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R mean rotor radius
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<
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)/�;�: pressure rise

� local #ow coe$cient at station 0
� disturbance #ow at �
� axial distance from station 0
� mean #ow coe$cient at station 0
� ";t/R with t time
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Abstract

Rotating stall is a primary constraint for the performance of axial #ow compressors. This paper establishes a necessary and
su$cient condition for a feedback controller to locally stabilize the critical equilibrium of the uniform #ow at the inception of rotating
stall. The explicit condition obtained in this paper provides an e!ective synthesis tool for rotating stall control. � 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Axial #ow compressors are subject to two distinct
aerodynamic instabilities, rotating stall and surge, which
can severely limit the compressor performance. Both
these instabilities are disruptions of the normal operating
condition which is designed for steady and axisymmetric
#ow. Rotating stall is a severely non-axisymmetric distri-
bution of axial #ow velocity, taking the form of a wave or
`stall cella, that propagates steadily in the circumferential
direction at a fraction of the rotor speed. Surge, on the
other hand, is an axisymmetric oscillation of the mass
#ow along the axial length of the compressor. Both can
result in catastrophic consequences.
Feedback control was proposed to improve compres-

sor performance by Epstein, Ffowcs Williams, and
Greitzer (1989) and has since received great attention in
recent years. The existing results include linear control
(Paduano, 1992), bifurcation stabilization (Liaw &
Abed, 1996), and backstepping method (Krstic, Protz,
Paduano, & Kokotovic, 1995; Banaszuk, Hauksson,
& Mezic, 1996). This paper focuses on rotating stall
control based on the multi-mode Moore}Greitzer model
(Mansoux, Setiawan, Gysling, & Paduano, 1994), which
in the limiting case converges to the full partial di!eren-
tial equation (PDE) model of Moore and Greitzer (1986).
A feedback control law will be studied which is a general-
ization of the feedback control laws due to Liaw and
Abed (1996), and Chen, Gu, Martin, and Zhou (1998). It
will be shown that the critical operating point at the peak
pressure rise of the performance characteristic curve is
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Fig. 1. Schematic of compressor showing nondimensionalized lengths.

locally stabilizable with the proposed feedback control
law. A necessary and su$cient condition will be derived
for local stabilization of the underlying feedback system.
This condition holds, and results in lumped feedback
controllers for the full PDEMoore}Greitzermodel in the
limiting case. In contrast to the global stabilization re-
sults of Banaszuk et al. (1996), our local stabilization
condition is explicit, and provides an e!ective synthesis
tool for rotating stall control without distributed sensors.
Hence our result compliments those of Banaszuk et al.
(1996).

2. Multi-mode compressor model and its equilibria

A schematic axial #ow compressor is shown in Fig. 1.
A post-stall model for compression systems was

developed by Moore and Greitzer, and its full PDE form
is described by Moore and Greitzer (1986)
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With the same assumption as in Moore and Greitzer
(1986), the full PDE model can be approximated by
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Fourier transform (DFT) matrix. The performance char-
acteristic curve �
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Fig. 2. Schematic compressor characteristic, showing rotating stall.

The "rst equality in (7) is obtained by setting �Q
�

"0 in
(3), while the second equality in (7) by setting�Q "0 in (4).
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where again 1)n)N. Hence, eigenvalues are also func-
tions of �.
Assume S-shape for the performance characteristic

curve �
�
( ) ), and c

�
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"0 as in Moore and Greitzer

(1986). A schematic compressor characteristic is shown in
Fig. 2.
The designed operating point is uniquely determined

by the intersection of the throttle line (dashed lines A}B
or C}D for two di!erent values of the throttle position)
with the compressor performance curve �
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( ) ), according

to (7). The maximum pressure rise takes place at �"0
(point A) because that is where the derivative of �
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equals to zero. Since �(0 on the right side of the
maximum pressure rise, the N pairs of eigenvalues of
¸ matrix in (17) are stable. By �(0 the pair of eigen-
values of (16) are also stable. Hence, any point on right
side of the peak of �
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( ) ) is a stable operating point, and

the uniform #ow is a stable equilibrium, as highlighted by
the solid line. However if the throttle value � decreases,
then the #ow rate intensity �

�
decreases, and the deriva-
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( ) ) eventually changes its sign into positive.

