or hybrid system. Such a
discrete system is said to simulate the original system. If the converse is true, ie, the
continuous or hybrid system simulate the discrete quotient, the two systems are called
bisimilar, and the two reachability problems become equivalent. Therefore, in this case,
the reachability problem for a continuous or hybrid system becomes decidable.

The bisimulation relation was introduced in Park (1981) and Milner (1989), formally
defined for linear systems in Pappas (2003), and for non-linear systems in a categorical
context in Haghverdi et al. (2005). In Henzinger et al. (1998), it has been shown that
reachability is undecidable for a very simple class of hybrid systems. Several decidable
classes have been identified though by restricting the continuous behaviour of the
hybrid system, as in the case of timed automata (Alur and Diu, 1994), multirate
automata (Alur et al., 1993; Nicolin et al., 1993) and rectangular automata (Puri and
Varaiya, 1994; Henzinger et al., 1998), or by restricting the discrete behaviour, as in
order-minimal hybrid systems (Lafferriere et al., 2000). All these decidable classes are
too weak to represent continuous and hybrid system models encountered in practice. Then
one might be satisfied with sufficient abstractions, when a discrete quotient that
simulates the original system is enough to prove a safety property. But even finding the
discrete quotient is not at all trivial. Related work focuses on partitioning using linear
functions of the continuous variables, as in the method of predicate abstractions (Alur
et al., 2002; Tiwari and Khanna, 2002), or using polynomial functions as in Ghosh et al.
(2003) and Tiwari and Khanna (2002). However, to derive the transitions of the
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discrete quotient, one has to be able to either integrate the vector fields of the initial system
(Alur et al., 2002), or use computationally expensive decision procedures such as
quantifier elimination for real closed fields and theorem proving (Tiwari and Khanna,
2002), which severely limit the dimensions of the problems that can be approached.

In this paper, we focus on formal analysis of systems with continuous multi-affine
vector fields, ie, affine in each variable, defined in rectangular regions of the Euclidean
space. This class of systems includes a particular type of switched systems, characterised
by different dynamics in different rectangular regions of the state space, where the dyna-
mics ‘match’ on the separating facets. The main idea behind this work is, as in Belta and
Habets (2006), Habets and Van Schuppen (2004), and Kloetzer and Belta (2008), to
exploit the specific form of the vector field and the particular shape of the region to infer
reachability properties of infinite uncountable sets of states from properties verified by
a finite set of states. Specifically, in Belta and Habets (2006), we proved that a multi-
affine function is uniquely determined by its values at the vertices of a rectangle and its
restriction to the rectangle is a convex combination of these values. We used these
properties to derive sufficient conditions for the existence of a feedback controller
driving all initial states of a control system with multi-affine drift and constant control
directions through a desired facet of a rectangle in finite time. In this paper we use these
properties of multi-affine functions on rectangles to prove safety properties of multi-
affine systems by iteratively constructing finer and finer discrete quotients.

Even though the abstraction procedure in this paper falls into the more general
framework of Tiwari and Khanna (2002), we show that if more structure is allowed, then
reachability and safety verification questions can be answered with much less
computation. Indeed, as it will become clear later, the calculation of the discrete
quotient at a given iteration involves only finding the roots of scalar affine functions and
evaluation of multi-affine functions at a finite number of points, as opposed to quantifier
elimination for real closed fields as in Tiwari and Khanna (2002). This will allow us to
approach much problems, as usually found in analysis of bio-molecular networks,
where the multi-affine structure appears naturally when chemical reactions with unitary
stoichiometric coefficients are modelled using mass action kinetics (Batt et al., 2008).
Multi-affine dynamics are also found in other systems, including the celebrated Euler’s
equations for angular velocity of rotation of rigid bodies, the equations of motion of
translating and rotating rigid bodies with rotation parameterised by quaternions (Belta
and Habets, 2006), Volterra (1926), and Lotka–Volterra equations (Lotka, 1925).

The remainder of the paper is organised as follows: In Section 2, we define the
reachability and safety verification problems and introduce partitions and discrete
quotients. Rectangles and multi-affine functions are reviewed in Section 3, together
with some convexity properties, which are fundamental for the rest of the paper.
The main result of the paper, which is an algorithm for safety verification of systems
with multi-affine vector fields, is included in Section 4. Illustrative case studies are
presented in Section 5. The paper concludes with final remarks and outline of future
work in Section 7.
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2. Continuous systems and discrete quotients

Definition 1 (Continuous system). We represent a continuous dynamical system as
a pair

CS ¼ ðX, fÞ ð1Þ

where X � R
n, n 2 N is its continuous state space and f is a continuous vector field

on X. In other words, the state x 2 X of system (1) evolves according to _x ¼ fðxÞ.
We assume that X is a connected subset of R

n and introduce a set partition of X
by defining an abstraction map

abs : X! L ð2Þ

where L is a finite set of labels for all the elements in the partition. As it will be seen
later in the paper, such a partition can be obtained using a finite set of polynomials
and in this case L corresponds to evaluations of the polynomials over a finite set
of values. Let con be the concretization map of the partition induced by abs:

con : L! X, conðl Þ ¼ fx 2 XjabsðxÞ ¼ lg ð3Þ

In other words, for l 2 L, we use conðl Þ � X to denote the set of all x 2 X in the
partition element with label l. Since abs induces a partition and con is its concretisation
map, we have

S
l2L conðl Þ ¼ X and conðl Þ

T
conðl0Þ ¼ 6 0, for all l, l0 2 L, l 6¼ l0. We

use conðl Þ � conðl0Þ, or simply l � l0 to denote adjacency of regions con(l) and conðl0Þ. For
simplicity of notation, we use con(I) to denote

S
l2I conðl Þ, where I is an arbitrary subset

of L. For an arbitrary I � L, we denote by PostðconðIÞÞ the set of all states in X reached
by the trajectories of (1) originating in con(I). The reachability problem for CS can be
formulated as follows:

Problem 1 (Reachability). For an arbitrary I � L, determine PostðconðIÞÞ.
The safety verification problem for CS is the problem of deciding whether system

(1) has trajectories between two regions in the partition induced by the map abs:

Problem 2 (Safety). Given I, F � L with I
T

F ¼ 6 0, determine the truth value of the
following assertion:

PostðconðIÞÞ
\

conðFÞ ¼ 6 0 ð4Þ

In a particular application, con(I) corresponds to a set of states around initial or
operating points of a system CS, while con(F) might represent unsafe regions of
operation.
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It is obvious to see that the solution to Problem 1 immediately gives a solution to
Problem 2, provided that we can calculate the intersection in Equation (4). However,
in order to solve Problem 2, it is not necessary to solve Problem 1 – it is enough to
construct an over-approximation of PostðconðIÞÞ that has empty intersection with
con(F). To construct over-approximations of PostðconðIÞÞ, we use discrete quotients:

Definition 2 (Discrete quotient). A discrete quotient of CS induced by the partition
map ‘abs’ is a finite state transition system DS described by the pair

DS ¼ ðL, TÞ ð5Þ

where L is the set of labels produced by the partition as in Equation (2), and T � L� L
is a set of transitions satisfying the following property:

ðl, l0Þ 2 T if l � l0 and there exist t1, t2 � 0,

t15t2 and a trajectory xðtÞ of CS such that

xðt1Þ 2 conðl Þ, xðt2Þ 2 conðl0Þ and

xðtÞ 2 ðconðl ÞÞ \ conðl0Þ, for all t 2 ½t1, t2�:

ð6Þ

Condition (6) means that DS has a transition from l to l0 if con(l) and conðl0Þ are adjacent
and CS has a trajectory from con(l) to conðl0Þ. As before, for I � L, we denote by
PostðIÞ � L the set of all discrete states reached from I by DS. More formally

PostðIÞ ¼
[
l2I

Postðl Þ ð7Þ

Note that we use the same operator Post for both CS and DS, with the observation that
they are easily distinguished by their arguments. From (6) it follows that

PostðconðIÞÞ � conðPostðIÞÞ ð8Þ

Equation (8) implies that, if the transitions (6) of a discrete quotient (5) can be
computed, then an over-approximation conðPostðIÞÞ of PostðconðIÞÞ can be easily
determined by a search on the finite transition system (5), which is a decidable
problem. If PostðIÞ

T
F ¼ 6 0 (which is equivalent with conðPostðIÞÞ \ conðFÞ ¼ 6 0, since

con(L) is a partition of X), then the truth value of (4) is TRUE. Otherwise, we cannot
answer Problem 2, and a less conservative discrete quotient is necessary.

There are two sources of conservativeness in the definition of DS. The first comes
from the fact that, according to Equation (6), there might exist a transition ðl, l0Þ 2 T
even if CS does not have a trajectory from con(l) to conðl0Þ. A more correct definition
of the discrete quotient should have ‘if and only ‘if’ instead of ‘if’ in Equation (6).
This would make CS and DS equivalent with respect to reachability of adjacent
regions in one step. However, even in this case, there is a second source of
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conservativeness, which comes from lack of transitivity in the following sense: if
ðl, l0Þ 2 T and ðl0, l00Þ 2 T, which implies that l, l0, l00 is a trajectory of DS, this does not
imply that CS has a trajectory from con(l) to conðl0Þ and to conðl00Þ, simply because it is
possible that all trajectories that go from con(l) to conðl0Þ escape to a region conðl00Þ, with
l000 6¼ l000. The conservativeness is completely eliminated, ie, CS and DS are equivalent
with respect to reachability properties, if and only if, in (6), the ‘if’ statement is
replaced by ‘if and only if’, and all initial states in con(l) flow in finite time to conðl0Þ
under the dynamics of CS.

As outlined in Section 1, finding such non-conservative discrete quotients
of continuous systems is an extremely hard problem. Moreover, even finding discrete
quotients with ‘if and only if’ in Equation (6) is very difficult, since, as it will become
clear later in the paper, there are situations in which Postðconðl ÞÞ cannot be computed
exactly. In this paper, we use the relaxed Definition 2 of a discrete quotient to construct
less and less conservative over-approximations conðPostðIÞÞ for the solutions to
Problems 1 and 2. Formally, we define a refinement of a discrete quotient as follows:

Definition 3 (Refinement). For a given continuous system CS, a discrete quotient
DS ¼ ð �L, �TÞ induced by abs : X! �L refines a discrete quotient DS ¼ ðL, TÞ induced by
abs : X! L if j �Lj4jLj and the following three conditions hold:

(i) For any l 2 L, there exists �I � �L with j�Ij � 1 so that conð�IÞ is a partition of con(l). Any
�l 2 �I is said to refine l 2 L, and we denote this by �l 	 l.

(ii) For any �l, �l0 2 �L with ð�l, �l0Þ 2 �T, if there exist l, l0 2 L, l 6¼ l0, so that �l 	 l and �l0 	 l0, then
ðl, l0Þ 2 T.

(iii) There exist l, l0 2 L with ðl, l0Þ 2 T and �l, �l0 2 �L with �l � �l0, �l 	 l, �l0 	 l0, and ð�l, �l0Þ =2 �T.

In other words, (i) states that each region in the partition produced by abs is further
partitioned by abs. Note that, since j �Lj4jLj, at least one region con(l) is strictly
partitioned. Condition (ii) requires that the finer quotient DS can only have transitions
between states refining states connected by transitions in the coarser quotient DS and
between states refining the same state of the coarser quotient DS. Conditions (i) and
(ii) will guarantee that the over-approximation conðPostðIÞÞ as in Equation (8) does not
grow through refinement. Finally, (iii) means that there exist at least one pair of states
connected in the coarser DS for which refinement determines two disconnected states
in the finer description DS.

An example is given in Figure 1, where an initial partition
S

i, j¼0, 1, 2 conðlijÞ of a two-
dimensional rectangle (containing its boundaries) is refined to

S
i¼0, 1, 2; j¼0,..., 4 conð�lijÞ. It

is easy to see that condition (ii) of Definition 3 is satisfied, ie, no ‘new’ transitions are
added. As it can be seen in Figure 1(b), the refinement is achieved by ‘cutting’ with a
horizontal line where the f1 component of the vector field becomes zero on the vertical
open segment conðl21Þ. This leads to a partition conð�l13Þ, conð�l12Þ, conð�l11Þ of conðl11Þ and a
partition conð�l23Þ, conð�l22Þ, conð�l21Þ of conðl21Þ. In the finer quotient, it can be seen for
example that there is no transition from �l21 to �l11 and from �l13 to �l23, even though the
coarser quotient had transitions between l11 and l21 in both directions (condition (iii)).
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Condition (iii) in Definition 3 is a necessary condition for strict shrinking of the

over-approximation conðPostðIÞÞ. However, it is not sufficient. Indeed, for adjacent
regions �l � �l0, if CS does not have trajectories penetrating directly from conð�l Þ to conð�l0Þ,
this does not mean that Postðconð�l ÞÞ

T
conð�l0Þ ¼ 6 0. Trajectories originating in conð�l Þ can

loop around and eventually hit conð�l0Þ.
These ideas are formalised in Proposition 1.

