
Reactive Sampling-Based Temporal Logic Path Planning

Cristian Ioan Vasile and Calin Belta

Abstract— We develop a sampling-based motion plan-
ning algorithm that combines long-term temporal logic
goals with short-term reactive requirements. The mission
specification has two parts: (1) a global specification given
as a Linear Temporal Logic (LTL) formula over a set
of static service requests that occur at the regions of
a known environment, and (2) a local specification that
requires servicing a set of dynamic requests that can be
sensed locally during the execution. Our method consists
of two main ingredients: (a) an off-line sampling-based
algorithm for the construction of a global transition system
that contains a path satisfying the LTL formula, and (b)
an on-line sampling-based algorithm to generate paths
that service the local requests, while making sure that
the satisfaction of the global specification is not affected.
Building on our previous work [1], the focus of this paper
is on the on-line part of the overall method.

I. INTRODUCTION

A central problem in motion planning is to generate
a path for a robot from an initial to a final desired
position in an environment with obstacles. The most
used algorithms are based on cell decompositions, poten-
tial fields, and navigation functions [2]. These methods,
however, suffer from poor scalability with respect to
the dimension of the configuration space. In order to
overcome these limitations, probabilistically complete
approaches based on randomized sampling, such as
probabilistic roadmaps (PRM) [3] and rapidly exploring
random trees (RRT) [4], and their asymptotically optimal
counterparts, PRM* and RRT* [5], were proposed.

A recent trend in robot motion planning is the de-
velopment of computational frameworks that allow for
automatic deployment from rich, high-level, temporal
logic specifications, e.g., “Visit A and then B or C
infinitely often. Always avoid D. Never go to E unless
F was reached before.” It has been shown that temporal
logics, such as Linear Temporal Logic (LTL), Compu-
tational Tree Logic (CTL), and µ-calculus, and their
probabilistically versions (PLTL, PCTL), can be used as
formal languages for motion planning [6], [7], [8], [9],
[10]. Adapted model checking algorithms and automata
game techniques [6], [11] were used to generate plans
and control policies for finite models of robot motion.
Such models were obtained through abstractions, which

This work was partially supported by the ONR under grants MURI
N00014-09-1051 and MURI N00014-10-10952 and by the NSF under
grant NSF CNS-1035588.

The authors are with the Division of Systems Engineering, Boston
University, Boston MA, {cvasile, cbelta}@bu.edu).

are essentially partitions of the robot configuration space
that capture the ability of the robot to steer among
the regions in the partition [12]. As a result, they
suffer from the same scalability issues as the cell-based
decomposition methods.

To generate motion plans and control strategies from
rich task specifications for robots with large configura-
tion spaces, a natural approach is to combine sampling-
based motion planning with automata-based synthesis
methods. The existing works in this area show that
synthesis algorithms from specifications given in µ-
calculus [9], [13] and LTL [1] can be adapted to scale
incrementally with the graph constructed during the
sampling process. However, these off-line algorithms
assume that the robot moves in a static environment with
a known, global map, and cannot react to events sensed
locally during the deployment.

In this paper, we address the problem of generating
a path for a robot required to satisfy a (global) LTL
specification over some known, static service requests,
while at the same time servicing a set of locally
sensed requests ordered according to their priorities.
We propose a random sampling approach that builds
on our work from [1]. Our framework consists of two
components: (1) an off-line algorithm that generates a
finite transition system that contains a run satisfying
the global specification, and (2) an on-line algorithm
that finds local paths that satisfy both the local and the
global specifications. The focus in this paper is on the
on-line part of the problem, i.e., we assume that the finite
transition system is available [1].