Thus left side of the peak point A on �
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unstable operating points, as indicated by dotted line. It
is noted that the N pairs of eigenvalues of ¸ in (17)
become imaginary precisely at �"0. The critical throttle
value at which the N pairs of eigenvalues cross the
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1)n)N. At the criticality �"�
�
, Hopf bifurcations

occur for the multi-mode model of the compression sys-
tem in (3) and (4) that induce rotating stall. Furthermore
if the underlying bifurcation is subcritical, or unstable,
the A}C portion of the stall curve is unstable which is
sketched forN"1. Stall cells will be born at point A, and
grow which will throttle the operating point from A to
B quickly which is a stable operating point, although
undesirable. There is a tremendous drop in both the
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pressure rise, and #ow rate. Moreover, increasing the
throttle position and #ow rate at point B does not
increase the pressure rise. Rather the pressure rise be-
comes even lower before it comes to point C at which it
jumps back to (due to again loss of stability) the perfor-
mance curve �

�
( ) ). The hysteresis loop A}B}C}D is the

main cause for loss of compressor performance, and the
potential damage to aeroengines. Hence stabilization of
the critical operating point, and elimination of the
hysteresis loop are the key for performance improvement
of compression systems which will be addressed in the
next section.

3. Local stabilization with feedback control

In the process of compressor design, stability of the
critical operating point cannot be predicted and thus
corrected before the compressor is produced. Hence feed-
back control was proposed by Epstein et al. (1989) to
suppress rotating stall. Our paper considers the use of
bleedvalve as actuator for the compression system. It is
noted that the throttle parameter is a composition of
uncertainty �

�
, synthesized disturbance from inlet and

combustion chamber, and the bleed valve position �� that
can be employed as actuator. Assume that � is measur-
able. Then the throttle parameter can be expressed as
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where u is the feedback control law to be designed. Our
objective is local (asymptotic) stabilization around the
critical equilibrium of the uniform #ow (�
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closed-loop compression system. The compression con-
trol system can now be written as

x� "f (�,x)"¸x#Q[x, x]#C[x,x,x]#2#�u, (20)
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are linear, quadratic, cubic terms, respectively, as given in
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amplitudes of harmonics for the disturbance #ow rate
� at station �"0. Thus, the N pairs of eigenvalues for
D

�
}D

�
are associated with the rotating stall dynamics,

and are linearly uncontrollable. Consequently, the
axisymmetric equilibria on the left of point A (the �
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curve in Fig. 2) are not stabilizable, posing challenge to
rotating stall control. For stabilization of Hopf bifurca-
tion induced by a single pair of critical (uncontrollable)
eigenvalues, Abed and Fu (1986) proposed a quadratic
feedback control law and proved its e!ectiveness, while
more recent results of Gu et al. (1999) showed that a Hopf
bifurcation is stabilizable, if and only if there exist
stabilizing linear and quadratic feedback control laws.
Therefore, we are motivated to consider the following
feedback control law:
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It is noted that the pressure rise� is a lumped parameter
which requires only a pair of pressure transducers in its
measurement. However, the average disturbance #ow
requires measurement of x

�
}x

����
, and thus distributed

sensors as NPR. Hence, the linear feedback term in-
volving the average disturbance #ow is intentionally
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form is avoided in the proposed feedback control law.
De"ne discrete Fourier transform

KK
	�

"

����
�
�
�

K
	�
e����� , 0)n)2N. (22)

It will be shown later that local stabilization requires that
KK

	�
O0, rather than K

	�
O0 for all i'0. Hence, dis-

tributed sensors are unnecessary in the limiting case
NPR.
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compression system can now be expanded into the fol-
lowing Taylor series:
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) is the characteristic polynomial

associated with the surge dynamics, and det(�I!DH
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with the rotating stall dynamics for n*1. By
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the following result can be easily shown.

