
R

ROBOT MOTION PLANNING

INTRODUCTION

The aim in robot motion planning is to be able to specify a
task in a high-level, expressive language and have the
robot(s) automatically convert the specification into a set
of low-level primitives, such as feedback controllers and
communication protocols, to accomplish the task (1,2). The
robots can vary from manipulator arms used in manufac-
turing or surgery, to autonomous vehicles used in search
and rescue or in planetary exploration, and to smart wheel-
chairs for disabled people. They are subject to mechanical
constraints (e.g., a car-like robot cannot move sideways and
an airplane cannot stop in place) and have limited compu-
tation, sensing, and communication capabilities. The envir-
onments can be cluttered with possibly moving and shape-
changing obstacles and can contain dynamic (moving,
appearing, or disappearing) targets. The challenge in
this area is the development of a computationally efficient
framework accommodating both the robot constraints and
the complexity of the environment, while allowing for a
large spectrum of task specifications.

A robot combines moving mechanical pieces such as
wheels, gears, and breaks with digital devices such as
processors and sensing and communication devices, in
continuous interaction with a possibly changing environ-
ment. Therefore, motion planning is a highly interdisci-
plinary area, combining tools from computer science,
mechanics, control theory, and differential geometry.
Given the variety of applications, many motion planning
approaches have been developed over the years. Depending
on the task they address, motion planning problems can
roughly be divided into four main groups: navigation, cover-
age, mapping, and localization(3).

In navigation, the problem is to find a collision-free
motion between two configurations of the robot. Coverage
is the problem of moving a robot sensor or end effector in
such as way that it reaches all points in a target space (e.g.,
painting a surface). Mapping involves exploring an envir-
onment with the goal of producing a representation that
can be used, for example, in navigation and coverage.
Finally, in localization, the problem is to use a map and
sensor data to determine the configuration (state) of the
robot. Localization and mapping are sometimes performed
simultaneously, such as in simultaneous localization and
mapping (SLAM)(4).

Motion planners also differ depending on the robot
model they consider. For example, it is much easier to
plan the motion of a robot that is free to move instanta-
neously in all directions of its configuration space (omni-
directional robot), rather than generating motion for a car-
like or an airplane-like vehicle that cannot move sideways
(i.e., nonholonomic robot; see Ref. 5 for a collection of motion
planning approaches for such robots). Motion planning can
be performed for kinematic robot models, which capture

only the configuration and velocity of the robot, or for
dynamic robot models, which capture forces and accelera-
tions.

Motion planning approaches can also be classified
depending on the properties of the underlying algorithms.
A motion plan is optimal if the produced motion minimizes
energy consumption, execution time, trajectory length, and
so on. Computational complexity is also a determining
factor. For example, in most cases, it is desired that the
amount of necessary memory and running time scale poly-
nomially with the size of the input of the planner, which can
be the number of obstacles, the number of degrees of free-
dom of the robot, and so on. Finally, a planner is complete if
it always finds a path if one exists. Others are resolution
complete, if a solution is found whenever one exists at a
given discretization resolution, or probabilistic complete, if
the probability of finding a solution during an iterative
discretization process converges to 1 when the solution
exists.

WORKSPACE AND CONFIGURATION SPACE

Given a robotic system, a configuration is a complete
description that determines the position of every point
of the system uniquely. Its configuration space, called for
simplicity C-space, is the set of all possible configurations
of the system. The number of degrees of freedom of a
robotic system is the dimension of its minimal configura-
tion space or, in other words, the minimum number of
parameters needed to describe the system completely. The
space in which the robotic system does work is called the
workspace, which can be seen as the Euclidean space R2 or
R3, depending on whether the motion is in plane or space.
Most often, however, the workspace is defined more pre-
cisely as the subset of R2 or R3 that can be reached by a
point of interest on the robot, such as the end effector of a
manipulator arm.