The main contribution of this work is a sampling-
based, formal framework that combines infinite-time
satisfaction of temporal logic global specifications with
reactivity to requests sensed locally. Closely related
works include [14], [15], [16], [17]. In [14], the authors
consider global specifications given in the more restric-
tive scLTL fragment of LTL. To deal with the state-
space explosion problem, they propose a layered path
planning approach which uses a cell decomposition of
the configuration space for high-level temporal planning
and expansive space trees (EST) for kino-dynamic plan-
ning of the low-level, cell-to-cell motion. The on-line
algorithm from [17] finds minimum violating paths for a
robot when the global specification can not be enforced
completely. In [15], [16], the global specifications are
given in the GR(1) fragment of LTL, and on-line local



re-planning is done through patching invalidated paths
based on µ-calculus specifications. Finally, the idea of
using a potential function to enforce the satisfaction of
an infinite-time specification through local decisions is
inspired from [18].

II. PROBLEM FORMULATION

Consider a robot moving in an environment
(workspace) D containing a set of disjoint regions of
interest RG. We assume that the robot can precisely
localize itself in the environment. There is a set of
service requests ΠG at the regions in RG and their
location is given by a map LG : RG → 2ΠG . We
assume that these regions as well as the labeling map are
static and a priori known to the robot. We will refer to
these as global regions and requests, because these are
used to define the long-term goal of the robot’s mission.
An example of an environment with global regions and
requests is shown in Fig. 1.

While the robot moves in the environment, it can
locally sense a set of dynamic service requests denoted
by ΠL and a particular type of avoidance request denoted
by πO, which captures moving obstacles, unsafe areas,
etc. We assume ΠG ∩ (ΠL ∪ {πO}) = ∅. A dynamic
request from ΠL occurs at a point in the environment
and has an associated servicing radius, which specifies
the maximum distance from which the robot can service
it. The servicing radius of a request is determined by its
type (ΠL) and all servicing radii are known a priori.
The robot may service a dynamic request by moving
inside the request’s servicing radius and performing
an appropriate action. We assume that once a request
is serviced, it disappears from the environment. The
region around the robot in which the robot can sense
a dynamic request, including πO, is called the sensing
area of the corresponding sensor. For simplicity, we
assume that all sensors have the same sensing area. The
sensing area may be of any shape and size provided that
it is connected and full-dimensional (see Fig. 1). We
assume that the avoidance request πO is associated with
whole regions, parts of which can be detected when they
intersect with the robot’s sensing area. For simplicity, we
refer to regions satisfying πO as local obstacles. The set
of regions corresponding to local obstacles present in the
environment at time t ≥ 0 is denoted by RL(t).

The mission specification is composed of two parts:
a global mission specification, which is defined over the
set of global properties ΠG, and a local mission spec-
ification, which specifies how on-line detected requests
ΠL must be handled. The global mission specification,
which defines the long-term motion of the robot, is given
as an LTL−X (i.e., LTL without the “next” operator)

x

y

Region A

Region B

Region C

unsafe

fire

survivor

Fig. 1: Simplified representation of a disaster scenario con-
sidered in Example. 2.2. The environment contains three
global regions A, B and C colored in green, blue and
red, respectively. Three dynamic requests are also shown as
colored points: a survivor (yellow), a fire (orange), and a
local obstacle (black). The circles around them delimit the
corresponding servicing areas. The initial position of the robot
is shown in magenta and the cyan rectangle corresponds to
its sensing area. In this figure the robot does not detect any
dynamic request or local obstacles.

formula ΦG. 1. When a robot passes over a global
region, it is assumed that the robot services the requests
associated with the region. Therefore, a path traveled
by the robot generates a word over ΠG. A path is
said to satisfy the global mission specification ΦG if
the corresponding word satisfies ΦG. The local mission
specification is given as a priority function prio : ΠL →
N. We assume that prio is an injective function that
assigns lower values to higher priority requests.If the
robot detects dynamic requests, it must go and service
the request with the highest priority. If multiple requests
have the same (highest) priority, then the robot can
choose any one of them. Also, the robot must avoid
all local obstacles marked by πO.