Proposition 1 (Reduction of conservativeness through refinement). If DS ¼ ð �L, �TÞ
refines DS ¼ ðL, TÞ, and I � L, �I � �L with the property that conð�IÞ is a partition of con(I), then
we have

PostðconðIÞÞ ¼ Postðconð�IÞÞ � conðPostð�IÞÞ � conðPostðIÞÞ ð9Þ

1.4
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Figure 1 Discrete quotients for a vector field f = (f1, f2), f1 = 2
x1x2,
f2 = 1+x2
x1x2 in a rectangular region [1.5, 1.56]�[1.1, 1.42] in
plane. An initial partition and the corresponding discrete quotient
are shown in (a) and (c), respectively. A finer partition is shown in
(b), and the corresponding discrete quotient (d) refines the initial
one (c). The regions of the partition are ‘open’ rectangles of
dimension 0 (points), 1 (open line segments), and 2 (rectangles
without boundaries). The transitions of the discrete quotients
correspond to ’if and only if’ in Equation (6). Only the transitions
among the discrete states corresponding to the closed rectangle
[1.5, 1.56]�[1.1, 1.42] are shown
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Moreover, if (iii) from Definition 3 is replaced by:

(iii)’ There exist l, l0 2 L with ðl, l0Þ 2 T and �l0 2 �L with �l0 	 l0, and �l0=2Postð�l Þ, 8�l 2 �L, �l 	 l

and l 2 ðI [ PostðIÞÞ, then the last inclusion relation in (9) is strict, ie, the over-approximation
conðPostðIÞÞ as in Equation (8) strictly shrinks through refinement.

Proof. The equality from (9) is an immediate consequence of the fact that conð�IÞ and
con(I) cover the same region in X. The first inclusion from (9) is given by (8), so we
only have to prove the last inclusion relation.

Since DS refines DS, (i) from Definition 3 implies that for any l 2 L,
conðl Þ ¼ con

S
�l2 �L, �l	l

�l
� �

. Condition (ii) implies that con
S

�l2 �L, �l	l Postð�l Þ
� �

� conðPostðl ÞÞ
for any l 2 L, and using Equation (7) the last inclusion from (9) is verified. In other
words, the over-approximation conðPostðIÞÞ as in Equation (8) does not grow through
refinement, 8I � L.

From �l0=2Postð�l Þ, 8�l 	 l, we have conð�l0Þcon
S

�l2 �L, �l	l Postð�l Þ
� �

. ðl, l0Þ 2 T implies that
conðl0Þ � conðPostðl ÞÞ, while �l0 	 l0 implies conð�l0Þ � conðl0Þ, so conð�l0Þ � conðPostðl ÞÞ. We
showed that (ii) implies con

S
�l2 �L, �l	l Postð�l Þ

� �
� conðPostðl ÞÞ, so we conclude that

con
S

�l2 �L, �l	l Postð�l Þ
� �

� conðPostðl ÞÞ, which proves the equivalence between (iii)’ and
strict shrinking of conðPostðl ÞÞ. Since (iii)’ implies (iii), (iii) is a necessary condition for
constructing strictly less conservative over-approximations of PostðconðIÞÞ. g

Remark 1 (Simulation and bisimulation). Any discrete quotient DS as in Definition 2 is
said to simulate the initial continuous system CS. When both sources of conservativeness
mentioned above are eliminated (ie, the ‘if’ statement in (6) is replaced by ‘if and only if’, and
all initial states in con(l) flow in finite time to conðl0Þ under the dynamics of CS, for all l 2 L),
then CS simulates DS as well, and they are called bisimilar (Park, 1981; Milner, 1989).

In this paper, we assume that X is a full dimensional ‘closed’ rectangle in R
n and the

vector field f is multi-affine, ie, affine in each state component. We use iterative
partitions of X into ‘open’ rectangles and some convexity properties of multi-affine
functions on rectangles to calculate discrete quotients according to Definitions 2 and 3
and provide a solution to Problem 2 and a conservative solution to Problem 1. As it
will be seen, we cannot guarantee the sufficient condition (iii)’ for strict shrinking at
each step of the refinement. Instead, we satisfy the necessary condition (iii), with the
‘hope’ that the conservativeness is strictly reduced.

The following section gives all the necessary definitions and notation.

3. Rectangles and multi-affine functions

Two vectors a ¼ ða1, . . . , anÞ 2 R
n and b ¼ ðb1, . . . , bnÞ 2 R

n with the property that ai5bi

for all i ¼ 1, . . . , n determine a set of 3n rectangles in R
n:

Rða, bÞ ¼ fRðl1,..., lnÞ, li 2 f0, 1, 2g, i ¼ 1, . . . , ng ð10Þ

452 Reachability analysis of multi-affine systems



where each rectangle Rðl1,..., lnÞ, li 2 f0, 1, 2g, i ¼ 1, . . . , n is defined by

Rðl1,..., lnÞ ¼ fx ¼ ðx1, . . . , xnÞ 2 R
n
j xi ¼ ai if li ¼ 0, ai5xi5bi if li ¼ 1,

xi ¼ bi if li ¼ 2, i ¼ 1, . . . , ng
ð11Þ

We define the order m of a rectangle Rðl1,..., lnÞ as being the number of ‘1’ entries in its
label ðl1, . . . , lnÞ. The number of m-order rectangles in Rða, bÞ is 2n
mn!=ððn
mÞ!m!Þ.
As particular cases, there is only one n-order (full dimensional) rectangle Rð1,..., 1Þ, and
2n zero-order rectangles, or vertices Rðl1,..., lnÞ, li 2 f0, 2g, i ¼ 1, . . . , n. For a given rectangle
Rðl1,..., lnÞ, we can define

LRðl1,..., lnÞ ¼ fRðl01,..., l0nÞ 2 Rða, bÞ j ðl01, . . . , l0nÞ 6¼ ðl1, . . . , lnÞ ^ l0i ¼ li if li 2 f0, 2gg ð12Þ

The set of vertices corresponding to Rðl1,..., lnÞ is a subset of LRðl1,..., lnÞ defined by

VRðl1,..., lnÞ ¼ fRðl01,..., l0nÞ 2 Rða, bÞ j ðl01, . . . , l0nÞ 6¼ ðl1, . . . , lnÞ

^ l0i ¼ li if li 2 f0, 2g ^ l0i 2 f0, 2g if li ¼ 1g
ð13Þ

If the order of Rðl1,..., lnÞ is m, there are 3m 
 1 rectangles in LRðl1,..., lnÞ, all of order less
than or equal to m
 1, and 2m vertices (zero-order rectangles) in VRðl1,..., lnÞ. We call the
rectangles defined by (11) open rectangles, with the observation that, except for Rð1,..., 1Þ,
they are not open sets in R

n. If all ‘5’ in (11), if any, are replaced by ‘	’, then Rðl1,..., lnÞ

becomes closed, and is denoted by �Rðl1,..., lnÞ. It is easy to see that
�Rðl1,..., lnÞ ¼ Rðl1,..., lnÞ [ LRðl1,..., lnÞ. For a closed rectangle �R, the sets L �R and V �R are
defined as in (12) and (13) by replacing R with �R. It follows immediately that the
sets of vertices of open and closed rectangles are identical, ie, VR ¼ V �R. Therefore we
will use VR for the set of vertices of V �R.