Consider, for example, a two-joint planar robot arm,
where a point on the first link is pinned to the ground,
and the base of the second link is pinned to the end of the
first, such that the only possible motion of the second link is
a rotation about the (revolute) joint [Fig. 1(a)]. If we denote
by u1 and u2 the angles formed by the two links with the
horizontal, then (u1, u2) can be seen as coordinates of the
configuration space, which is S1 � S1 ¼ T2, where S1 and T2

denote the unit circle and the torus, respectively [Fig. 1(c)].
The workspace of this robot, however, is an annulus, with
the outer radius determined by the sum of the lengths of the
two links, and the inner radius is given by the difference
between their lengths [Fig. 1(b)].

The configuration space of a planar square robot (or any
other rigid body) that can only translate without rotation
(see Fig. 2) is R2. For a planar robot that can only rotate
about a fixed point, the configuration space is SO (2), called
the Special Orthogonal group in the plane, which is

1

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.
Copyright # 2008 John Wiley & Sons, Inc.



isomorphic to S1. The configuration space of a robot allowed
to translate and rotate in the plane is SE(2), called
the Special Euclidean group in the plane, and defined
as SEð2Þ ¼ R2 � SOð2Þ. In space, a rotating and transla-
ting robot modeled as a rigid body evolves in
SEð3Þ ¼ R3 � SOð3Þ, where SO(3) is the group of rotations
in space (3).

If obstacles are present in the workspace, it is useful to
define explicitly the set of robot configurations for which
collisions occur. For each obstacle in the workspace, the
configuration space obstacle is defined as the set of all
configurations at which the robot intersects the obstacle
in the workspace. The free configuration space, also called
free C-space, is the set of configurations at which the robot
does not intersect any obstacle. Figure 2(b) shows the free
C-space for the square robot moving in the environment
shown in Fig. 2(a), if only translational motion is allowed
(no rotation). The reader is referred to Ref. 3, p. 509 for an
example of the free C-space construction for a polytopal
robot translating and rotating in a polytopal environment
with polytopal obstacles. In this setup, a navigation pro-
blem, as defined above, translates to finding a continuous
curve between the initial and the final configuration in the
free C-space.

RIGID BODY MOTION INTERPOLATION

A navigation problem for a robot, represented simply as a
rigid body moving in space or plane with no obstacles, is also
called rigid body motion interpolation. In the configuration
space of the robot, which is SE(3) or SE(2) as defined above,
this problem translates to generating a (possibly smooth)
curve interpolating between two points. The problem of

Figure 1. A two-link manipulator (a), its workspace (b), and its
configuration space (c).

-5 0 5 10

0

2

-2

4

6

8

10

12

x1

x 2

O1

O2

O3

O4

O5

x0
xf

R

R ε

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

-4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

x1

x 2

)c()b()a(

-4 -2 0 2 4 6 8

-2

0

2

4

6

8

10

x1

x 2

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

-5 0 5 10

-2

0

2

4

6

8

10

12

x1

x 2

)f()e()d(

Figure 2. Cell decomposition and simultaneous planning and control for a square robot translating
(no rotation) in a 2-D rectangular environment with polyhedral obstacles. The observable is the
centroid of the robot: (a) initial (left) and final (right) positions of the robot. (b) The free C-space is
obtained by enlarging the obstacles, shrinking the environment boundaries, and reducing the robot to
its observable point. (c) Rectangular (quadtree) partition of the free C-space and the quotient graph of
the partition. (d) Optimal path from initial to final node (rectangle) in the quotient graph; ^ and �
denote the initial and final position of the robot observable, respectively. (e) Vector field assignment
(used in simultaneous planning and control) and the resulting trajectory of the observable. (f) Robot
motion in the initial environment.

2 ROBOT MOTION PLANNING



finding a smooth interpolating curve is well understood in
Euclidean spaces (e.g., a line segment is a smooth inter-
polating curve between two points), but it is not easy to
generalize such techniques to curved spaces, such as SE(3)
and SE(2). Most work in this area proposes to generalize the
notion of interpolation from the Euclidean space to a curved
space. For example, in Ref. 6, Bezier curves are used for
interpolating rotations based on a spherical analog of the
well-known de Casteljau algorithm. Other examples
include spatial rational B-splines and Hermite interpola-
tion (see Ref. 7 for an overview).

