
Receding Horizon Control in Dynamic
Environments from Temporal Logic Specifications

Alphan Ulusoy, Michael Marrazzo, and Calin Belta
Division of Systems Engineering, Boston University, Brookline, MA, 02446

{alphan, marrazzo, cbelta}@bu.edu

Abstract—We present a control strategy for an autonomous
vehicle that is required to satisfy a rich mission specification
over service requests occurring at the regions of a partitioned
environment. The overall mission specification consists of a
temporal logic statement over a set of static, a priori known
requests, and a servicing priority order over a set of dynamic
requests that can be sensed locally. Our approach is based on two
main steps. First, we construct an abstraction for the motion of
the vehicle in the environment by using input output linearization
and assignment of vector fields to the regions in the partition.
Second, a receding horizon controller computes local plans within
the sensing range of the vehicle such that both local and global
mission specifications are satisfied. We implement and evaluate
our method in an experimental setup consisting of a quadrotor
performing a persistent surveillance task over a planar grid
environment.

I. INTRODUCTION

Temporal logics have been traditionally used to specify the
correctness of computer programs [1]. They recently gained
popularity in robotics due to their ability to express complex
robotics tasks [17, 11, 4, 8, 5, 12]. Given a high-level mission
specification expressed as a temporal logic formula over the
properties satisfied at the states of a finite motion model, tools
from formal verification and automata games [1] can be used
to automatically generate motion plans and control strategies.

Even though the works cited above consider synthesis of
provably correct, and sometimes optimal robot behavior, there
are very few works in the literature that tackle the problem
when dynamical events sensed locally are part of the mission
specification [11, 17]. Consider, for example, a persistent
surveillance mission in a disaster area, in which an au-
tonomous flying vehicle is required to keep on photographing
known damage areas. At the same time, the vehicle is required
to look for survivors, fires, and gas leakages, which can be
sensed locally around the vehicle using onboard sensors. The
goal is to be able to react correctly to the events sensed locally
(e.g., extinguish fires, provide medical assistance to survivors),
while at the same time surveying the known damage areas.

Inspired by this scenario, in this paper we consider mission
specifications consisting of two parts: a global specification
given as a temporal logic formula over a set of static requests
occurring at known locations of a known map, and a local
specification given as a servicing priority order over dynamic
requests sensed locally. Our approach can be summarized as
follows. Initially, we map the global specification to an au-
tomaton that guides the vehicle such that it satisfies the global

specification in the absence of locally sensed events. During
the deployment, according to events sensed locally, a local
automaton is generated and linked to the global automaton in
such a way that the satisfaction of the global specification
is still guaranteed. In order to ensure timely responses to
dynamically changing events, the control strategy is imple-
mented in a receding horizon fashion. The high-level, automata
theoretic control strategies are refined into vehicle controllers
by using input-output linearization, polytopic partitions of the
environment, and vector field assignments based on polytope-
to-polytope controllers [2]. The main contribution of this work
is the control synthesis algorithm that satisfies both the global
(static) and local (dynamic) temporal logic specifications.
Another contribution is the successful implementation of this
computational framework in an experimental setup involving
an autonomous quadrotor flying in an indoor environment.

This work is closest related to [11, 17, 6]. In [11, 17], the
authors propose to deal with dynamic environments by using a
fragment of Linear Temporal Logic (LTL) called General Re-
activity (1) (GR(1)) as a specification language. Even though
the control policies obtained using these methods are reactive,
the synthesis algorithms have to take all dynamic events
into account, resulting in a massive state space significantly
hindering their scalability. In contrast, our approach initially
considers only static requests and plans for dynamic requests
only within the local sensing range and only as required.
In [6], the authors consider a control problem on a finite graph,
where the aim is to maximize locally collected rewards while
satisfying a mission specification given as an LTL formula
over some properties satisfied at the vertices of the graph. As
in this paper, a receding horizon approach, motivated by the
local sensing of rewards, is shown to guarantee the satisfaction
of the LTL specification in infinite time. As opposed to this
paper, in which complexity scales only with the static requests
and the local sensing range of the robot, the algorithms
from [6] scale with the size of the overall environment.
Furthermore, our approach considers richer local specifications
that both allow ordering among dynamic requests as well as
avoiding them, whereas the approach given in [6] considers
only maximization of collected rewards and cannot be trivially
modified to obtain such rich local behaviors.

The rest of the paper is organized as follows. In Sec. II,
we give necessary definitions and preliminaries in formal
methods. In Sec. III, we formally state the problem that we
consider in this paper, and present our solution in Sec. IV. We

present our experimental results in V. We conclude with final
remarks in Sec. VI.

II. PRELIMINARIES

In this section, we provide a brief review of concepts related
to automata theory and formal verification and introduce our
notation. We refer the interested reader to [1] and references
therein for a more detailed treatment of these topics. For a set
Π, we use |Π| and 2Π to denote its cardinality and power set,
respectively.

Definition II.1 (Transition System). A (weighted, determin-
istic) transition system is a tuple T ··= (Q, qinit, δ,Π, h, w),
where
• Q is the finite set of states;
• qinit ∈ Q is the initial state;
• δ ⊆ Q×Q is the transition relation;
• Π is the finite set of atomic propositions;
• h : Q → 2Π is the labeling function giving the set of

atomic propositions satisfied at a state;
• w : δ → N assigns a non-negative weight to each

transition.