Definition 4 (Multi-affine function) A multi-affine function f : R
n

!R

p (with p 2 N)
is a polynomial in the indeterminates x1, . . . , xn with the property that the degree of f
in any of the variables is less than or equal to 1. Stated differently, f has the form:

fðx1, . . . , xnÞ ¼
X

i1,..., in2f0, 1g

ci1,..., inxi1
1 � � � x

in
n ð14Þ

with ci1,..., in 2 R
p for all i1, . . . , in 2 f0, 1g and using the convention that if ik ¼ 0, then

xik

k ¼ 1.
The following proposition is proved in Belta and Habets (2006):

Proposition 2. A multi-affine function is uniquely determined by its values at the vertices
VRð1,..., 1Þ of a full dimensional closed rectangle �Rð1,..., 1Þ. Its restriction to the rectangle is
a convex combination of the values at the vertices and has the following form:

f j �Rð1,...,1Þ
ðx1, . . . ,xnÞ ¼

X
ðv1,...,vnÞ2VRð1,...,1Þ

Yn

k¼1

xk
ak

bk
ak

� ��kðvkÞ bk
xk

bk
 ak

� �1
�kðvkÞ

fðv1, . . . ,vnÞ ð15Þ
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where �k : fa1, . . . , an, b1, . . . , bng ! f0, 1g is an indicator function defined by

�kðakÞ ¼ 0, �kðbkÞ ¼ 1, k ¼ 1, . . . , n ð16Þ

Since a multi-affine function remains multi-affine if some of its arguments are kept
constant, Proposition 2 is true when a multi-affine function is restricted to a lower
order closed rectangle, when Equation (15) becomes:

fj �Rðl1,..., lnÞ
ðx1, . . . , xnÞ ¼

X
ðv1,..., vnÞ2VRðl1,..., lnÞ

Y
k, lk¼1

xk 
 ak

bk 
 ak

� ��kðvkÞ bk 
 xk

bk 
 ak

� �1
�kðvkÞ

fðv1, . . . , vnÞ

ð17Þ

Note that f j �Rðl1,..., lnÞ
ðx1, . . . , xnÞ is obtained from fj �Rð1,..., 1Þ

ðx1, . . . , xnÞ by setting xi¼ ai for
li¼ 0 and xi¼ bi for li¼ 2, i ¼ 1, . . . , n.

Proposition 3. If f is a scalar multi-affine function (p¼ 1 in Definition 4) and Rðl1,..., lnÞ is an
open rectangle of arbitrary order, then we have:

(a) fðxÞ40 everywhere in Rðl1,..., lnÞ if and only if fðvÞ � 0 for all v 2 VRðl1,..., lnÞ, and there exists at
least one v 2 VRðl1,..., lnÞ for which fðvÞ40.

(b) fðxÞ50 everywhere in Rðl1,..., lnÞ if and only if fðvÞ 	 0 for all v 2 VRðl1,..., lnÞ, and there exists at
least one v 2 VRðl1,..., lnÞ for which fðvÞ50.

(c) fðxÞ ¼ 0 everywhere in Rðl1,..., lnÞ if and only if fðvÞ ¼ 0 for all v 2 VRðl1,..., lnÞ.
(d) There exist x, x0 2 Rðl1,..., lnÞ with fðxÞ40 and fðx0Þ50 if and only if there exist v, v0 2 VRðl1,..., lnÞ

with fðvÞ40 and fðv0Þ50.

Proof. The restriction of f to an open rectangle is a strictly positive convex
combination of the values at the vertices, ie, all the coefficients multiplying
fðv1, . . . , vnÞ in the sum in Equation (17) are strictly positive. (a), (b), and (c) follow
immediately from this property. Note that (c) remains true for closed rectangles, since
any convex combination is enough to prove it. (d) is also immediate from continuity of
f and by noting that any open neighbourhood of a vertex in VRðl1,..., lnÞ has a non-empty
intersection with Rðl1,..., lnÞ. g

4. Reachability analysis of multi-affine systems

We now have all the necessary background to consider Problems 2 and 1 for a
continuous system CS (Definition 1) , whose continuous state space is a closed rectangle
in R

n defined by a ¼ ða1, . . . , anÞ 2 R
n and b ¼ ðb1, . . . , bnÞ 2 R

n, ai5bi for all i ¼ 1, . . . , n:

X ¼ fx ¼ ðx1, . . . , xnÞ 2 R
n
j ai 	 xi 	 bi, i ¼ 1, . . . , ng ð18Þ

and whose vector field f is multi-affine as in Definition 4 (with p¼ n).
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We first define a partition of X into open rectangles, which gives the states of the
discrete quotient DS (Definition 2). We then define the transitions of DS and an
algorithm for refinement according to Definition 3. Finally, we collect all the results in
an iterative algorithm for safety verification of multi-affine systems.

4.1 The states of the discrete quotient

We assume that each axis Oxi, i ¼ 1, . . . , n is divided into ni � 1 intervals by the points
�i

05�i
15 � � �5�i

ni
, which for convenience are collected in a vector �i ¼ ð�i

0, �i
1, . . . , �i

ni
Þ.

This induces a partition of X into
Qn

i¼1ð2ni þ 1Þ open rectangles. Using the same idea
as in Section 3, we label the rectangles with n-uples ðl1, . . . , lnÞ by defining an
abstraction map (2) as follows:

absðx1, . . . , xnÞ ¼ ðl1, . . . , lnÞ ð19Þ

where, for each i ¼ 1, . . . , n and ji ¼ 0, 1, . . . , ni,

li ¼ 2ji, if xi ¼ �
i
ji

li ¼ 2ji 
 1, if �i
ji
15xi5�i

ji

ð20Þ

Remark 2 The connection with the work in Tiwari and Khanna (2002) can be seen as
follows: the polynomials xi 
 �

i
ji
, ji ¼ 0, . . . , ni, i ¼ 1, . . . , n define a set of discrete variables,

which generate the set L when interpreted over the set of symbols fpos, neg, zerog (with the
obvious significance). In this representation, each discrete state l 2 L is a word of lengthPn

i¼1 ni þ n over the set fpos, neg, zerog, and the cardinality of L becomes jLj ¼ 3
Pn

i¼1
niþn.