The above methods find immediate applications in
computer graphics (e.g., generate a ‘‘natural’’ motion for
an object thrown from one place to another). However, to
generate a robot motion plan, two more issues have to be
taken into consideration: optimality of the trajectory and
invariance with respect to the choice of a world frame. The
optimality requirement is particularly relevant in applica-
tions such as deep space formations. For example, to
achieve interferometry, a group of satellites is required
to maintain a rigid body formation. A reconfiguration
demands a fuel-optimal trajectory to preserve mission
life and is constrained by the limited thrust available.

Coordinate-free approaches leading to trajectories that
are invariant to reference frames exist for the generation of
shortest paths and minimum acceleration trajectories on
SO(3) (the set of all rotations in R3) and SE(3) (the set of all
poses in R3) (see Ref. 8 for an overview) (see Fig. 3 for
examples). However, analytical solutions are available only
in the simplest cases, and the procedure for solving optimal
motions, in general, is computationally intensive. A relaxa-
tion based on the generation of optimal curves in an embed-
ding Euclidean space and subsequent projection, which
leads to suboptimal solutions, is proposed in Ref. 7.

POTENTIAL-BASED PLANNERS

Potential-based motion planners are based on the idea that
a robot configuration can be driven to a desired value in the
same way in which a particle moves in a force field. More
precisely, a potential f is a differentiable, real-valued
function defined on the configuration space. Its gradient

rf is a vector that points in the direction of maximum
(local) increase of f. This gradient can be used to define a
vector field, (i.e., an assignment of a vector to each point
of the configuration space). Guiding a robot through an
environment with obstacles toward a goal can, therefore, be
achieved by constructing a potential function in the con-
figuration space, with a minimum value at the goal and
high values at the obstacles, and by setting the velocity
of the robot configuration equal to the negative of the
gradient of the potential. Such an approach can be used
directly to accommodate kinematic robot models. However,
this approach can be extended for dynamic models, by
designing control laws guaranteeing the convergence of
the velocities to a desired vector field (9).

The robot motion terminates at a point of zero velocity or,
equivalently, at a point where the gradient of the potential
function vanishes, which is a critical point for the potential
function. This point can be, in general, a minimum, a
maximum, or a saddle point, and it can be degenerate or
nondegenerate (isolated), depending on the Hessian matrix
of the potential function. Explicitly, a critical point is
degenerate if and only if the Hessian i.e., the matrix of
second derivatives; see Ref. 3 is singular at that point. A
positive-definite Hessian indicates a local minimum, a
negative-definite Hessian indicates a local maximum,
and a Hessian of indefinite sign indicates a saddle point.
The goal in potential-based motion planning is to have the
robot stop at the minimum corresponding to the goal.
Although the robot can, in theory, stop at a local maximum
or at a saddle point, this is impractical, because such points
are unstable, and the probability that this happens is
basically zero. Other possible local minima, on the other
hand, are attractive, and the robot can get ‘‘caught’’ into
such undesirable points in its way to the goal. Most of the
existing potential-based planners, where the potential
function is constructed through the superposition of attrac-
tive (to the goal) functions and repulsive (from the obsta-
cles) functions, suffer from this problem.

To address the local minima problem, two types of
approaches have been developed (see Ref. 3 for a detailed
overview). In the first approach, the potential field is aug-
mented with a search-based planner. For example, the
randomizedpathplanner (RPP)(3)usesavarietyofpotential

−2 −2

−2

0 2 4 6 8 10 12 −5

−5

0
5

10
15

−5

0

5

10

15

20

y
x

z

0 2 4 6 8 10
0

2
4

6
8

10
120

5

10

15

y

x

z

(b)(a)

Figure 3. A geodesic (minimum length, or energy) curve for a cuboid and a minimum acceleration
curve for a cube.

ROBOT MOTION PLANNING 3



functions, and when stuck at a local minimum, it performs a
random walk, with the goal of escaping the local minimum.
In the second approach, a special type of potential function,
called a navigation function, is constructed. Although guar-
anteed to have exactly one minimum, a navigation function
can only be applied to a limited class of configuration spaces,
which are diffeomorphic to sphere spaces.