Lemma 3.1. Under the feedback control law (21), the surge
dynamics is locally stable at the criticality �
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by (12). To determine stabilization condition for the
feedback control law in (21) using the projection and
Lyapunov methods as outlined in Appendix A, several
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where u
��
and u

��
are the "rst and second elements of u

�
,

respectively. The following lemma is important in deriv-
ing the explicit stabilization condition for the multi-mode
feedback compression system described in (23)}(26).
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Proof. Since the expressions of �
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in Gu and Sparks (1998), we need verify only (32) and
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The expression in (32) can then be veri"ed by substitution
of DH at �
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�
, and carrying out the remaining
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computations. Similar calculations lead to
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from which (35) can be concluded. �

Using the same procedure as in the proof of Lemma
3.2, the following result can also be obtained. Since the
proof is similar, it is omitted.

Corollary 3.3. Denote �
�
and �
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solutions to (A.4) for the uncontrolled compression system,
and �H
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The main result of this section is the following.

Theorem 3.4. Assume that c
�
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'=, and condition

(27) is satisxed. Moreover, suppose that the imaginary part
of the eigenvalues in (17) are locally center-symmetric in the
sense of Lyapunov. Then the rotating stall dynamics is
locally asymptotically stable at the criticality �
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the feedback compression system described in (23)}(26), if
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Proof. Since (27) is true, local asymptotic stability at the
criticality �
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is determined by local asymptotic

stability of the rotating stall dynamics. Suppose that the
rotating stall dynamics is locally asymptotically stable at
the criticality �

�
"�

�
. Then the nth SCV for the control-

led compression system, denoted by �I ���
�H , for each projec-

ted rotating stall dynamics along the nth eigenvector is
negative for 1)n)N. By the fact that the last element
of l

�
is zero for n*1,

l
�
QH

�
[r

�
, x]"l

�
Q

�
[r

�
, x],

l
�
QH

�
[r


�
, x]"l

�
Q

�
[r


�
, x]. (41)

It follows that

�I ���
�H

"�I ���
�

#	����
�
,

	����
�

"2Re�2l
�
Q

�
[r

�
,	�

�
]#l

�
Q

�
[r


�
,	�

�
]�,

where �I ���
�
is the nth SCV for the uncontrolled compres-

sion system, and given by

�I ���
�

"

3Hc
�
p�
�

4m
�
=��1#

6Hc
�
�
�

=��
�
�
�
�
=

!1�
�

�.
Straightforward calculation reveals that

l
�
Q

�
[x, y]"

3Hc
�

m
�
=��

�
�
=

!1�l� (x ) y), (42)

l
�
C

�
[x, y, z]"

Hc
�

m
�
=�

l
�
(x ) y ) z). (43)

By normalization, l
�
r
�
"1, and l

�
r

�
"0, there hold

l
�
(r
�

) 	�
�
)"!

p�
�
4 �KK 	�

#

3Hc
�

=� �
�
�
=

!1�K��
and l

�
(r

�

) 	�
�
)"0. The above implies that

	����
�

"!

3Hc
�
p�
�

m
�
=� �

�
�
=

!1�
��KK 	�

#

3Hc
�

=� �
�

�
=

!1�K��.
Hence for 1)n)N, the nth SCV is given by

�I ���
�H

"

3Hc
�
p�
�

4m
�
=��1#

6Hc
�
�
�

=��
�
�
�
�
=

!1�
�

�
!

3Hc
�
p�
�

m
�
=� �

�
�
=

!1��KK 	�
#

3Hc
�

=� �
�
�
=

!1�K��
"

3Hc
�
p�
�

4m
�
=��1!4KK

	�
=�

�
�
=

!1�
!

12Hc
�

= �
�
�
=

!1�
�

�K�!

�
�

2��
�
��.

Thus �I ���
�H

(0 for 1)n)N yields condition (40) by
c
�
(0. Conversely suppose that (40) is true, then �I ���

�H
(0
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for 1)n)N, and thus

�H
��

"8�I ���
�H(0, n"1, 2,2,N.