However, in our definition (19), jLj ¼
Qn

i¼1ð2ni þ 1Þ. The dramatic reduction in the number
of discrete states comes form the fact that, in the rectangular partition, infeasible combinations
of polynomial interpretations are automatically eliminated.

As defined in Section 3, the number m of odd entries in l ¼ ðl1, . . . , lnÞ is the order
of the rectangle. Moreover, con(l) is an open m-rectangle in X. From now on, when we
refer to rectangles we mean open rectangles. If all li’s are odd, then con(l) is a
(full dimensional) n-order rectangle and if all li’s are even, then con(l) is a point
(vertex), or zero-order rectangle. Inspired by this observation, we define the order of a
discrete state l as the number of its odd entries.

4.2 The transitions of the discrete quotient

Before we start constructing the set T of transitions from all discrete states l 2 L, note
that, because of the rectangular partition, it is easy to identify a subset of L where
transitions are possible, so we don’t have to explore the whole L in search for
successors. Let

Hðl Þ ¼ fl0 ¼ ðl01, . . . , l0nÞ 2 L j l0 6¼ l ^ l0i ¼ li if li odd ^ l0i 2 fli
 1, li, liþ 1g if li eveng ð21Þ
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and

Lðl Þ ¼ fl0 ¼ ðl01, . . . , l0nÞ 2 L j l0 6¼ l ^ l0i ¼ li if li even ^ l0i 2 fli
 1, li, liþ 1g if li oddg ð22Þ

Note that, if l is an m-order discrete state, then all the discrete states in Hðl Þ are of
order strictly greater than m and all the discrete states in Lðl Þ are of order strictly less
than m. For a m-order discrete state l ¼ ðl1, . . . , lnÞ, 1 	 li 	 2ni 
 1, the cardinality of
Hðl Þ and Lðl Þ are 3n
m 
 1 and 3m 
 1, respectively. Given l 2 L, it is only possible to
have discrete transitions towards discrete states in Hðl Þ [ Lðl Þ. For a state l with order
m � 1, let Vðl Þ denote the set of labels of vertices of con(l). Formally,

Vðl Þ ¼ fl0 ¼ ðl01, . . . , l0nÞ 2 L j l0 6¼ l ^ l0i ¼ li if li even ^ l0i 2 fli
 1, liþ 1g if li oddg ð23Þ

Before adding discrete transitions to complete the discrete system DS, we assign a
signature to each discrete state l 2 L.

Definition 5 (Signature of a discrete state). For a discrete location l ¼ ðl1, . . . , lnÞ 2 L,
the signature sðl Þ ¼ ðs1ðl Þ, . . . , snðl ÞÞ is a n-uple over the four-valued domain
fpo, ne, ze, ing (ie, positive, negative, zero, indefinite) with the following significance,
for all i ¼ 1, . . . , n:

� siðl Þ ¼ po, if fiðxÞ40, 8x 2 conðl Þ
� siðl Þ ¼ ne, if fiðxÞ50, 8x 2 conðl Þ
� siðl Þ ¼ ze, if fiðxÞ ¼ 0, 8x 2 conðl Þ
� siðl Þ ¼ in, if 9x 2 conðl Þ so that fiðxÞ40 and 9x 2 conðl Þ so that fiðxÞ50

where f ¼ ðf1, . . . , fnÞ is the vector field of CS.
The first and second cases correspond to the situation when con(l) has an empty

intersection with fiðxÞ ¼ 0. In the third case, con(l) coincides with fiðxÞ ¼ 0 or fiðxÞ ¼ 0
contains con(l). In the fourth, there is an intersection between con(l) and fiðxÞ ¼ 0.

Determining the signatures for zero-order discrete states, ie, l ¼ ðl1, . . . , lnÞ 2 L with
all li even, is easy. Indeed, con(l) is a point in X and determining the signatures reduces
to evaluating the vector field f at con(l) and determining its sign. Note that the symbol
in in the signature of such a discrete state cannot appear. Based on Proposition 3, we
can now formulate Algorithm 1 to determine the signature of an m-order discrete state
l ¼ ðl1, . . . , lnÞ, m41.

For every state l ¼ ðl1, . . . , lnÞ 2 L, Algorithm 2 creates a set L0 such that l� L0

contains transitions of DS starting from l in accordance to Definition 2. Here, we only
give an informal and intuitive description of Algorithm 2.

In order to easily describe the transitions from a state with signature entries in the set
fpo, ne, zeg, we first introduce a map from these symbols to numbers:
eval : fpo, ne, zeg ! fþ1, 
 1, 0g, evalðpoÞ ¼ þ1, evalðneÞ ¼ 
1, evalðzeÞ ¼ 0. The map
ord : L! f0, . . . , ng is used to compute the order of a state, as defined in Section 3.
Each direction i, i ¼ 1, . . . , n is considered separately and a set Li containing all sub-
labels l0i of states l0 in which l transits is constructed. The main idea in finding elements of
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set Li is to decide the value of l0i based only on the value of si(l). Roughly speaking,
if siðl Þ 2 fpo, ne, zeg, ( ie, fi(x) has a well-defined sign everywhere in con(l) according to
Definition 5), then l0i ¼ li þ evalðsiðl ÞÞ. In this case, the added transitions correspond to
Definition 2 in which the ‘if’ statement from Equation (6) is replaced by ‘if and only if’.
It is interesting to note here that our algorithm properly deals with situations in which,
judged by the signature s(l) of l, transitions to higher order neighbours l0 are suggested,
while in reality it is possible that f(x) points towards conðl0Þ everywhere on con(l), while
the trajectories of CS only become tangent to conðl0Þ everywhere on con(l) and flow to a
even higher order neighbour. Each situation of this kind is signaled by ‘flag’ in
Algorithm 2, some preliminary sets Li, i ¼ 1, . . . , n are constructed and later they are
modified in a fixpoint manner.

If siðl Þ ¼ in, then by Definition 5, in general there might exist points in con(l) flowing
to all neighbours in direction i, and therefore we let l0i be any of fli 
 1, li, li þ 1g. In this
case, it is possible that we add transitions in DS that do not correspond to trajectories
of CS, ie, Equation (6) is satisfied in general with ‘if’. However, this source
of conservativeness is eliminated through refinement as described below.