ROADMAPS

If several navigation tasks are expected to occur in an
environment, then building a map of the environment
and then performing navigation using the map can prove
tobe moreefficient than performing navigation from scratch
every time such a request occurs. The most used of such
maps are topological, or graph-like, structures, where nodes
correspond to ‘‘interesting features’’ and the edges show
adjacency between nodes. For example, the nodes can be
points of interest for a specific task such as targets or
intersections, whereas the edges can label actions required
from the robot to move from a location to another.

Roadmaps (3) are topological maps embedded in the free
space. In other words, in a roadmap, the nodes correspond
to physical locations in the environment, and the edges
correspond to paths between different locations. A roadmap
is, therefore, both a graph and a collection of one-dimen-
sional manifolds (curves). Robots use roadmaps in the
same way drivers use the interstates. Instead of planning
a trip from point A to point B on small streets, a driver
would plan her trip from A to a close interstate, then on
the interstate for as long as possible, and then from the
interstate to the destination B. Similarly, if a roadmap is
available, a robot planner would find a collision-free path to
the roadmap, then travel on the roadmap until close to the
destination, and then find another collision-free path from
the exit point on the roadmap to the destination. Most
motion occurs on the roadmap, which is low dimensional,
as opposed to the motion to and from the roadmap, which
occurs in a possibly high-dimensional configuration space.

Several types of roadmaps have been developed over the
years, which include visibility maps, deformation retracts,
and silhouettes. In visibility maps, which work for poly-
gonal environments with polygonal obstacles, the nodes are
the vertices of the polygons, and an edge between two nodes
means that a line of sight exists between the nodes. Defor-
mation retracts capture the ‘‘essential’’ topology of an
environment, and they include generalized Voronoi dia-
grams(3). Finally, silhouette methods are based on
repeated projection of the robot-free configuration space
onto lower dimensional spaces until a one dimensional
representation is reached.

SAMPLING-BASED ALGORITHMS

The construction of roadmaps, as presented above, is based
on an explicit representation of the free C-space. As a result,
as the dimension of the configuration space increases (e.g.,
a manipulator arm with several joints and a gripper with
fingers can have tens of degrees of freedom), motion plan-
ners based on roadmaps become computationally infeasi-

ble. In such cases, sampling-based approaches are more
appropriate. In short, a sampling-based planner generates
samples (i.e., collision-free configurations of the robot) and
then interpolating paths for the samples. The latter process
is also often achieved through sampling but at a finer rate.

The most representative sampling-based algorithm is
the Probabilistic Road Map Planner (PRM) (3). The main
idea behind PRM is that it is easy (and cheap) to check for
collisions with obstacles. In other words, it is easy to
see whether a sample is in the free C-space. PRM uses
coarse sampling to obtain the nodes of the roadmap and
fine sampling to construct its edges. Once the roadmap is
constructed, it is used in exactly the same way as the
‘‘classic’’ roadmap presented in the previous section. The
existing PRMs differ by the way samples and interpolating
paths are generated. The basic PRM uses uniform distribu-
tion for node sampling. Other, more sophisticated, PRMs
usesampling schemes such as importance sampling in areas
that are difficult to explore and deterministic sampling such
as sampling on grids and quasirandom sampling.

As PRM is a roadmap planner, it is optimized for several
queries. For single queries, other sampling-based algo-
rithms are effective, such as the rapidly exploring random
tree planner (RRT)(3). A combination of multiple-query and
single-query methods, such as the sampling-based roadmap
of trees (SRT)(3), tries to find a compromise between using a
roadmap versus a large sampling tree in very difficult
planning problems. Other developments in this area led
to sampling-based planners that take into account kine-
matic and dynamic constraints, stability requirements,
energy constraints, visibility constraints, and contact con-
straints.Sampling-based algorithms opened a new direction
in robot motion planning, by making it possible to approach
very high-dimensional robotic systems.