Moreover by formula (A.7) and the relation in (41),

�H
��

"�
��

#	�
��
,

	�
��

"16Re�l
�
(Q

�
[r

�
,	�

�
]#Q

�
[r


�
,	�

��
]

#Q
�
[r

�
,	�

��
])�

where �
��
is the solution to (A.7) for the uncontrolled

compression system, and given by

�
��

"

6Hc
�
p�
�

m
�
=� �1#

3Hc
�
�
�

=��
�
�
�
�
=

!1�
�

�.
Direct computation with property l

�
r
�
"1, and

l
�
r
�
"l

�
r

�
"0 gives

l
�
(r
�

) 	�
�
)"!

p�
�
4 �KK 	�

#

3Hc
�

=� �
�
�
=

!1�K��,
l
�
(r
�
) 	�

��
)"l

�
(r

�
) 	�

��
)"0.

Hence using the relation in (42), (43), and expression for
��

��
yields

	�
��

"!

6Hc
�
p�
�

m
�
=� �

�
�
=

!1�
��2KK 	�

=#

6Hc
�

= �
�

�
=

!1�K��.
Hence by �H

��
"�

��
#	�

��
, we obtain

�H
��

"

6Hc
�
p�
�

m
�
=� �1!2KK

	�
=�

�
�
=

!1�
!

6Hc
�

= �
�
�
=

!1�
�

�K�!

�
�

2��
�
��.

Since �
�
'='0, condition (40) implies that

KK
	�

(

1

2=�
�

�
=

!1�
��

!

3Hc
�

=� �
�
�
=

!1��K�!

�
�

2��
�
�

which in turn implies that �H
��

(0 by c
�
(0. In light of

the Lyapunov method (Theorem A.3), the critical operat-
ing point at �

�
"�

�
is locally asymptotically stable. �

The signi"cance of Theorem 3.4 lies in the fact that the
stabilizability condition (40) requires only the sum of all
K

	�
's to satisfy a bound determined by various compres-

sor parameters and linear feedback gain K� . As a result,
distributed sensing for the #ow rate �

�
is unnecessary in

the limiting caseNPR. Moreover, precise information
on the cubic performance characteristic curve, and on the

critical operating condition is not required, provided that
upper and lower bounds on c

�
, H, =, �

�
, and �

�
/��

�
are available.

Remark 3.5. In Banaszuk et al. (1996), backstepping
method was used to derive a global stabilization condi-
tion on a more general state feedback control law than
(21). It was shown that any given operating point (or set
point) �

�
*�

�
can be globally stabilized. It should be

clear that if the set point is chosen as at the criticality,
local stability will be ensured for �

�
"�

�
. However, it

requires distributed sensing as NPR. Moreover, the
stabilizability condition in Banaszuk et al. (1996) is less
explicit than the one in (40).

The stabilization condition (40) also indicates that the
critical operating point can be locally stabilized by using
linear feedback control law, i.e., by settingK

	
"0 in (21).

The next result follows easily from Theorem 3.4, and thus
the proof is skipped.

Corollary 3.6. Assume that c
�
(0, �

�
'=, and condition

(27) is satisxed. Moreover, suppose that the imaginary part
of the eigenvalues in (17) are locally center-symmetric in the
sense of Lyapunov. Then the rotating stall dynamics is
locally asymptotically stable at the criticality �

�
"�

�
under

feedback control u"K���, if and only if

K�'

�
�

2��
�

#

=

12Hc
�
�
�

�
=

!1�
��
. (44)

Remark 3.7. Feedback stabilization using only the
measurement of pressure rise was considered in Chen
et al. (1998) for the third order Moore}Greitzer model
which is a crude approximation. Corollary 3.6 is surpris-
ing which indicates that linear control law is also e!ective
in stabilization of the critical operating point for the
multi-mode model, which in the limiting case converges
to the PDEMoore}Greitzer model. It should be pointed
that the same feedback control law was studied in Leo-
nessa, Chellaboina, and Haddad (1997) as well. Using
equilibria dependent feedback control, Leonessa et al.
(1997) was able to obtain a global stabilization result for
�
�
'�

�
. In light of Corollary 3.6, condition (44) needs be

enforced at �
�
"�

�
. In combination with the result in

Corollary 3.6, global stabilization results of Leonessa
et al. (1997) can be claimed for �

�
*�

�
.