A run of T is a sequence of states q0, q1, . . . such that
q0 = qinit, qk ∈ Q, and (qk, qk+1) ∈ δ for all k. A run
generates a word ω0ω1, . . ., where ωk = h(qk) is the set of
atomic propositions satisfied at state qk.

Linear Temporal Logic (LTL) is an extension of (Boolean)
propositional logic that can capture temporal relations [1]. LTL
formulas are interpreted over infinite words generated by the
transition system T from Def. II.1. Informally, an LTL formula
φ over a set of atomic propositions Π can involve Boolean
operators ¬ (negation), ∧ (conjunction), ∨ (disjunction), and
temporal operators � (always), 3 (eventually), # (next), and
U (until). For instance, � p states that p is true at all positions
of the word, 3 p states that p eventually becomes true in the
word, and # p states that proposition p is true at the next
position of the word. Formula p1 U p2 states that there exists
k ≥ 0 such that wk satisfies p2 and wj satisfies p1 for all
0 ≤ j < k, where wk is the symbol at the kth position of the
word. More expressivity can be achieved by combining the
temporal and Boolean operators. We say a run of T satisfies
φ if and only if the word generated by the run satisfies φ.

Definition II.2 (Büchi Automaton). A Büchi automaton is a
tuple B ··= (Q,Qinit, δ,Σ,F), where
• Q is the finite set of states;
• Qinit ⊆ Q is the set of initial states;
• δ ⊆ Q × Σ × Q is the (non-deterministic) transition

relation;
• Σ is the input alphabet;
• F ⊆ Q is the set of accepting (final) states.

A run of B over an input word ω0, ω1, . . . is a sequence of
states q0, q1, . . ., such that q0 ∈ Qinit, and (qk, ωk, qk+1) ∈ δ,
for all k. A Büchi automaton B accepts a word over Σ if and
only if at least one of the corresponding runs intersects with
F infinitely many times. For any LTL formula φ over a set

Π, one can construct a Büchi automaton with input alphabet
Σ = 2Π accepting all and only words over 2Π that satisfy φ
using automated tools such as ltl2ba given in [7].

In this paper, we consider specifications expressed in two
particular subclasses of LTL, namely, LTL−X [1] and syntac-
tically co-safe LTL (scLTL) [13]. LTL−X is LTL without the
(next) operator and is typically used in settings where one is
interested in stutter-invariant properties, i.e. the exact number
of immediate repetitions of a symbol is irrelevant [15, 1].
A syntactically co-safe LTL (scLTL) formula excludes the �
(always) operator and the ¬ (negation) operator appears only
in front of the atomic propositions when written in positive
normal form [13]. A special property of scLTL is that one can
determine if a given infinite word satisfies an scLTL formula
by considering only a finite prefix of it [13].

Definition II.3 (Finite State Automaton). A (determin-
istic) finite state automaton (FSA) is a tuple A :=
(Q, qinit, δ,Σ,F), where
• Q is the finite set of states;
• qinit ∈ Q is the initial state;
• Σ is the input alphabet;
• δ : Q× Σ×Q is the deterministic transition relation;
• F ⊆ Q is the set of accepting (final) states.

A run of A over an input word ω0, . . . , ωn−1 is a sequence
of states q0, . . . , qn such that q0 = qinit and (qk, ωk, qk+1) ∈
δ for all k. An FSA A accepts a word of length n over Σ if
and only if the corresponding run ends in some qn ∈ F . For
any scLTL formula φ over Π, one can construct an FSA with
input alphabet Σ = 2Π accepting all and only the finite words
over 2Π that satisfy φ using automated tools such as scheck
given in [14].

III. PROBLEM FORMULATION AND APPROACH

For simplicity of presentation, the problem is formulated
for a vehicle that can deterministically move among the
adjacent cells of a grid environment. At the end of this section
(Rem. III.3), we show that this is enough for a large class
of problems including vehicles with non-trivial dynamics. In
Sec. V-B, we present the details of such an implementation
for an autonomous quadrotor.

Formally, the problem is formulated as follows. Let

E = (C,S,Ls,D,Ld(t)) (1)

be a (planar) grid environment, where C = {cx,y|0 ≤ x <
m, 0 ≤ y < n} is an m × n array of square cells, S is the
set of static requests that can be serviced at the cells of the
environment, Ls : C → S is a (possibly partial) map that
gives the location of the static requests on the grid, D is the
set of dynamic requests that occur at arbitrary cells of the
environment whose locations are not known in advance and
can only be discovered (sensed) locally, and Ld(t) : C → D
is a time varying (possibly partial) map that gives the location
of the dynamic requests on the grid. We assume that the cells
in the environment are arranged such that c0,0 corresponds to

the cell at the southwest corner of the array when looked from
an East-North-Up (ENU) coordinate frame (Fig. 1).