After finding all sets Li, since l can have transitions to its neighbours only, set L0

is found by intersecting the cartesian product of sets Li, i ¼ 1, . . . , n with the set
of neighbours of l.

4.3 Refinement

For a given partition con(L) in which all entries si(l), i ¼ 1, . . . , n in the signatures s(l)
of all states l 2 L are in the set fpo, ne, zeg, conðPostðIÞÞ cannot be shrunk by finer
partitioning, for any I � L. More formally, if conð �LÞ is a partition of con(L) (j �Lj4jLj) and
I � L and �I � �L are so that j�Ij4jIj and conð�IÞ is a partition of con(I), then

conðPostð�IÞÞ ¼ conðPostðI ÞÞ ð24Þ

Therefore, it does not make sense to partition such quotients.

Algorithm 1 Signature sðlÞ of a discrete state l

for i ¼ 1, . . . , n do
if siðl

0Þ 2 fpo, zeg not all ze for all l0 2 Vðl Þ then
siðl Þ ¼ po

else if siðl0Þ 2 fne, zeg not all ze for all l0 2 Vðl Þ then
siðl Þ ¼ ne

else if siðl0Þ ¼ ze for all l0 2 Vðl Þ then
siðl Þ ¼ ze

else
siðl Þ ¼ in

end if
end for
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Algorithm 2 Transitions for a discrete state l

for i ¼ 1, . . . , n do
Li ¼ �
flag(i)¼0
if li is odd then

Li :¼ Li [ flig
end if
if siðl Þ 2 fpo, ne, zeg then

Li :¼ Li [ fli þ evalðsiðl ÞÞg
if (evalðsiðl ÞÞ ¼ 0) ^ (li is even) ^ (m 	 n
 2) then

flag(i)¼1
end if
else

Li :¼ Li [ fli 
 1, li, li þ 1g
end if

Li :¼ Li \ f0, 1, . . . , 2nig

end for
L0 :¼ ðL1 � L2 � . . .� LnÞ \ ðLðl Þ [ Hðl ÞÞ

Sprev ¼ 0
while

Pn
i¼1 flagðiÞ=2f0, Sprevg do

Sprev ¼
Pn

i¼1 flagðiÞ
for i ¼ 1, . . . , n do

if flag(i)¼1 then
let Li

flag ¼ fl
0 2 L0 j l0i ¼ lig

Li :¼ Li n flig
for all l0 2 Li

flag do
if siðl

0Þ 2 fpo, ne, zeg then
Li :¼ Li [ fli þ evalðsiðl

0ÞÞg

else
Li :¼ Li [ fli 
 1, li, li þ 1g

end if
if ðsiðl0Þ 6¼ zeÞ _ ðordðl0Þ4n
 2Þ then

flag(i)¼0
end if

end for
end if

Li :¼ Li \ f0, 1, . . . , 2nig

end for
L0 :¼ ðL1 � L2 � . . .� LnÞ \ ðLðl Þ [ Hðl ÞÞ

end while
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On the contrary, if for a given partition con(L) there exists a state l 2 L
and a signature entry siðl Þ ¼ in, we can show that proper partitioning produces a
discrete quotient DS ¼ ð �L, �TÞ that refines DS ¼ ðL, TÞ in the sense of Definition 3.
Therefore, ‘smaller’ over-approximations of the reach set can be constructed
(guaranteed strictly smaller if (iii)’ in Proposition 1 holds). The explanation is

as follows.
Rectangles of order 0 (vertices) always have well-defined signature entries si(l)

in all directions i ¼ 1, . . . , n. A rectangle l of order 1 from DS has indefinite

signature entry si(l) if con(l) intersects the surface defined by fiðxÞ ¼ 0 in X. Let lj be
the only odd entry in l. Since f is multi-affine and con(l) is parallel with axis Oxj, the
intersection is a point whose coordinates can be easily computed by solving a
linear equation with respect to xj. Let the solution be denoted by ~xj. By splitting

the current partition DS with respect to the hyperplane xj ¼ ~xj, we obtain a new
partition DS. In this partition there are three states, �l0, �l00, �l000 2 �L, that refine state l
from the previous partition (conð�l0Þ [ conð�l00Þ [ conð�l000Þ is a partition of con(l)). Thus,
(i) from Definition 3 is satisfied by the considered state l. All states �l0, �l00, �l000 have

well defined signature entry of index i, and by applying Algorithm 2 to these states,
the discrete transitions will exactly correspond to continuous trajectories in direction i.
Because siðl Þ ¼ in, transitions from l were conservative, in the sense that l could
transit in any of its neighbours on direction i. This is not true for �l0, �l00, �l000, so on one

hand (ii) from Definition 3 is satisfied, ie, none of the states �l0, �l00, �l000 can have transitions
to regions of space that were not captured by transitions from l in the coarser quotient.
On other hand, (iii) is satisfied because �l0, �l00, �l000 do not have transitions to all their
neighbours on direction i, as l did. Condition (iii)’ of Proposition 1 cannot be verified
by considering only �l0, �l00, �l000 and their neighbours, so the strict shrinking of over-

approximation conðPostðIÞ, 8I � L can be observed only after the finer quotient DS is
constructed and conðPostð�IÞÞ is computed. Following the same reasoning, (i) and (ii) are
satisfied for all states of DS and DS, while (iii) is true only for states of DS with well
defined signature entry for an index for which the corresponding refined states of DS
had indefinite signature entry.

A finer quotient DS of DS can be found by using Algorithm 3, which computes all
possible intersections in X between all surfaces fi¼ 0, i ¼ 1, . . . , n and all con(l), where l
is a state of order 1 in DS. Note that rectangles with order greater than 1 are not split
even if they have an indefinite signature on a certain direction and all their neighbours
of order 1 have well-defined signatures on the same direction. From the tests we
performed, we observed that if X contains no common points of any two surfaces fi¼ 0

and fj¼ 0, i, j ¼ 1, . . . , n, i 6¼ j, then, after a finite number of iterations, Algorithm 3 will
not produce new points. In this case, all surfaces fi¼ 0, i ¼ 1, . . . , n will eventually have
non-empty intersections only with some rectangles of order 0 and of order greater
than 1.
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4.4 Safety verification algorithm

We now collect all the results in this paper in the form of an iterative algorithm for

providing a solution to Problem 2. Algorithm 4 starts with an initial rectangular
partition determined by the sets I and F. A discrete quotient DS is constructed as

described in Sections 4.1 and 4.2 and PostðIÞ is calculated. If PostðIÞ
T

F ¼ 6 0, then
assertion (4) is true, ie, con(F) cannot be reached by the continuous system initialized
in con(I). If PostðIÞ

T
F 6¼ 6 0, then refinement is undertaken as described in Section 4.3.