It is worth to emphasizing that by c
�
(0, the set of

stabilizing gain K� satisfying both (44) and (27) is
nonempty. However, the linear feedback control law
u"K��� has very limited e!ect on rotating stall
control, because in satisfying the stabilization condition
(44), it leaves very small surge margin in lieu of (27) and
thus surge can be easily induced near the criticality �"�

�
thereby complicating the rotating stall dynamics. To
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Fig. 3. Results for N"4: pressure rise versus average #ow: (a) hysteresis loop without control, (b) hysteresis loop with linear control.

avoid surge from taking place near the criticality, it is
suggested to employ the linear term in (21) to enlarge the
surge margin.

4. Illustrative simulations and concluding remarks

A compressor model in Moore and Greitzer (1986) is
used for numerical simulations. The parameters of the
model are given by

m"1.75, H"0.18, ="0.25, B"0.1, a"1/3.5,

c
�
"8/3, c

�
"1.5, c

�
"!0.5, l

�
"8, l

	
"R.

A persistent nonaxisymmetric #ow perturbation (about
5% of �

�
) is added in (3) on the right-hand side of the

equation in the simulation. Hence as � decreases to the
critical value, the equilibrium point is throttled into stall
rather quickly. Increasing the throttle value at this time
does not bring the equilibrium point back to the perfor-
mance characteristic curve �

�
( ) ) until the throttle value

reaches �"1.447�
�
. If afterwards the throttle position is

decreased to �"�
�
, then the equilibrium point will be

brought back to the peak of �
�
( ) ). Fig. 3(a) shows the

hysteresis loop as described where the dashed line is the
performance characteristic curve. If linear control law
u"K��� is used, then the critical peak equilibrium on
�
�
( ) ) is locally stabilized for 0.1473(K�(0.3788. Un-

fortunately, the equilibrium point with �
�
smaller than

the critical value is unstable. Thus a similar, though
smaller, hysteresis loop is observed as shown in Fig. 3(b)
where K�"0.2 and the same non-axisymmetric distur-
bance are used. The throttle value �

�
at which the equilib-

rium point returns to the performance characteristic
curve is about �

�
"1.33�

�
(1.447�

�
. Although it was

demonstrated by Chen et al. (1998) that the same linear
feedback control law eliminates the hysteresis loop for
N"1, but it fails to do so for N'1. This simulation
result indicates the fact that the stable peak equilibrium

point, and the hysteresis loop can co-exist for multi-mode
compressor models which does not occur for the single-
mode (N"1) Moore}Greitzer model.
Because the linear feedback control law stabilizes only

the peak equilibrium point locally, but fails to eliminate
the hysteresis loop for the multi-mode Moore}Greitzer
model, quadratic feedback control law is employed. For
K�"0, the critical equilibrium is locally stabilized if and
only if KK

	�
(!0.6364 in light of (40). Two simulations

are carried out: (i) K
	�

"!1 for each i, and (ii)
K

	�����
"!3 and K

	�����������
"0 where 2N#1"9 for

N"4. The use of quadratic control law not only stabil-
izes the peak operating point, but also eliminates the
hysteresis loop as demonstrated in Fig. 4.
In this simulation, the throttle value �

�
changes in the

range of [0.94�
�
, �

�
], and the system does not undergo

signi"cant pressure drop and no hysteresis loop is pres-
ent. Moreover, there is actually no di!erence between the
two cases. This observation concurs with the theoretical
result derived in this paper: just a few #ow measurements
are necessary since the stabilizing condition is in terms of
the sum of the quadratic coe$cients. It should also men-
tioned that as �

�
decreases further to �

�
(0.94�

�
, surge

takes place which is not shown in Fig. 3, but the time
responses of the pressure rise and average #ow rate are
plotted in Fig. 5 that clearly indicate the elimination of
the hysteresis loop, and the e!ectiveness of the proposed
rotating stall control law.
In summary, the simulation results in this section illus-

trate the possibility for rotating stall control without
measuring all 2N#1 local #ow rates while eliminating
the hysteresis loop. This result is important due to the
di$culty in employing distributed sensors in the limiting
case. Moreover, the results of this paper provide e!ective
synthesis procedures for rotating stall control. The simu-
lation results illustrate the di!erence between the single-
mode (N"1) and multi-mode (N'1) Moore}Greitzer
models for the control purpose. Due to the space limit,
our results on stability analysis for simultaneous rotating
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Fig. 4. Elimination of hysteresis loop with quadratic control: (a) all local #ow rates are used, (b) Only three local #ow rates are used.

Fig. 5. Time responses with quadratic control: (a) time response of pressure rise, (b) time response of average #ow rate.

stall and surge dynamics are not reported here. Interested
readers are referred to Belta and Gu (1999) which is
available upon request.

Appendix A. Stability conditions for Hopf bifurcation

Consider the following nth order parametrized nonlin-
ear system:

x� "f (�,x), f (�, x
�
)"0 ∀�3R, x

�
3SLR�, (A.1)

where x3R�, � is a real-valued parameter, andS a linear
subspace of R�, to be clari"ed later. It is assumed that
f ( ) , ) ) is su$ciently smooth such that the equilibrium
solution x

�
of f (�,x

�
)"0 is a smooth function of �. Thus,

x� "f (�,x)"¸(�)x#Q(�)[x,x]#C(�)[x,x,x]#2,

(A.2)

where ¸(�)x, Q(�)[x,x], and C(�)[x,x,x] can each be
expanded into

¸(�)x"¸
�
x#��¸

�
x#(��)�¸

�
x#2,

Q(�)[x,x]"Q
�
[x,x]#��Q

�
[x,x]#2,

C(�)[x,x,x]"C
�
[x,x,x]#��C

�
[x, x,x]#2

with ��"�!�
�
, and ¸

�
, ¸

�
, ¸

�
constant matrices of

size n�n. Suppose that ¸(�) possesses m ((n/2) pairs of
complex eigenvalues �

�
(�)"�

�
(�)$j�

�
(�), dependent

smoothly on �. It is assumed that for 1)k)m,

�
�
(�

�
)"0, �(�

�
)"�

�
O0,

(A.3)

��
�
(�

�
)"

d�
�

d�
(�

�
)O0,

while all other eigenvalues of ¸(�) are stable at, and in
a neighborhood of �"�

�
. That is, m pairs of eigenvalues

cross the imaginary axis simultaneously. Then each �
�
(�)

is a critical eigenvalue, so is its conjugate. The center
space, or the eigenspace for the m pairs of critical eigen-
values is denoted byS

�
, and is assumed to be orthogon-

ally complement to S in the sense that S�S
�
"R�.

Since projection of x
�
3S to S

�
is zero, the equilibria

x
�
satisfying (A.1) will be called zero solution. The strict

crossing assumption implies that the zero solution
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changes its stability as � crosses �
�
. For instance,

��
�
(�

�
)'0 implies that the zero solution is locally stable

for �(�
�
, and becomes unstable for �'�

�
. The crucial

problem is the determination of local stability near the
critical parameter �

�
at which Hopf bifurcations occur,

and the periodic solutions are born.

A.1. The projection method

The center spaceS
�
, spanned by all the critical eigen-

vectors, is complete. DenoteS
��
the eigenspace spanned

by kth pair of the critical eigenvectors. If all the critical
eigenvalues are distinct, then

S
�
"S

��
�S

��
�2�S

��
.

The projection method in Iooss and Joseph (1980) pro-
jects the non-linear dynamics into the subspace ofS

��
so

that stability of the projected dynamics can be analyzed.
Associated with each pair of the critical eigenvalues
(�

�
,�M

�
), there can de"ne a stability characteristic value

(SCV) �I ���
�
whose sign determines local stability of the kth

projected dynamics. An algorithm to compute �I ���
�
is

outlined next.
Step 1: Compute left row eigenvector l

�
and right

column eigenvector r
�
of ¸

�
corresponding to the kth

critical eigenvalue of �
�
(0)"j�

�
. Normalize by setting

l
�
r
�
"1.