Let C be the compact configuration space of the robot
and H : C → D be a submersion that maps each
configuration x to a position y = H(x) ∈ D. Formally,
the problem can be formulated as follows:

Problem 2.1: Given a partially known environment
described by (D,RG,ΠG,LG,ΠL), an initial configu-
ration x0 ∈ C, an LTL−X formula ΦG over the set of
properties ΠG, and a priority function prio : ΠL →
N, find an (infinite) path in the configuration space C
originating at x0 such that the path y = H(x) in the
environment satisfies ΦG and on-line detected dynamic

1Throughout the paper, we assume that the reader is familiar with
LTL syntax and semantics and concepts from automata-based model
checking, such as Buchi automata and product automata (see [19]).



requests, while avoiding local obstacles.
Example 2.2: Fig. 1 shows a simplified disaster re-

sponse scenario, in which a point fully actuated robot is
deployed in an environment where three global regions
of interest A, B and C are defined. The set of dynamic
requests is ΠL = {fire, survivor} and the local obsta-
cle is πO = unsafe. If the robot detects requests fire
or survivor, it must service them by going within the
corresponding servicing radii and initiating appropriate
actions (i.e., extinguishing the fire and providing med-
ical relief, respectively). If the robot detects the local
obstacle unsafe (shown in black in Fig. 1), the robot
must avoid that region. The limited sensing area of the
robot’s sensors is depicted in Fig. 1 by a cyan rectangle.

The global mission specification is: “Go to region A
and then go to regions B or C infinitely often”. This
specification can be expressed in LTL−X as:

ΦG := GFA ∧G(A U (¬A U (B ∨ C))) (1)

The local mission specification is to “Extinguish
fires and provide medical assistance to survivors, with
priority given to survivors, while avoiding unsafe ar-
eas.”. Thus the priority function is defined such that
prio(survivor) = 0 and prio(fire) = 1.

The proposed computational framework to solve
Prob. 2.1 consists of two parts: (a) an off-line sampling-
based algorithm to compute a global transition system
TG in the configuration space C of the robot that contains
a path whose image in the workspace D satisfies the
global mission specification ΦG, and (b) an on-line
sampling-based algorithm that computes at every time
step a local control strategy that takes into account
dynamic requests such that both local and global mission
specifications are met. In our previous work [1], we
developed an algorithm for the construction of TG. In
short, this method builds on RRG [5] and provides a
probabilistically complete algorithm that incrementally
checks for the existence of satisfying paths when new
samples are generated. In this paper, we only focus on
the on-line part of the framework.

III. PROBLEM SOLUTION

The approach taken in this paper is based on the RRT
algorithm, a probabilistically complete sampling-based
path planning method. We modify the standard RRT in
order to find local paths which preserve the satisfaction
of the global specification ΦG, while servicing on-line
requests and avoiding locally sensed obstacles.

To keep track of validity of samples (random con-
figurations) with respect to the global specification ΦG,
we propose a method that combines the ideas presented
in [20] on monitors for LTL formulae and [18] on
potential functions. The problem considered in [20] is to
decide as soon as possible if a given (infinite) word w

satisfies a LTL formula φ. The main idea is to keep track
of Büchi states corresponding to a finite prefix of w with
respect to both φ and ¬φ concurrently. If one of the two
sets of Büchi states corresponding to φ or ¬φ becomes
empty, then we can conclude that the specification is
either violated or satisfied. If both sets are non-empty
then nothing can be said about w |= φ. In our case, we
just use half of a monitor, since we are interested only
in checking if steering the robot to new samples violates
ΦG. The potentials functions approach described in [18]
is used to address the problem of connecting the locally
generated path to states in the global transition system
such that ΦG is satisfied.

In the following, we will denote by B the Büchi
automaton encoding the LTL−X formula ΦG. We use
PG = TG × B for the product automaton and TL to
denote the local transition system which is generated
at each time step. An element of D will be called a
position. The states of the TG and TL are configurations
in C. The weight of a transition of TG or TL is given by
the distance between its endpoints in C.