In this paper, we consider the case where a vehicle navigates
in the environment by either holding position or moving to one
of the four cells sharing a facet with its current cell, and has
the ability to sense the dynamic requests occurring in the cells
within its vicinity. Specifically, the vehicle can sense an o× p
array of cells where o > 1, p > 1, both o and p are odd; and
the center cell of this sensing grid corresponds to the current
cell of the vehicle in the environment. After arriving at a cell,
the vehicle uses its sensors to detect the dynamic requests
occurring at this subset of C, i.e. it discovers the portion of
the time varying map Ld(t) corresponding to the cells that fall
within its sensing range. We also assume that the vehicle has
the ability to complete a static or dynamic request at a cell by
visiting that cell.

x

y

z

photo

upload

upload

unsafe

extinguish

assist

Fig. 1. A schematic representation of the scenario considered in
Exp. III.1. We have two static requests defined in the environment with
S = {photo, upload}, Ls(c3,1) = photo, Ls(c5,10) = upload, and
Ls(c9,7) = upload. The cells within the sensing range of the quadrotor are
highlighted in violet. Cells c9,4 and c9,2 are shown in red and cyan; and
correspond to locally detected extinguish and assist dynamic requests,
respectively.

Example III.1. Fig. 1 gives a schematic representation of
an 11 × 12 environment, where a quadrotor is required to
perform a persistent surveillance task. The set of static re-
quests that can be serviced at the regions of the environment is
S = {photo, upload} and these static requests are assigned
to the cells such that Ls(c3,1) = photo, Ls(c5,10) = upload,
and Ls(c9,7) = upload. In Fig. 1, these cells are highlighted
in green and blue, respectively. The sensing capability of
the quadrotor is modeled by a 5 × 5 grid of square cells
(highlighted in violet in Fig. 1) where the center cell of this
grid corresponds to the area directly underneath the quadrotor.
The set of dynamically occurring requests whose locations are
not known a priori is D = {unsafe, extinguish, assist}.
Requests extinguish and assist correspond to ‘extinguish
fire’ and ‘assist survivor’, respectively, whereas cells with
unsafe request should be always avoided. In Fig. 1, cells with
locally detected dynamic requests extinguish and assist

are shown in red and cyan, respectively.

In this work, we consider two types of specifications to
define the overall mission of the vehicle: a global mission
specification and a local mission specification. The global

mission specification is an LTL−X formula φg (Sec. II) over
the set of static requests S and dictates the global motion of
the vehicle in the environment. The local mission specification
is concerned with the dynamic requests detected locally within
the sensing range of the vehicle and specifies how the vehicle
must respond to them. Specifically, the local mission specifi-
cation comprises a set of service requests Dservice and a set of
avoidance requests Davoid such that D = Dservice ∪ Davoid

and Dservice ∩ Davoid = ∅, where D is the set of dynamic
requests from (1). If the vehicle locally detects a dynamic
service request from the set Dservice, it must service the
request by going to the cell, or cells, associated with the
request. If the vehicle locally detects a dynamic avoidance
request from the set Davoid, it must avoid the cell, or cells,
associated with the request. In case of multiple local requests,
the order in which the vehicle handles the service requests is
determined by their priority values given by a priority function
prio : Dservice → N with lower values meaning higher
priority. Avoidance requests, on the other hand, should always
be satisfied by the vehicle and do not have associated priority
values. Note that as the vehicle moves in the environment,
the static and dynamic requests it satisfies produce a word
over S ∪D (Sec. II) which can be checked against the global
and local mission specifications. We can now formulate the
problem that we consider in this paper.

Problem III.2. Given an environment E , a global mission
specification φg in the form of an LTL−X formula over S, and
a local mission specification D = Dservice ∪ Davoid, prio :
D → N, find a vehicle control strategy such that the produced
trajectory satisfies both the global and the local mission
specifications.

Example III.1 Revisited. The quadrotor given in Fig 1 is
required to complete a persistent surveillance mission starting
at c3,1. The global mission specification is to

Keep taking photos and upload current photo before
taking another photo.

This can be expressed in LTL−X as

φg ··=�3 photo ∧ �(photo⇒
(photo U (¬photo U upload))).

(2)

The local mission specification is defined such that
Dservice = {extinguish, assist}, Davoid = {unsafe},
with prio(assist) = 0 and prio(extinguish) = 1, i.e. if
both fire and survivor are detected locally, priority is given to
the survivor.

Our solution to Prob. III.2 takes the form of a receding
horizon controller, which computes the next cell the vehicle
must go to from its current cell such that:
• the order in which the vehicle visits the cells with static

requests satisfies the global mission specification φg , and
• the local motion of the vehicle within its sensing range

satisfies the local mission specification.
In summary, the controller that we propose works as follows:
First, a global product automaton G that captures the motion

of the vehicle between the cells with static requests and φg is
constructed (Sec. IV-A). Then, each time the vehicle arrives at
a cell, our controller translates the local mission specification
to an scLTL formula φl and obtains the corresponding FSA
(Def. II.3). Following this, a local product automaton L that
captures the local information obtained from the sensors, the
motion of the vehicle between the cells, and φl is constructed
(Sec. IV-B). Next, our controller uses L and G to compute the
next cell the vehicle must go to so that φg and φl are satisfied
(Sec. IV-C). Finally, a low-level controller moves the vehicle
to this target cell. As a demonstration of our approach, we
consider the case where the vehicle is a quadrotor as given
in Exp. III.1. In our experiments, we generate vector fields
that guarantee smooth trajectories between the current and the
next grid cell and use feedback linearization to stabilize the
quadrotor along these trajectories (Sec. V).