The algorithm is stopped if any of the following occurs: the safety property is satisfied,
the refinement is finished, a partitioning precision is reached, or a user defined

maximum number of iterations is exceeded. In the case when the algorithm is stopped
and the safety property is not verified, it returns a sub-region con(SF) of con(F) which is

safe for CS if initialised in con(I). If only an over-approximation of the solution to
Problem 1 is desired, then Algorithm 4 can be run with F¼ L (conðFÞ ¼ X), where the

initial partition L is induced by I only.
We used standard techniques from graph theory to calculate PostðIÞ for a discrete

quotient DS. Specifically, we first assigned to every state l 2 L a unique number
from f1, . . . , jLjg by defining a map node : L! f1, . . . , jLjg. We then defined an adjacency

matrix A 2 f0, 1gjLj�jLj with the property that Aðnodeðl Þ, nodeðl0ÞÞ ¼ 1 if there is a
transition (in one step) from state l to l0 and Aðnodeðl Þ, nodeðl0ÞÞ ¼ 0 otherwise, l, l0 2 L.
We find Post(l) for a state l 2 L by using the following property of the adjacency matrix:

if Akðnodeðl Þ, nodeðl0ÞÞ ¼ 1, then state l0 can be reached in k steps from state l. The
maximum power k is jLj 
 1, because there are only jLj nodes in the graph, so the longest

path can have jLj 
 1 transitions. Moreover, this search algorithm can be stopped
when for a certain power k we do not obtain any new states that can be reached from l.
In this framework, Post(l)¼fl0j9k 2 f1, . . . , jLj 
 1g s:t: Akðnodeðl Þ, nodeðl0ÞÞ ¼ 1g, and
PostðIÞ ¼

S
l2I Postðl Þ.

Algorithm 3 Refinement

for all first order states l ¼ ðl1, . . . , lnÞ 2 L do
let lk be the only odd entry in l
for i ¼ 1, . . . , n do

if siðl Þ ¼ in then
solve fið�

1
l1=2

, . . . , �k
new, . . . , �n

ln=2
Þ ¼ 0 for �k

new

add �k
new to vector �k

end if
end for

end for
for i ¼ 1, . . . , n ] do

sort elements of �i ascending
end for
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On the connection between the solutions to Problems 1 and 2, note that, even if the
over-approximation of conðPostðIÞÞ is guaranteed to strictly shrink, this does not
necessarily imply that the safe sub-region con(SF) of con(F) strictly grows. It is
guaranteed not to shrink, but it might not grow if the refinement is made in a region of
X which has empty intersection with con(F) and/or the rectangles which are refined
are not contained in a path from I to F in DS.

5. Case studies

We have developed a user-friendly software package for Reachability Analysis
of Multi-Affine Systems (RAMAS) in Matlab, which is freely downloadable from
http://iasi.bu.edu/software/. The program takes as input the dimension n, the closed
rectangle X, the coefficients ci1,..., in of a multi-affine vector field f as in Equation (14),
and the sets con(I) and con(F) given in terms of unions of open sub-rectangles
of arbitrary order in X. According to Algorithm 4, it returns either a positive answer
if there are no trajectories of the continuous system from con(I) and con(F), or a subset
of con(F) which is guaranteed to be safe with respect to con(I). Even though our tries
show that the algorithm works for n¼ 7 and even n¼ 10 (for only one iteration), in this
paper we focus on a planar case (n¼ 2) so we can show illustrative pictures.

Algorithm 4 Safety verification and safe region construction

Start with vectors �i, i ¼ 1, . . . , n induced by I and F
repeat

Construct set L of labels of all elements in partition created by �i, i ¼ 1, . . . , n
for all l 2 L do

Run Algorithm 1 to determine the signatures s(l)
end for
for all l 2 L do

Run Algorithm 2 to determine the transitions from l
end for
Construct PostðIÞ
Construct safe sub-region of F: SF ¼ F n ðPostðIÞ \ FÞ
if SF¼ F then

SAFETY IS VERIFIED; exit algorithm
else

Run Algorithm 3 to produce a refinement
if (no new points are added in any of vectors �i) _ (precision is reached) _ (maximum
number of iterations is reached) then

SAFETY CANNOT BE DECIDED; exit algorithm
end if

end if
untilTRUE
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We first consider a non-linear multi-affine vector field (Case Study 1) (Figure 2).

We then focus on three linear systems (ie, _x ¼ Ax) (Case Studies 2, 3, 4), which are

of course particular cases of multi-affine systems. The qualitative phase portraits for

such planar linear systems are known, and reachability properties are almost intuitive.

Applying our method to such systems gives us some idea on the conservativeness

of our approach.

Case Study 1 (non-linear multi-affine system): Consider X ¼ ½1:5, 3� � ½0:4, 2�,
f ¼ ðf1, f2Þ with f1 ¼ 2
 x1x2, and f2 ¼ 1þ x2 
 x1x2. The initial set is

conðIÞ ¼ ½1:5, 2:5� � f0:4g, which can be written as the union of two zero-order

open rectangles f1:5, 0:4g, f2:5, 0:4g and one first-order open rectangle ð1:5, 2:5Þ � 0:4.

The final set is conðFÞ ¼ ½1:5, 3� � ½0:8, 1:4�, which in the initial partition can be seen as

the union of six zero-order open rectangles, 7 first-order open rectangles, and two

second-order open rectangles. In figure 2, we plot the vector field f everywhere in X
and the two curves f1¼ 0 and f2¼ 0. Note that the two curves intersect inside con(F).

Therefore, the refinement procedure will not terminate. At each iteration, the

algorithm will produce strictly shrinking over-approximations of PostðconðIÞÞ in X,

which lead to strictly growing safe sub-regions in con(F).
The results produced at different iterations are shown in Figure 3, where it can be

seen that the safe region strictly increases with the number of refinement iterations.