We make the following additional assumptions that
are necessary in the technical treatment below. For a set
R ⊆ D that is connected and has full dimension in D,
we assume that the inverse set H−1(R) also has full
dimension in C. The global regions and local obstacles
are connected sets with non-empty interior, (i.e. they
have full dimension in D). Also, all the connected
regions in the free space, between global regions and
obstacles, respectively, are full dimensional. This implies
that all global regions, local obstacles, service areas for
dynamic requests, and connected free space regions (all
subsets of D) have corresponding inverse sets (through
H−1) of non-zero Lebesgue measure in C. Note that
these are just technical assumptions, which are normally
made in sampling-based approaches, and we do not need
to construct the inverse map H−1. In the sampling-based
algorithms described below, we only need to check how
the environment image of a configuration satisfies fea-
tures of interest in the environment. Finally, we assume
that the robot knows its configuration precisely and it
can follow trajectories in the configuration space made
of connected line segments. A path x in C is said to
satisfy the specification ΦG if the corresponding path
y = H(x) in D satisfies ΦG. The initial configuration
x0 of the robot is known and H(x0) = y0.

A. Potential functions

In [18] the authors define a potential function over
the states of the product automaton between a transition
system and a Büchi automaton. The potential function
captures the distance from each state of the product to
the closest final state. It can be thought of as a distance to
satisfaction and resembles a Lyapunov function. We ex-



tend this notion to define potential functions on the states
of the global transition system. This extension allows us
to reason about the change of potential between nodes
of TG connected through local paths instead of a direct
transition. The local paths are generated as branches
of a tree by the proposed RRT-based algorithm. The
definitions of self-reachable set and potential function
for product automaton states are adapted from [18].

Let PG = TG × B = (SPG
, SPG0

,∆PG
, ωPG

, FPG
)

be a product automaton between a transition system
TG and Büchi automaton B. We denote by D(p, p′)
the set of all finite trajectories between states p, p′ ∈
SPG

, D(p, p′) = {p1 . . . pn|p1 = p, pn = p′; pk →PG

pk+1,∀k = 1, . . . , n − 1;∀n ≥ 2}. A state p ∈ SPG

is said to reach a state p′ ∈ SPG
if D(p, p′) 6= ∅.

The length of a path is defined as the sum of the
weights corresponding to the transitions it is composed
of: L(p) =

∑n−1
k=1 ωPG

(pk, pk+1). For p, p′ ∈ SPG
, the

distance between p and p′ is defined as follows:

d(p, p′) =

{
minp∈D(p,p′)(L(p)) if D(p, p′) 6= ∅
∞ if D(p, p′) = ∅

(2)

The weight function ωPG
is positive, because it is

induced by the distance of the underlying (metric) space.
This implies [18] that d(p, p′) > 0 for all p, p′ ∈ SPG

.
A set A ⊂ SPG

is self-reachable if and only if all
states in A can reach a state in A, i.e. for all p ∈ A
there is a state p′ such that D(p, p′) 6= ∅.

Definition 3.1 (Potential function of states in PG):
The potential function VPG

(p), p ∈ SPG
is defined as:

VPG(p) =

{
minp∈F∗PG

d(p, p′) if p ∈ F ∗PG

0 if p ∈ F ∗PG

(3)

where F ∗PG
⊂ FPG

is the maximal self-reachable set of
final states of PG. The potential function is non-negative
for all states of PG. It is zero for p ∈ SPG

if and only if
p is a final state and p can reach itself. Also, if VPG

(p) =
∞, then p does not reach any self-reachable final states.

Definition 3.2 (Potential function of states in TG):
Let x ∈ X and B ⊆ βPG

(x). The potential
function of x with respect to B is defined as:
VTG(x,B) = mins∈BVPG

((x, s)) Also, the minimum
potential of x is defined as V ∗TG(x) = VTG(x, βPG

(x)).
The minimum potential of a state x of TG is the
minimum potential of all states in PG which correspond
to x. The actual potential is defined to capture the fact
that not all Büchi states may be available in order to
achieve the minimum potential.

B. Satisfying local paths with respect to ΦG

Local paths in our RRT based algorithm connect states
of the global transition system. Let x, x′ ∈ TG and
x = x1 . . . xn be a local path connecting x1 = x and
xn = x′ and o = o1 . . . on be the output trajectory

corresponding to x with respect to the global proprieties
(ok ∈ 2ΠG ,∀k = 1 . . . n). We need to ensure that there
is a satisfying run in TG starting at x′ after traversing
x. Thus, we need to consider two problems: (1) how to
keep track of available Büchi states as local samples are
generated and (2) how to connect a local path’s endpoint
(tree leaf) to the global transition system TG.