Remark III.3. There are two apparently restrictive assump-
tions in the above problem formulation. First, it is assumed
that the vehicle can stay inside a cell and can move from
one cell to an adjacent desired cell without penetrating to
another neighbor cell. Note that these control problems can
be easily solved for vehicles such as unicycles and quadrotors
by input-output linearization and construction of a vector
field enforcing the desired motion of a reference point among
the cells. Thus, polytopic partitioning of the workspace does
not require the robot to have linear dynamics (see [9] for
unicycles and Sec. V-B for a short discussion of such an
implementation in quadrotors). Second, the partition does not
have to be rectangular. This approach works for arbitrary
polytopic partitions by means of additional triangulations [3].
Note that non-polytopic regions resulting from other types of
partitioning schemes can, in principle, be under- or over-
approximated by polytopic regions.

IV. PROBLEM SOLUTION

A. Global Product Automaton

The first step in our solution is to construct a global product
automaton G that captures the global mission specification
φg and the motion of the vehicle among the cells with static
requests. This automaton is constructed only once at the
beginning of a run by Alg. 3 and is used for driving the
vehicle between the cells with static requests so that φg is
satisfied. To this end, we first construct a transition system
T ··= (QT, qT,init, δT,ΠT, hT, wT) (Def. II.1) representation of
the motion of the vehicle between the cells with static requests
in the environment E given in (1). Let cinit ∈ C denote the
initial cell of the vehicle in the environment. We define the set
of states of T as QT = {c | c ∈ C,Ls(c) is defined}∪ {cinit},
i.e. we have a state for each cell with a static request and
the initial cell of the vehicle. Then, we define ΠT = S and
set hT(q) = Ls(q) for all q ∈ QT. Next, we define the
transitions (edges) between the states of T such that the weight
wT(q, q′) of the transition between q, q′ ∈ QT is the length of
the shortest path between the corresponding cells that does
not go through any other cell in QT. Due to the particular

c3,1

photo

c5,10 upload

c9,7 upload

ε

11

12

11

ε

7

12

7

ε

Fig. 2. Transition system T modeling the motion of the quadrotor among the
cells with static requests for the environment given in Fig. 1. Static requests
are shown next to their corresponding states and qT,init = c3,1.

implementation of the continuous controller that drives the
vehicle from a cell to one of its four neighbor cells (see
Sec. V), we use Manhattan distance to calculate wT. Each
state q ∈ QT has a self loop so that the vehicle can stay at a
given cell (corresponding continuous controllers are described
in Sec. V). We set the weights of these loops to be ε, where
0 < ε << 1, instead of zero so that the movement of the
vehicle in the environment is not blocked due to zero weight
self-loops as we discuss in Sec. IV-C.

Example III.1 Revisited. Fig. 2 illustrates the transition
system T modeling the motion of the quadrotor between
the cells with static requests photo and upload for the
environment given in Fig. 1.

Then, we obtain the Büchi automaton B that corresponds to
the global mission specification φg and construct the product
automaton G ··= T⊗B as defined next.

Definition IV.1 (Product of T and B). The
product of a weighted transition system T ··=
(QT, qT,init, δT,ΠT, hT, wT) (Def. II.1) and a Büchi
automaton B ··= (QB,QB,init, δB,ΣB,FB) (Def. II.2) is
a tuple G ··= (QG,QG,init, δG, wG,FG), where
• QG ⊆ QT×QB is the finite set of states that are reachable

from QG,init;
• QG,init = {(qT,init, q

′
B) | (qB, hT(qT,init), q

′
B) ∈

δB ∀ qB ∈ QB,init} is the set of initial states;
• δG = {((qT, qB), (q′T, q

′
B)) | (qT, q

′
T) ∈

δT, (qB, hT(q′T), q′B) ∈ δB} is the transition relation;
• wG((qT, qB), (q′T, q

′
B)) = wT(qT, q

′
T) for all

((qT, qB), (q′T, q
′
B)) ∈ δG is the weight function;

• FG = {(qT, qB) | (qT, qB) ∈ QG, qB ∈ FB} is the set of
accepting states.

Note that the global product automaton G captures both the
motion of the vehicle between the cells with static requests
and the global mission specification, hence the name global
product automaton. We discuss how we use G to enforce the
satisfaction of the global mission specification φg in Sec. IV-C.

B. Local Product Automaton

The local product automaton L that we discuss in this
section is constructed at each iteration of Alg. 3, i.e. each time
the vehicle arrives at a cell, using the sensors of the vehicle.

To satisfy φg , Alg. 3 drives the vehicle between the cells of
QT, and for each pair of cells ccur and cnext that it drives the
vehicle between, it uses L to find local plans that satisfy the
local mission specification and get the vehicle closer to cnext.

Algorithm 1: Construct the local transition system U.
Input: The cells ccur, cnext ∈ QT between which the

vehicle is moving and x, y coordinates of the
current cell of the vehicle.

Output: Local transition system U.
1 QU = {ci,j : |x− i| ≤ o−1

2 , |y − j| ≤ p−1
2 , ci,j ∈ C}.

2 qU,init = cx,y .
3 Set QU = QU \ (QT \ {cnext}).
4 if cx,y = ccur then Add ccur back to QU.
5 δU = {(ci,j , ck,l) | ci,j , ck,l ∈ QU, (|k − i| = 1 ∧ l =
j) ∨ (|l − j| = 1 ∧ i = k)}.