CELL DECOMPOSITIONS

Cell decompositions are among the most used techniques
for robot motion planning. To illustrate the main ideas, we
assume for simplicity that the motion task is a navigation
task. The computation behind most of the existing
approaches consists of three main steps(3). In the first
step, the free configuration space is partitioned, and the
quotient graph of the partition is constructed [see Fig. 2(c)].
In this graph, a node labels a free cell, and an edge between
two nodes shows an adjacency relation between the corre-
sponding cells. In the second step, the cells corresponding to
the initial and the final configurations are determined, and
a path is determined between the corresponding nodes in
the quotient graph [see Fig. 2(d)]. This path can be optimal
with respect to some cost, which in the simplest cases
penalizes the distance traveled by the robot. Alternatively,
the cost can prevent from generating paths ‘‘too close’’ to the
obstacles. Finally, in the third step, a desired robot trajec-
tory is constructed inside the configuration-space tube
determined by the path in the quotient graph, and a tra-
jectory-following controller is synthesized for the robot.

The several cell-decomposition methods can be classified
according to the underlying partition scheme. The most
popular cell decompositions are trapezoidal decomposi-

4 ROBOT MOTION PLANNING



tions, triangulations, and rectangular grids. For example,
Fig. 2(c) shows a rectangular partition, whereas Fig. 4(a)
shows a triangulation of a polygonal environment cluttered
with polygonal obstacles. Note that although efficient
algorithms exist for planar trapezoidal partitions and
triangulations, these procedures become cumbersome in
higher dimensional spaces. Rectangular partitions,
although not particularly efficient in plane, have the
advantage of working in higher dimensions, especially
when a 2n-trees (i.e., quad-trees in plane and oct-trees in
space) are used during the partition process.

The three-step, top-down process presented above has
two main disadvantages. First, because no robot control
and/or actuation constraints are taken into account dur-
ing the decomposition, it is possible that the reference
trajectory generated in the last step cannot be followed by
the robot. To deal with this issue, in recent years,
researchers proposed approaches for the so-called simul-
taneous planning and control. In these studies, the envir-
onment partitioning is performed at the same time with
the assignment of robot-compatible controllers for each
region. For example, polygonal partitions of planar envir-
onments followed by assignment of vector fields obtained
as solutions of Laplaces equation in each of the regions
were considered in Ref. 10. Triangular partitions and
rectangular partitions can be also accompanied by the
assignment of vector fields with arbitrary polyhedral
bounds, if the robot dynamics are restricted to affine
and multi-affine (see, for example, Ref. 11). In Figs. 2(e)
and 4(b), we show how vector fields are assigned in each
rectangle and triangle from a path in the quotient graph.
In this setup, the ‘‘execution’’ of a ‘‘discrete’’ path is pro-
vably correct (i.e., regardless of the actual position of the
robot inside each region), therefore avoiding the trajectory
generation and following process.

Trapezoidal, triangular, and rectangular decomposi-
tions, as presented above, are mostly used for navigation
tasks, and they are not appropriate for coverage(3). Indeed,
even if coverage of cells can be efficiently achieved through
coverage algorithms on graphs, covering the space inside
each cell might be difficult because of the size and shape of

the resulting cells. If coverage is the task at hand, then
Boustrophedon decompositions and Morse Cell decomposi-
tions are more appropriate(3). Roughly put, Boustrophedon
decompositions start from a trapezoidal decomposition and
reorganize cells such that shorter and more efficient paths
can cover the same area. Morse decompositions are based
on the same idea, but they allow us to achieve coverage in
non polygonal environments. Finally, for a special class of
motion planning problems, called pursuit/evasion pro-
blems (games), a visibility-based cell decomposition is
more appropriate. Roughly, moving from one cell to an
adjacent one in this decomposition corresponds to a change
in visibility (i.e., target or obstacles appear or disappear).