1.5
0.4

0.8

1.4

X
2

2

2.5 3
X1

I

F

f2=0

f1=0

Figure 2 Case Study 1: multi-affine vector field f = (f1, f2),
f1 = 2
 x1x2, f2 = 1 + x2
 x1x2 on X = [1.5, 3]� [0.4, 2], initial set
con(I) = [1.5, 2.5]� {0.4}, final set con(F) = [1.5, 3]� [0.8, 1.4], and
initial partition induced by initial and final sets
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Case Study 2 (linear system, stable node): Consider the planar linear system _x ¼ fðxÞ
with f1 ¼ 
1:5x1 
 0:5x2, f2 ¼ 
0:5x1 
 1:5x2 in rectangle X ¼ ½
3, 4� � ½
3, 2�. The

origin is a (globally asymptotically) stable node for the system. The vector field

is plotted in Figure 4(a), together with the lines f1¼ 0 and f2¼ 0 and the initial

set conðIÞ ¼ ½
2, 2� � f
2g. Figure 4(b) shows an over-approximation of the set

reached from con(I) (white region) and a safe set (green region). The straight
dashed lines show the directions of the eigenvectors. We also plotted the trajectories

starting from the extremities of con(I). Since the system is linear, it is known that

the closed segment con(I) will remain a closed segment while flowing along the

vector field. Therefore, the set reached from con(I) roughly looks like the area between
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Figure 3 Case Study 1: iterations 1, 2, 3, and 10 from Algorithm 4.
The growing green area (darker for black and white) represents
the safe sub-region con(SF) of con(F).
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Figure 4 Reachability analysis for linear vector fields: (a), (c), and
(e) show vector fields for which the origin is a stable node, stable
focus, and unstable node, respectively. The equations of the
straight lines are f1¼ 0 and f2¼ 0. The horizontal line segment is
the initial set. The results of the reachability algorithm are shown
in (b), (d), and (f), respectively. The green regions (darker for black
and white) are safe sets, while the white regions are over-
approximations of reachable sets
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the trajectories of the extremities of con(I), as shown in Figure 4(b). Our method,
however, returns the white region in four iterations. More iterations will not shrink the
white region dramatically – it will only remove small white chunks North-East from
the origin.

Case Study 3 (linear system, stable focus): The difference between this case and Case
Study 2 is that the vector field (shown in Figure 4(c)) is f1 ¼ 
2x1 
 x2, f2 ¼ 3x1 þ x2,
for which the origin is a stable focus. As it can be seen in Figure 4(d), the
conservativeness of our method is more obvious in this case. Also, in this case the
refinement algorithm terminates in three iterations.

Case Study 4 (linear system, unstable node): Consider the same rectangular
region and the planar linear vector field f1 ¼ 0:5x1 þ 1:5x2, f2 ¼ 1:5x1 þ 0:5x2,
for which the origin is an unstable node (saddle). The vector field is plotted in
Figure 4(e), together with the initial set conðIÞ ¼ ½
1, 3� � f
2g and the two lines f1¼ 0
and f2¼ 0, which intersect at the origin. The over-approximation of PostðconðIÞÞ
calculated in four iterations by our method is shown as the white region in Figure 4(f),
together with the eigenvectors and some illustrative trajectories. It can be seen that
in this case our results are not very conservative. Note that the refinement does
not terminate – it continues in a small region North-West from the origin.
However, the result does not change significantly with the number of iterations.

As a conclusion to Case Studies 2, 3, and 4, our method produces conservative
results when the trajectories loop around an equilibrium. This is in accordance with
Proposition 1.

6. Complexity issues

Following the notation introduced at the beginning of Section 4, for a rectangle
X 2 R

n, the discrete quotient DS has L ¼
Qn

i¼1ð2ni þ 1Þ states, where ni is the number
of intervals in the Oxi direction, i ¼ 1, . . . , n. The total number of vertices
(zero-order rectangles) is

Qn
i¼1ðni þ 1Þ. In order to find the transitions of DS, we

have to compute the signature of every state l 2 L. This can be done by running
Algorithm 1 jLj times, which implies that the sign of the vector field at each vertex will
be evaluated more than once. This can be inefficient, since the vector field is known by
the 2n coefficients ci1,..., in 2 R

n from Equation (14). Another way to compute signatures
would be to store the sign of the vector field at every vertex (so there would be
only

Qn
i¼1ðni þ 1Þ computations of vector fields), but this would increase the

necessary storage space, which, as shown below, might be worse than the increase
of computation time.

Recall that each state of DS has associated an n-uple as a label and another n-uple as a
signature, beside its transitions to its neighbours. For example, if n¼ 2, n1 ¼ 2, n2 ¼ 3
(Case Study 1), at the first iteration of Algorithm 4, there are jLj ¼ 35 open rectangles
and we have to evaluate the vector field (defined by n � 2n ¼ 8 real values) at 12 vertices.
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In a three-dimensional case with n¼ 3, n1 ¼ 2, n2 ¼ 3, n3 ¼ 3, there are jLj ¼ 245 states
and 48 vertices, whereas for n¼ 10, ni ¼ 2, i ¼ 1, . . . , 5, ni ¼ 3, i ¼ 6, . . . , 10,
jLj ¼ 0:5 � 108, the number of vertices is 2 � 105 and the vector field coefficients
consists of 10 � 210 real values. A refinement of the initial discrete quotient DS
will usually lead to a much greater number of states in DS refining DS. This number
of states cannot be accurately estimated, since it depends on the specific values
of the vector field coefficients. For example, in Case Study 1, the number of
rectangles at the 10th iteration is 1221. However, in large dimensional cases,
Algorithm 4 can be run usually for only one iteration, due to restrictions of the
necessary storage space. For example, in the n¼ 10 example mentioned at the beginning
of Section 5, with each real variable represented in double precision (8B), the necessary
space for storing labels and signatures of rectangles (without transitions) was
greater than 7GB!

On running time for the two-dimensional cases presented above, the
computation took between 5–10 seconds on an 2.66G Hz IBM Pentium IV with 1 GB
of RAM. For the seven-dimensional case mentioned at the beginning of this section,
the first iteration took 3 minutes, the second about 20 minutes, and the third about 2
hours. For the ten-dimensional case, the first iteration took about 2 hours, and then the
computer ran out of memory because of the state explosion problem in the refined
discrete quotient.

7. Conclusion and future work

In this paper we developed a computationally inexpensive method for reachability
analysis of multi-affine continuous systems. The method is based on rectangular
partitions and iterative constructions of discrete quotients that provide an over-
approximation of the reach set of the continuous system, with guaranteed decrease of
conservativeness. While falling into the more general framework of Tiwari and
Khanna (2002), where general polynomials are used for partition and polynomial
vector fields are allowed, this paper shows that if more structure is allowed, then
reachabiltity and safety verification questions can be answered with much less
computation. Future work includes extensions to systems with polynomial dynamics,
development of algorithms to check specifications given in terms of linear temporal
logic, and applications to mathematical models found in areas such as biochemistry
and control of aircraft and under-water vehicles.
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