6 wU(ci,j , ck,l) = 1 for all (ci,j , ck,l) ∈ δU.
7 hU(ci,j) = Ld(t)(ci,j) for ci,j ∈ QU.
8 Add end to QU with hU(end) = end.
9 if cnext ∈ QU then Add (cnext, end) to δU.

10 else
11 Add (cbndry, end) to δU for each cell cbndy at the

boundary of the sensing range.

12 ΠU is the set of propositions satisfied at the states of U.
13 return U ··= (QU, qU,init, δU,ΠU, hU, wU).

We use Alg. 1 to construct the local transition system U that
models the motion of the vehicle between the cells within its
sensing range and captures the dynamic requests sensed at
each cell. In lines 1-2, we initialize the set of states of U
as an o × p grid of square cells centered at the current cell
cx,y of the vehicle (the sensing grid discussed in Sec. III).
To be able to guarantee correctness, we need to make sure
that as the vehicle moves between cells ccur, cnext ∈ QT, it
does not visit any cells in QT other than cnext once it leaves
ccur. To this end, we first remove all cells in QU that are also
in QT except cnext (line 3). If the vehicle has not left ccur
yet, we add it back to QU as required (line 4). In lines 5-7,
we define unit weight transitions between all adjacent cells
in QU and assign locally detected dynamic requests to their
corresponding cells. Then, in lines 8-11, we add a blocking
end state to QU and define necessary transitions from those
states where the controller given in Sec. IV-C may end its local
planning at each iteration. If cnext ∈ QU, we add (cnext, end)
to δU as it is the current target cell of the vehicle. Otherwise,
we add a transition from all boundary cells of the sensing grid
of the vehicle to the end state to allow the controller to plan
until the end of the sensing range.

Then, using Alg. 2, we translate the local mission specifi-
cation (Sec. III) to the scLTL formula φl (Sec. II). Note that
Alg. 2 omits the parts of the local mission specification that
do not apply to the current set of dynamic requests sensed by
the vehicle (line 3). Finally, we obtain the deterministic FSA
A (Def. II.3) that corresponds to φl and construct the local
product automaton L ··= U⊗A as defined next.

Algorithm 2: Obtain scLTL formula φl.
Input: Local mission specification as defined in

Sec. III and transition system U.
Output: The corresponding scLTL formula φl.

1 service set = ∅, φl = (True U end).
2 foreach request ∈ Dservice ∪ Davoid do
3 if request 6∈ ΠU then Continue.
4 if request ∈ Dservice then
5 service set = service set ∪ {request}.
6 Append ‘∧ (3 request)’ to φl.

7 else
8 Append ‘∧ (¬request U end)’ to φl.

9 foreach (req1, req2) ∈ service set × service set do
10 if req1 6= req2 and prio(req1) < prio(req2) then
11 Append ‘∧ (¬ req2 U req1)’ to φl.

12 return φl.

Definition IV.2 (Product of U and A). The product of a
weighted transition system U ··= (QU, qU,init, δU,ΠU, hU, wU)
(Def. II.1) and a deterministic finite state automaton
A := (QA, qA,init, δA,ΣA,FA) (Def. II.3) is a tuple L ··=
(QL, qL,init, δL, wL,FL), where
• QL ⊆ QU×QA is the finite set of states that are reachable

from the initial state;
• qL,init = (qU,init, q

′
A) is the initial state such that

(qA,init, hU(qU,init), q
′
A) ∈ δA;

• δL = {((qU, qA), (q′U, q
′
A)) | (qU, q

′
U) ∈

δU, (qA, hU(q′U), q′A) ∈ δA} is the transition relation;
• wL((qU, qA), (q′U, q

′
A)) = wU(qU, q

′
U) for all

((qU, qA), (q′U, q
′
A)) ∈ δL is the weight function;

• FL = {(qU, qA) | (qU, qA) ∈ QL, qA ∈ FA} is the set of
accepting states.

Note that the local product automaton L obtained as the
product of U and A captures both the motion of the vehicle
within its local sensing range and the local mission specifica-
tion φl, hence the name local. Next, we show how we use the
local product automaton L and the global product automaton
G from Sec. IV-A to control the vehicle.

C. Receding Horizon Controller

The controller that we propose as a solution to Prob. III.2 is
presented in the form of Alg. 3. In the following, we discuss
each step of Alg. 3 in detail.

Lines 1–6 of Alg. 3 are run only once and are responsible
for the initialization of the data structures related to the global
part of the mission. In line 1 of Alg. 3, we construct the global
product automaton G as the product of the transition system
T that models the behavior of the vehicle between the cells
with static requests and the Büchi automaton B that captures
the global mission specification φg as discussed in Sec. IV-A.
Note that the acceptance condition for a Büchi automaton is
to visit an accepting state infinitely often (Sec. II). Thus, in

Algorithm 3: Vehicle Controller.
Input: Environment E , global mission specification φg ,

local mission specification
D = Dservice ∪ Davoid, prio : D → N.

Output: Next grid cell to fly to.

Executed Offline (initialization part):
1 Construct the global product automaton G (Def. IV.1).
2 Remove all those states in FG that cannot reach

themselves.
3 if FG = ∅ then
4 Abort: φg cannot be satisfied.

5 Let fd(q) = minq′∈FG shortest dist(q, q
′) for all

q ∈ QG.
6 gcur = arg minq∈Qinit

fd(q).