SYMBOLIC APPROACHES TO MOTION PLANNING AND
CONTROL

The current approaches to robot motion planning and con-
trol presented above have two main limitations. First, the
specification language is not rich enough for a large spec-
trum or robotic applications. For example, a navigation
task is always formulated as ‘‘go from A to B and avoid
obstacles.’’ Nevertheless, the accomplishment of a mission
might require the attainment of either A or B, convergence
to a region (‘‘reach A eventually and stay there for all future
times’’), visiting targets sequentially (‘‘reach A, and then B,
and then C’’), surveillance (‘‘reach A and then B infinitely
often’’), and so on. Second, as mentioned, some of the
approaches above, such as cell decomposition, do not expli-
citly take into account the control, sensing, and commu-
nication constraints of the robot.

Symbolic approaches to robot motion planning and con-
trol have been developed recently to address these limita-
tions. They draw on well-established concepts in related
areas, such as behavior-based robotics and hybrid control
systems. As the specification language is enriched and
real-world robot control, sensing, and communication con-
straints are taken into account, concepts and tools from the
theory of computation such as automata and languages
develop naturally, hence the name ‘‘symbolic’’ (see Ref. 12

0 5 10 15 20

2

4

6

8

10

12

14

16

18

12
3

4
5

6

7

8

9
10

11

12

13

14
15

16
17

18 19

20

21

22

23 24
25

26

27

28
29 30

3132

33

34

35 36
37
38

39

40

41
42

4344

45
46 47

48

∆1

∆9

)b()a(

Figure 4. (a) A triangulation of the free space in a polygonal environment and the corresponding
quotient graph. (b) A sequence of triangles (such as resulting from a path on the quotient graph of a
triangulation) is executed by constructing affine vector fields in each triangle.

ROBOT MOTION PLANNING 5



for a more detailed overview of these methods and the main
challenges in the area).

To introduce the main ideas, note that the typical cell-
decomposition approach to the navigation problem is a
hierarchical, three-level process. At the first (top-most)
level, the specification ‘‘go from A to B and avoid obstacles’’
is given, the obstacle-free configuration space of the robot is
partitioned into cells, and the quotient graph is constructed
(see Figs. 2(c) and 4(a) for examples). As any path connect-
ing the cell containing A to the cell containing B in this
graph satisfies the specification (i.e., it avoids obstacles),
this is called the specification level. In the second step, a
path on this graph is chosen, which can be seen as a
‘‘discrete’’ execution of the robot, hence, the name execution
level for this step. Finally, in the third step, called the
implementation level, a reference trajectory traversing
the sequence of cells given by the path is generated, and
robot controllers are constructed so that the reference
trajectory is followed.

Symbolic approaches to motion planning fit into the
three-level hierarchy described above, and they can be
divided into two main groups: top-down approaches and
bottom-up approaches. In top-down approaches (also
referred to as middle-out approaches(13)), the focus is on
the expressivity of the specification language, and the hope
is that, while going down the three-level hierarchy pre-
sented above, implementations are possible for real-world
robots. In bottom-up approaches, the starting point is a
careful analysis of the control and sensing communication
of the robot, possible executions are generated at the execu-
tion level, and the hope is that the set of such robot-
compatible executions give rise to an expressive specifica-
tion language. However, a significant gap exists between
these two approaches. Bridging in this gap is one of the
main challenges in the area(12).

Top-Down Symbolic Approaches

It was recently suggested that, to define a rich specification
language for robot motion, inspiration can be taken from
temporal logics, which are commonly used for specifying
and verifying the correctness of digital circuits and com-
puter programs. Roughly, any rich, human-like, temporal,
and logic statement about the reachability of regions of
interest by the robot (including the ones given as examples
above) translate naturally to a formula in such a logic.
Consider, for example, that a robot moves in an environ-
ment with three obstacles o1, o2, and o3 and three targets
r1, r2, and r3 that need to be surveyed (visited infinitely
many times). In other words, the task can be formulated as
‘‘Always avoid obstacles o1, o2, o3 and visit regions r1, r2, r3,
in this order, infinitely often.’’ This specification immedi-
ately translates to the following formula of linear temporal
logic (LTL) over the set of symbols o1, o2, o3, r1, r2, r3:
GðFðr1 ^Fðr2 ^Fr3ÞÞ ^ : ðo1 _ o2 _ o3ÞÞ;where:and^ stand
for Boolean negation and disjunction and G and F are
temporal operators that mean ‘‘always’’ and ‘‘eventually,’’
respectively.