The first problem is solved by Alg. 1, which deter-
mines the set of Büchi states given a word w over 2ΠG .
Alg. 1 solves this problem by repeatedly computing the
set of outgoing neighboring states of B for all states
in the previous iteration. To check if a local path can
be connected to the state xn = x′ ∈ X , we just need
to verify that it has finite potential, i.e. VTG(x′, B) <
∞, where B is the set of available Büchi states after
traversing x, in this case w = o. The second problem has
a simple solution in this setting. We choose the state in
TG which has (finite) minimum potential after traversing
a branch of the RRT tree. Also, the line segment between
the leaf state from the tree and the state in TG must be
collision free (see Sec. III-C).

Algorithm 1: Tracking Büchi states of local samples
Input: B Büchi automaton for ΦG, w = σ1 . . . σn finite

word over 2ΠG , B set of start Büchi states
Output: Bf set of final Büchi states after processing w

1 Bf ← B
2 for k ← 1 . . . n do
3 B′ ← ∅
4 foreach s ∈ Bf do
5 B′ ← B′ ∪ {s′ ∈ SB|(s, s′, σk) ∈ ∆B}
6 Bf ← B′

7 return Bf

C. On-line planning algorithm

The on-line planning algorithm, outlined in Alg. 2, is
composed of an off-line preprocessing step of computing
the potential function for PG and the on-line loop. At
each step of the loop, the robot scans for requests and
local obstacles and checks if it needs to compute a new
local path. Re-planning is performed in four cases: (1) if
the current path is empty; (2) a higher priority request
was detected; (3) the chosen request disappeared; and
(4) the local path collides with a local obstacle. Büchi
states are tracked starting from the initial configuration
of the robot, corresponding to the initial state of TG.
Map B is used to store the tracked Büchi states.

The local path planning algorithm is show in Alg. 3
and is based on RRT. The procedure incrementally
constructs the local transition system TL. The initial
(root) state of TL is the current configuration of the robot
xc. The map serv indicates whether a state or any of its
ancestors serviced the on-line request with the highest



Algorithm 2: Planning algorithm
Input: TG global transition system, B Büchi automaton

for ΦG, PG = TG × B, prio priority function for
on-line requests, x0 initial configuration

1 Compute potential function VPG(·)
2 path← emptyList()
3 xc ← x0; B(xc)← βPG(xc)
4 while True do
5 I ← getLocalRequests()
6 if checkPath(I, path) ∨ ¬path.hasNext() then
7 path← planLocally(xc,PG,B, prior, I)

8 xn ← path.next()
9 enforce(xc → xn)

10 xc ← xn

priority. If there are no requests then serv is true for all
states of TL.

The construction of the RRT proceeds by generating
a new random sample (line 4) inside the sensing area
of the robot, steer the system towards it (lines 5–6) and
checking if it is a valid state (lines 8–9). Samples are
generated such that their images in D belong to the
sensing area of the robot. The nearest function (line
5) is a standard RRT primitive which returns the nearest
state in TL based on the distance function associated
with C. We assume that we have access to a steer
function (see Sec. II) which drives the system to a
configuration x ∈ C. x is the closest configuration to
the new sample xs which is at most η distance away
from xn, [4], [5]. The label primitive function (line 7)
is used to anotate x with the global properties it satisfies.
x is valid if its corresponding set of Büchi states is non-
empty and the line segment from its parent xn to itself
is a simple collision free line segment. Alg. 1 is used
to compute the set of available Büchi states for x. The
primitive function isSimpleSegment is used to ensure
that the set of global properties along the potential
new transition (xn, x) changes at most once. For more
details, about this primitive see [1]. The collisionFree
primitive is used to check if the image in the workspace
of the line segment (xn, x) ∈ C collides with a local
obstacle in D. If these tests are passed, the procedure
adds the state x and the transition (xn, x) to TL (line
11). Also the serv map is updated by checking if either
the parent state xn (or some ancestor) or the state itself
x has serviced the selected on-line request.