Executed Online (receding horizon part):
7 while True do
8 Obtain the local scLTL formula φl using Alg. 2.
9 Construct the FSA A corresponding to φl

(Sec. IV-B).
10 d? =∞.
11 foreach gnext ∈ {gnext | (gcur, gnext) ∈ δG} do
12 Construct U for (gcur[0], gnext[0]) using Alg. 1.
13 Construct the local product automaton

L ··= U×A (Def. IV.2).
14 foreach q ∈ FL do
15 dcell = man dist(q[0], gnext[0]).
16 dplan = dcell + fd(gnext).
17 if dplan < d? then
18 d? = dplan.
19 cell?next = Next cell on shortest path from

qL,init to q.
20 g?next = gnext.

21 if d? =∞ then
22 Abort: No feasible local plan.

23 if cell?next is g?next[0] then gcur = g?next.
24 Apply controls to reach cell?next.

line 2 of Alg. 3 we remove all those accepting states in FG
of G that cannot reach themselves. In lines 3-4 of Alg. 3, we
abort if there are no accepting states left in FG, meaning that
the global mission specification φg cannot be satisfied. In line
5, we define a potential-like function fd(q) that returns the
shortest distance to the set of accepting states FG for a state
q ∈ QG. The shortest dist(q, q′) function that we use here
returns the the distance of the shortest path between states
q, q′ ∈ QG using Dijkstra’s shortest path algorithm [10]. Note
that the value returned by fd(q) decreases as we get closer to
the set of accepting states FG and it returns zero once we are
at an accepting state q ∈ FG. For a state q ∈ QG that cannot
reach any accepting state in FG, fd(q) = ∞. As the global
product automaton G may have multiple initial states due to

the nondeterminism of B, in line 8 we set our current state in
G, denoted by gcur, to the state in QG,init that is closest to
the set of accepting states FG.

The rest of Alg. 3 (lines 7–24) is an infinite loop that
executes once at every new cell reached by the vehicle. In
this part, our controller locally plans a path that satisfies
the local mission specification while taking the vehicle as
close as possible towards satisfaction of the global mission
specification. Thus, it is essentially this second part of Alg. 3
which makes our controller a receding horizon controller. We
proceed by obtaining the scLTL formula φl corresponding to
the parts of the local mission specification that applies to the
current requests sensed by the vehicle using Alg. 2. Then at
line 9, we construct the FSA A that corresponds to φl.

The loop in lines 11–20 picks the best local trajectory within
the local sensing range of the vehicle such that it both satisfies
φl and takes the vehicle closest to satisfaction of the global
mission specification. To this end, we consider all neighbors,
denoted by gnext, of our current state gcur in G (line 11). For
each gnext, we construct the local transition system U that
models the motion of the vehicle within its local sensing range
using Alg. 1 (line 12). Note that U excludes all cells from QT
except gnext[0] (and gcur[0] if the vehicle has not left that cell
yet), where gcur[0] and gnext[0] are the cells corresponding to
the states gcur and gnext in the global product automaton G,
respectively. This guarantees that the vehicle will not satisfy
any unintended static requests that can potentially violate the
global mission specification as it goes from gcur[0] to gnext[0]
in the environment. In line 13, we construct the local product
automaton L as the product of U and A.

In lines 14–20 we iterate over all possible states in L
where a satisfying local plan can end. For each accepting
state q ∈ FL, we set dcell to the Manhattan distance between
the cell corresponding to q, denoted by q[0], and the cell
corresponding to gnext, denoted by gnext[0] (line 15). Here,
man dist() returns the Manhattan distance between the cells
corresponding q[0] and gnext[0]. Then, in line 16, we calculate
the predicted distance of the vehicle to the accepting states
of G after reaching q[0] as the sum of dcell and fd(gnext).
Lines 17–20 keep track of the next cell, denoted by cell?next,
of the best local plan obtained so far corresponding to the
combination of gnext ∈ QG and q ∈ FL that takes the vehicle
closest to the set of accepting states of G. In line 21, we
abort if we cannot find a feasible local plan that both satisfies
φl and flies the vehicle towards some neighbor gnext of gcur
that can reach FG. Else, in lines 23–24, we update gcur as
necessary and fly the vehicle to cell?next. Once the vehicle
reaches cell?next, Alg. 3 continues execution from line 7. Next,
we show the correctness of Alg. 3.

Theorem IV.3. Assume that during its execution, Alg. 3
reaches line 23 with fd(g?next) = 0 infinitely often. Then,
the trajectory generated by the vehicle satisfies the global and
local mission specifications.

Proof: Alg. 3 guides the vehicle between the cells with
static requests by computing local plans. Under the given

assumption, the controller satisfies the Büchi acceptance con-
dition (Sec. II) by visiting the set of accepting states of G
infinitely often. Since we are also guaranteed not to visit any
cells with static requests besides gnext[0] due to the way U
is constructed (Sec. IV-B), the motion of the vehicle in the
environment satisfies the global mission specification φg . Note
also that any local plan computed using Alg. 3 is guaranteed to
satisfy the local mission specification as it ends at an accepting
state of the local product automaton L. Thus, under the given
assumption, Alg. 3 correctly solves Prob. III.2.