The semantics of LTL formulas are given over labeled
transition graphs (also called Kripke structures or transi-
tion systems). Such a transition system can be obtained

from the dual graph of the partition induced by the regions
of interest, if the nodes are labeled according to their being
part of obstacles or of targets, and if the edges are viewed as
transitions that a robot can take. To compute a transition
between two nodes (or a self-transition), one could proceed
by checking for the existence of robot feedback controllers
taking the robot from one region to another in finite time (or
keeping the robot inside the region forever), regardless of
the initial position of the robot. If this is achieved, then a
certain type of equivalence relation exists between the
initial control system describing the motion of the robot
in the environment and the finite transition system, called
bisimulation, which guarantees that the two systems
satisfy the same LTL formula. Therefore, provided that
the two types of controllers can be constructed, the motion
planning problem is reduced to a classic model checking
procedure, for which exist several off-the-shelf tools devel-
oped by the formal verification community(14).

Currently, two classes of systems are available for which
such quotients can be efficiently constructed: affine sys-
tems with polyhedral partitions, and multi-affine systems
(i.e., polynomial systems where the maximum power at
which a variable can occur is one) with rectangular parti-
tions. Although these two classes of systems seem restric-
tive for robot dynamics, it is important to note that
multi-affine dynamics capture vector cross products, and
they can therefore accommodate dynamics of aircraft with
gas-jet actuators and underwater vehicles. In addition,
differential- drive and car-like vehicles can be easily accom-
modated by solving an additional input–output feedback
linearization. Fully automatic computational frameworks
for control of affine and multi-affine dynamics from rich
specifications given as arbitrary LTL formulas over linear
and rectangular predicates were developed in Ref. 15 and
16. A related approach was used in Ref. 17 to control a
nonholonomic robot model. In Ref. 18, it is shown that a
significant decrease in computation can be achieved if the
specifications are restricted to a fragment of LTL.

Bottom-Up Symbolic Approaches

The top-down symbolic approaches presented above use
environment discretization to capture the complexity of the
environment. While allowing for a rich specification lan-
guage over the partition regions, they are (in current form)
restricted to static, a priori known environments and sim-
ple robot dynamics, such as fully actuated or affine
dynamics with polyhedral speed constraints. As suggested,
robots with more complex dynamics such as helicopter-like
vehicles might not be able to implement executions strings
over partition regions. In this situation, the discretization
may be more appropriate at the level of controllers rather
than environments. The argument behind such a control-
driven discretization is that the global control task can be
broken down into more easily defined behavioral building
blocks, each defined with respect to a particular subtask,
sensing modality, or operating point. Strings over such
behaviors make up words in so-called motion description
languages (MDLs)(19). An example of such a string is
ðki1

; ji1
Þ; . . . ; ðkiq

; jiq
Þ, where ki j

: Rþ � X!U are feedback
control laws and ji j

: Rþ � X!f0; 1gare temporal or envir-

6 ROBOT MOTION PLANNING



onmentally driven interrupt conditions, j ¼ 1; . . . ; q. The
robot ‘‘parses’’ such words as x_ ¼ f ðx; ki1

ðt; xÞÞ until
ji1
ðt; xÞ ¼ 1, at which point the timer t is reset to 0, and x_ ¼

f ðx; ki2
ðt; xÞÞ until ji2

ðt; xÞ ¼ 1, and so on.
An attractive alternative to MDL is to use motion pri-

mitives. The idea is that, instead of using controllers chosen
from a collection of controls, one could think of simplifying a
robot control problem by piecing together, in an appropriate
way, a set of elementary trajectories chosen from a small
‘‘library’’—that are themselves guaranteed to satisfy the
constraints. Such feasible trajectories that can be combined
sequentially to produce more complicated trajectories are
called ‘‘motion primitives’’(20). The compatibility rules
between such primitives can be, as above, modeled as
finite-state machines, called Maneuver Automata. Motion
primitives can be generated in several ways, for example,
by recording the actions of a human pilot; if an accurate
model of the robot’ s dynamics is available, model-based
approaches are also possible (e.g., to design optimal
maneuvers).