Also, we require that the state xG of TG have a lower
(actual) potential than the last visited state x′G of TG.
This condition is not enforced, if the potential of x′G is
zero, but we still require xG 6= x′G.

Theorem 3.3: Let x = x1, . . . be an infinite path in C
generated by Alg. 2 and o = o1, . . . be the corresponding
(infinite) output word generated by traversing x. If every

Algorithm 3: Local path planning
Input: xc current configuration of the robot,

PG = TG × B, B Büchi automaton for ΦG,
prior – on-line requests priority function, I
sensed requests and local obstacles

Output: path computed local control strategy

1 Construct TL = (XL, xc,∆L, ωL,ΠL ∪ {πO}, hL) with
xc as initial state

2 serv(xc)← ¬I.hasRequest()
3 while @ xc →∗TL xT → xG w/ VTG(xG, B(xG)) <∞ ∨
¬serv(xT ) do

4 xs ← generateSample(xc, I.area)
5 xn ← nearest(TL, xs)
6 x← steer(xn, xs, η)
7 x← label(x, I)
8 B(x)← trackBuchiStates(B, hL(xn), B(xn))
9 if B(x) 6= ∅ ∧ isSimpleSegmnent(xn, x) ∧

collisionFree(xn, x) then
10 serv(x)← serv(xn) ∨ I.serviced(x, prior)
11 XL ← XL ∪ {x}; ∆L ← ∆L ∪ {(xn, x)}

12 return xc →∗TL xT → xG

call of Alg. 3 finishes in finite time, then o satisfies the
global specification ΦG, o |= ΦG.

Remark 3.4: The complexity of the local path plan-
ning algorithm (Alg. 3) is the same as for the
standard RRT. The functions generateSample, steer
and nearest are stardard primitives [4], [5]. label,
isSimpleSegment and collisionFree primitives and
checking if an on-line request was serviced, can be
reduced to collision detection in the lower dimensional
workspace. Tracking Büchi states takes constant time
(O(1)), because the global specification ΦG is fixed.

IV. CASE STUDY

The algorithms presented in this paper were imple-
mented in Python2.7. The case study presented below
was run on an Ubuntu 13.04 with 2GHz Intel Core2
Duo processor and 2GB of memory. For simplicity, we
present a case study in which the robot is a fully actuated
point in plane. Note that, since both the off-line and
on-line algorithms are based on random sampling, the
method can be used for systems with large configuration
spaces. In fact, in [1], where we presented the off-line
part of the method, we included a case study in a 20-
dimensional configuration space.

Here we consider the configuration space depicted in
Fig. 2(a). The initial configuration is x0 = (−9;−9).
The global specification is to visit regions r1, r2, r3
and r4 infinitely many times while avoiding regions o1,
o2, o3, o4 and o5. The corresponding LTL−X formula
is ΦG = G(Fr1 ∧ Fr2 ∧ Fr3 ∧ Fr4 ∧ ¬(o1 ∨ o2 ∨
o3 ∨ o4 ∨ o5)). There are four local obstacles labeled
uo and three dynamic requests: two survivor requests



and a fire request. The three dynamic requests have a
cyclic motion at a lower speed than that of the robot. The
maximum distance traveled by the robot in one discrete
time step is η = 1 (see the steer primitive in Alg. 3,
line 6). The priority function prior is defined such that
survivor request have higher priority than fire request.

A solution to this problem is shown in Fig. 2. The
product automaton has a single accepting state, which
corresponds to xaccept = (−7, 0) in TG. The robot must
visit xaccept infinitely many times. In each surveillance
cycle, the three dynamic requests described above are
created. We ran the path planning algorithm in order to
complete 100 surveillance cycles. During the simulation,
the local path planning algorithm (Alg. 3) was executed
5947 times. The overall execution time dedicated to local
planning (lines 7–8 of Alg. 2) for a single surveillance
cycle was on average 0.743 seconds (std. 0.216). The
mean size of the generated local transition system TL
was 7.6 (std. 13.15). The path planning algorithm com-
puted local paths which serviced 292 on-line requests
from a total of 296 detected.