Remark IV.4. The assumption employed in Thm. IV.3 corre-
sponds to the cases where there is always at least one feasible
local plan that both satisfies the local mission specification
and gets the vehicle closer to the cell with the next static
request that must be serviced to satisfy φg . One case where
this assumption is trivially satisfied is when there are no
dynamic requests (or equivalently there is no local mission
specification) and the cells with static requests are at least one
cell apart. In this case, if the global mission φg is satisfiable,
then Alg. 3 is guaranteed to satisfy it.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Software Implementation and Experimental Setup

The controller presented in Alg. 3 is implemented as a
Python module that returns the next cell the quadrotor must fly
to given its current location (provided by the motion capture
system) and current sensor measurements (provided by the
Matlab code that processes images sent by the quadrotor). In
our implementation, we use ltl2ba [7] to obtain the Büchi
automaton B corresponding to φg , and use scheck [14] to
obtain the FSA A corresponding to φl (Alg. 3). The low-
level controllers that control the flight of the quadrotor from
one grid cell to another according to the output of Alg. 3 are
implemented in Matlab. We discuss these low-level quadrotor
controllers in Sec. V-B.

Our experimental platform comprises four Viewsonic short-
throw projectors, an Optitrack motion capture system, a
kQuad500 quadrotor from KMel Robotics equipped with a
camera facing downwards, and three desktop computers com-
municating over a local area network. The motion capture
system tracks the motion of the quadrotor and provides the
low level controllers with accurate position information. The
projectors project the color-coded cells representing the static
and dynamic requests on the ground, which are sensed by the
quadrotor within its local sensing range (a 5 × 5 cell grid).
The colors used in the experiments are as given in Exp. III.1
and illustrated in Fig. 1: green for photo, blue for upload,
yellow for unsafe, red for extinguish, and cyan for assist.
The computers run the code responsible for trajectory planning
(Alg. 3) and low-level control of the quadrotor as well as
processing the images sent by the quadrotor.

B. Quadrotor Low Level Controller

The quadrotor low level controllers that ensure the safe and
smooth transition from one cell to another (as determined by

Alg. 3) are based on (1) input-output linearization for the
quadrotor dynamics [16], and (2) construction of multi-affine
vector fields for control-to-facet and invariance in rectangles
[2, 9]. Due to space limitations, the details are omitted. In
short, to navigate in the environment, the quadrotor must
perform a two-step sequence in which it first flies from its
current cell to one of its neighboring cells as given by Alg. 3,
then remains in the target cell while performing the necessary
sensing and planning operations. Trajectory planning between
adjacent cells is carried out by creating vector fields within the
current and target cells of the quadrotor, which map locations
in the cells to desired velocity vectors. In the current cell, the
vector field is computed such that it guarantees all trajectories
starting in the initial cell pass through the connecting facet
and into the target cell. Within the target cell, the vector field
is computed to guarantee the convergence of all trajectories to
the center of the cell preventing the quadrotor from leaving
through any of its surrounding facets once it arrives in the
cell [2, 9]. Fig. 3 shows a close-up of the vector fields of
two adjacent cells. Note that the vector field is continuous
everywhere in the region spanned by the two rectangles, which
implies that the corresponding trajectory is smooth.

The controllers are designed to use the absolute position of
the quadrotor to define the resulting velocity reference for the
feedback loop. Feedback control around a velocity setpoint is
achieved by separating the control of the translational and rota-
tional motions of the quadrotor into an outer and inner control
loop. The outer loop first calculates the desired acceleration
based on proportional-integral feedback with respect to the
velocity setpoint, and then transforms the control outputs into
a desired attitude. A feedback linearization approach is used
to find the desired attitude by solving the dynamics equations
for an orientation and thrust that produces the appropriate
motion, while accounting for the non-linear dynamics in the
model [16]. The desired attitude is then used as a reference for
the inner control loop, designed to stabilize the attitude. The
resulting architecture is a nested loop of controllers capable
of stabilizing the quadrotor at any given velocity setpoint.

Our extensive experimental testing showed that this ap-
proach produces very satisfactory results. The trajectory of
the center of the quadrotor stays close to the middle of the
traversed rectangles for all times (see Fig. 3)

C. Experimental Results

In this section, we return to the persistent surveillance
mission given in Exp. III.1 and present the results of our
experiments where a quadrotor satisfies the global and local
mission specifications given in Exp. III.1. Fig. 3 illustrates the
trajectory followed by the quadrotor for a particular realization
of dynamic requests during the experiments. Here, the black
line corresponds to the actual flight path of the quadrotor over
the environment as provided by the motion capture system.
At the beginning of the flight, only the unsafe dynamic
avoidance request is there. The remaining dynamic service
requests extinguish and assist occur later in the flight
as we discuss next. The quadrotor begins its flight at c3,1

photo

upload

upload

unsafe

extinguish

assist

photo

upload

upload

unsafe

extinguish

assist

Fig. 3. Quadrotor trajectory plotted over the environment in Exp. III.1. The
closeup on cells c4,6 and c5,6 show the vector fields computed for flying the
quadrotor from c4,6 to c5,6.