Although the symbolic approaches to motion planning
described in this section have been applied successfully to
challenging problems in autonomous mobile robotics,
including acrobatic aircraft, and off-road races, several
challenges still need to be addressed. For example, the
problem of choosing the control modes (quanta) or motion
primitives for achieving a given task is not at all obvious.
One way of addressing it is by letting the control mode
selection be driven by experimental data. For instance, one
can envision a scenario in which a human operator is
controlling a mobile platform and then, through an analysis
of the input–output sample paths, construct motion
description languages that reproduce the human-driven
robot behavior.

BIBLIOGRAPHY

1. J. C. Latombe, Robot Motion Planning, Boston, MA: Kluger
Academic Publishers., 1991.

2. S. M. LaValle, Planning Algorithms, Cambridge, UK:
Cambridge University Press, 2006.

3. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion:
Theory, Algorithms, and Implementations, Boston, MA: MIT
Press, 2005.

4. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics.
Cambridge, MA: The MIT Press, 2005.

5. Z. Li and J. F. Canny, (eds.), Nonholonomic Motion Planning,
Norwell, MA: Kluwer Academic Publishers, 1992.

6. K. Shoemake, Animating rotation with quaternion curves,
ACM Siggraph, 19 (3): 245–254, 1985.

7. C. Belta, Geometric methods for multi-robot motion planning
and control, PhD thesis, Philadelphia, PA, University of Penn-
sylvania, 2003.

8. M. Z̆efran, V. Kumar, and C. Croke, On the generation of
smooth three-dimensional rigid body motions, IEEE Trans.
Robotics Auto., 14 (4): 579–589, 1995.

9. E. Rimon and D. E. Koditschek, Exact robot navigation using
artificial potential functions, IEEE Trans. Robotics Auto., 8 (5):
501–518.

10. D. C. Conner, A. A. Rizzi, and H. Choset, Composition of local
potential functions for global robot control and navigation,
Proc. of the IEEE/RSJ Intl. Conference on Intelligent Robots
and Systems, Las Vegas, Nevada, 2003.

11. C. Belta, V. Isler, and G. J. Pappas, Discrete abstractions for
robot planning and control in polygonal environments, IEEE
Trans. Robotics, 21 (5): 864–874, 2005.

12. C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.
J. Pappas, Symbolic planning and control of robot motion,
IEEE Robotics Auto. Mag., 14 (1): 61–71, 2007.

13. M. S. Branicky, T. A. Johansen, I. Petersen, and E. Frazzoli,
On-line techniques for behavioral programming, Proc. of the
IEEE Conference on Decision and Control, Sydney, Australia,
2000.

14. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: The MIT Press, 2000.

15. L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen,
Reachability and control synthesis for piecewise-affine hybrid
systems on simplices, IEEE Trans. Aut. Control, 51: 938–948,
2006.

16. M. Kloetzer and C. Belta, A fully automated framework for
control of linear systems from temporal logic specifications,
IEEE Trans. Auto. Cont., 53 (1): 287–297, 2008.

17. D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J.
Pappas, Valet parking without a valet, Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
San Diego, CA, 2007.

18. G. Fainekos, S. Loizou, and G. J. Pappas, Translating temporal
logic to controller specifications, Proc. 45th IEEE Conference on
Decision and Control, San Diego, CA, 2006.

19. M. Egerstedt and R. W. Brockett, Feedback can reduce the
specification complexity of motor programs, IEEE Trans. Auto.
Cont., 48 (2): 213–223, 2003.

20. E. Frazzoli, M. A. Dahleh, and E. Feron, Maneuver-based
motion planning for nonlinear systems with symmetries,
IEEE Trans. Robotics, 21 (6): 1077–1091, 2005.

CALIN BELTA

Boston University
Brookline, Massachusetts

ROBOT MOTION PLANNING 7