REFERENCES

[1] C. Vasile and C. Belta, “Sampling-Based Temporal Logic Path
Planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Boston: MIT Press, 2005.

[3] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configu-
ration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” in IEEE International Conference on Robotics and
Automation, 1999, pp. 473–479.

[5] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for
Optimal Motion Planning,” International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, June 2011.

[6] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s
Waldo? Sensor-based temporal logic motion planning,” in IEEE
International Conference on Robotics and Automation, 2007.

[7] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding
Horizon Temporal Logic Planning for Dynamical Systems,” in
Conference on Decision and Control, 2009, pp. 5997 –6004.

[8] A. Bhatia, L. Kavraki, and M. Vardi, “Sampling-based motion
planning with temporal goals,” in IEEE International Conference
on Robotics and Automation. IEEE, 2010, pp. 2689–2696.

[9] S. Karaman and E. Frazzoli, “Sampling-based Motion Planning
with Deterministic µ-Calculus Specifications,” in IEEE Confer-
ence on Decision and Control, Shanghai, China, 2009.

[10] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Formal
Methods for Automatic Deployment of Robotic Teams,” IEEE
Robotics and Automation Magazine, vol. 18, pp. 75–86, 2011.

[11] Y. Chen, J. Tumova, and C. Belta, “LTL Robot Motion Control
based on Automata Learning of Environmental Dynamics,” in
IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 2012.

[12] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for
robot planning and control in polygonal environments,” IEEE
Trans. on Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[13] S. Karaman and E. Frazzoli, “Sampling-based Optimal Motion
Planning with Deterministic µ-Calculus Specifications,” in Amer-
ican Control Conference, 2012.

(a) At the start of the mission (b) After a few steps

(c) Sensing area with local
RRT tree

(d) After completing one
surveillance cycle

Fig. 2: The environment contains four global regions of
interest r1 (red), r2 (green), r3 (blue) and r4 (magenta),
five global obstacles o1, . . . , o5 (dark grey) and four local a
priori unknown obstacles labeled uo (light grey). There are
also three dynamic requests, two survivor (green) and a fire
(yellow). The circles around the on-line requests delimit their
corresponding service area. The sensing range of the robot is
shown as a light blue rectangle (length of its side is 5) around
the current position of the robot (blue dot), Fig. 2(b). The black
arrows and dots represent the global transition system TG. The
trajectory of the robot is shown as a sequence of red arrows.
Fig. 2(d) shows the trajectory of the robot after completing a
surveillance cycle. Fig. 2(c) is a close up view of the sensing
area of the robot at position (4.9, 7.3) where an RRT tree is
generated. The red arrows mark the trajectory of the robot, and
the black ones belong to TG.

[14] M. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and
M. Y. Vardi, “Iterative Temporal Motion Planning for Hybrid
Systems in Partially Unknown Environments,” in ACM Interna-
tional Conference on Hybrid Systems: Computation and Control,
ACM. Philadelphia, PA, USA: ACM, March 2013, pp. 353–362.

[15] S. C. Livingston and R. M. Murray, “Just-in-time synthesis for
motion planning with temporal logic,” in International Confer-
ence on Robotics and Automation, 2013.

[16] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray,
“Patching task-level robot controllers based on a local µ-calculus
formula,” in International Conference on Robotics and Automa-
tion, 2013.

[17] J. Tumova, L. Reyes-Castro, S. Karaman, E. Frazzoli, and
D. Rus, “Minimum-violating planning with conflicting specifi-
cations,” in American Control Conference, 2013.

[18] X. C. Ding, M. Lazar, and C. Belta, “Receding Horizon Temporal
Logic Control for Finite Deterministic Systems,” in American
Control Conference, Montreal, Canada, 2012.

[19] C. Baier and J.-P. Katoen, Principles of model checking. MIT
Press, 2008.

[20] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification
for LTL and TLTL,” Institut für Informatik, Technische Univer-
sität München, Tech. Rep. TUM-I0724, December 2007.