servicing the static photo request. Next, the quadrotor has to
service the static upload request at either c5,10 or c9,7. As the
quadrotor cannot detect the unsafe cells yet and c5,10 is closer
to its current position than c9,7, it starts flying towards c5,10.
Once the quadrotor reaches c3,6 it can no longer go north due
to the unsafe cells and can only fly east to get closer to c5,10.
However, when the quadrotor arrives at c5,6, the controller
finds that flying towards c9,7 takes the quadrotor closer to
satisfying φg than flying to c5,10 does, so the quadrotor
starts flying towards c9,7 to service the upload request. After
reaching c9,7, the quadrotor needs to fly back to c3,1 to
service the photo request as required by φg . As the quadrotor
leaves c9,7 for c3,1, the extinguish and assist dynamic
requests appear at c9,4 and c9,2, respectively. However, due
to its limited sensing range, the quadrotor only detects the
extinguish request and starts flying south to reach c9,4. At
c8,4, the quadrotor detects the assist request and flies to c9,2
as assisting a survivor is of higher priority than extinguishing a
fire according to the local mission specification. After assisting
the survivor at c9,2, the quadrotor extinguishes the fire at c9,4
and flies to c3,1 to service the photo request. Note that, as
the quadrotor performs a persistent surveillance mission, it
keeps servicing photo and upload requests indefinitely while
responding to locally detected dynamic requests according to
the local mission specification. The trajectory shown in Fig. 3
is a portion of the infinite mission of the quadrotor. Our
video submission accompanying the paper shows the actual
flight of the quadrotor in our experimental setup. During the
experiments, worst case execution times of the offline and
online portions of Alg. 3 were 25 ms and 180 ms, respectively,
when executed on an iMac i5 quad-core computer. Total flight
time of the quadrotor for the trajectory shown in Fig. 3 was
≈ 90 seconds.

VI. CONCLUSION

We presented a computational framework for automatic
synthesis of a control strategy driving an autonomous vehi-
cle through the regions of a partitioned environment while

satisfying rich, temporal logic specifications over service re-
quests. The main contribution of the paper is to show that
temporal logic specifications over static requests with known
locations can be satisfied while local requests sensed locally
are serviced as well. Our receding horizon implementation
of controllers insures fast responses to rapidly changing local
requests. We demonstrated the applicability of our approach
with experiments involving a quadrotor performing a persistent
surveillance task over a planar grid environment.

ACKNOWLEDGMENTS

This work was partially supported by the ONR under grants
MURI N00014-09-1051 and MURI N00014-10-10952 and by
NSF under grant CNS-1035588.

REFERENCES
[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,

2008.
[2] C. Belta and L. C. G. J. M. Habets. Control of a class of nonlinear

systems on rectangles. IEEE Transactions on Automatic Control, 51
(11):1749 – 1759, 2006.

[3] C. Belta, V. Isler, and G. Pappas. Discrete abstractions for robot motion
planning and control in polygonal environments. IEEE Transactions on
Robotics, 21(5):864–874, 2005.

[4] A. Bhatia, L. E. Kavraki, and M.Y. Vardi. Sampling-based motion
planning with temporal goals. In IEEE Intl. Conf. Robotics and
Automation, pages 2689–2696, may 2010.

[5] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta. Formal methods for
automatic deployment of robotic teams. IEEE Robotics & Automation
Magazine, 18:75–86, 2011.

[6] X. C. Ding, M. Lazar, and C. Belta. Receding horizon temporal logic
control for finite deterministic systems. In American Control Conference,
Montreal, Canada, 2012.

[7] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), volume 2102 of Lecture Notes in Computer
Science, pages 53–65, Paris, France, 2001. Springer.

[8] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. Intl. Journal of Robotics Research, 30(7):846–894,
June 2011.

[9] M. Kloetzer and C. Belta. A framework for automatic deployment of
robots in 2d and 3d environments. In IEEE/RSJ Intl. Conf. Intelligent
Robots & Systems, pages 953–958, 2006.

[10] B. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms, Vol. 21 of Algorithmics and Combinatorics. Springer, 4th
edition, 2007.

[11] H. Kress-Gazit, G. Fainekos, and G. J. Pappas. Where’s waldo? sensor-
based temporal logic motion planning. In IEEE Intl. Conf. Robotics and
Automation, pages 3116–3121, 2007.

[12] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu. Correct, reactive
robot control from abstraction and temporal logic specifications. IEEE
Robotics & Automation Magazine, 18:65–74, 2011.

[13] O. Kupferman and M. Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19:291–314, October 2001.

[14] T. Latvala. Efficient model checking of safety properties. In Model
Checking Software. 10th International SPIN Workshop, pages 74–88.
Springer, 2003.

[15] D. Peled and T. Wilke. Stutter-invariant temporal properties are express-
ible without the next-time operator. Information Processing Letters, 63
(5):243–246, 1997.

[16] H. Voos. Nonlinear control of a quadrotor micro-uav using feedback-
linearization. In IEEE Intl. Conf. Mechatronics, pages 1–6, 2009.

[17] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon con-
trol for temporal logic specifications. In Hybrid systems: Computation
and Control, pages 101–110, Stockholm, Sweden, 2010.

http://www.sciencedirect.com/science/article/pii/S0020019097001336
http://www.sciencedirect.com/science/article/pii/S0020019097001336

	Introduction
	Preliminaries
	Problem Formulation and Approach
	Problem Solution
	Global Product Automaton
	Local Product Automaton
	Receding Horizon Controller

	Implementation and Experimental Results
	Software Implementation and Experimental Setup
	Quadrotor Low Level Controller
	Experimental Results

	Conclusion