Step 2: Solve column vectors �
�
and �

�
from the

equations

!¸
�
�
�
"�

�
Q

�
[r

�
, r


�
], (2j�

�
I!¸

�
)�

�
"�

�
Q

�
[r

�
, r

�
].

(A.4)

Step 3: The coe$cient �I ���
�
is given by

�I ���
�

"2Re�2l
�
Q

�
[r

�
,�

�
]#l

�
Q

�
[r


�
, �

�
]

# �
�
l
�
C

�
[r

�
, r

�
, r


�
]�. (A.5)

Theorem A.1. Suppose that ¸
�
has m pairs of nonzero

critical eigenvalues on the imaginary axis with the rest on
open left half-plane. Then the projected dynamics along the
kth pair of the eigenvectors is stable, if �I ���

�
(0, and unsta-

ble if �I ���
�

'0. For the case of N"1, the associated Hopf
bifurcation is supercritical or stable, if �I

�
(0, and subcriti-

cal or unstable, if �I
�
'0.

A.2. The Lyapunov method

The Lyapunov method for multiple critical modes is
developed by Fu (1994). It gives su$cient conditions on
the existence of a Lyapunov function that guarantees
local stability of the bifurcated system. The following
notion is needed.

De5nition A.2. Under the condition that ¸
�
admits

N'1 pairs of eigenvalues on the imaginary axis with the
rest on open left half-plane, the non-linear system (A.2) is
said to be locally center-symmetric in the sense of
Lyapunov if the following conditions:

w�
�
O�



, �

�
O2�



, �

�
O3�



,

m*2,

�
�
O�



#�

�
, �

�
O2�



#�

�
, 2�

�
O�



#�

�
,

m*3,

�
�
O�



#�

�
#�

�
, �

�
#�



O�

�
#�

�
,

m*4,

hold where all indices are distinct.

Theorem A.3. Suppose that ¸
�

admits m'1 pairs of
eigenvalues on the imaginary axis with the rest on open left
half-plane, and the non-linear system (A.2) is locally
center-symmetric in the sense of Lyapunov. Then there
exists a Lyapunov function that guarantees local stability of
(A.2) at the criticality, if

�
��

"16Re�l
�
(2Q

�
[r

�
,�

�
]#Q

�
[r


�
, �

�
]

# �
�
C

�
[r

�
, r

�
, r


�
])�(0 (A.6)

for k"1,2,m, and

�
�


"16Re�l
�
(Q

�
[r

�
,�



]#Q

�
[r




,�

�

]#Q

�
[r



, �

�

]

# �
�
C

�
[r

�
, r



, r




])�)0 (A.7)

for k, p"1,2,m with kOp, where �
�
,�
�
are the solutions

to (A.4), and �
�

, �

�

satisfy

(j(�
�
!�



)I

�
!¸

�
))�

�

"�

�
Q

�
[r

�
, r




], (A.8)

(j(�
�
#�



)I

�
!¸

�
)�

�

"�

�
Q

�
[r

�
, r



]. (A.9)

References

Abed, E. H., & Fu, H. -H. (1986). Local feedback stabilization and
bifurcation control, I. Hopf bifurcation. Systems and Control Letters,
7, 11}17.

Banaszuk, A., Hauksson, H. A., & Mezic, I. (1996). A backstepping
controller for Moore}Greitzer PDE model describing stall and surge in
compressors. Preprint.

Belta, C., & Gu, G. (1999). A bifurcation approach to rotating stall.
Technical Report, Department of ECE, LSU.

Chen, X., Gu, G., Martin, P., & Zhou, K. (1998). Rotating stall control
via bifurcation stabilization. Automatica, 32, 437}443.

Epstein, A. H., Ffowcs Williams, J. E., & Greitzer, E. M. (1989). Active
suppression of aerodynamic instabilities in turbomachinery. Journal
of Propulsion, 5, 204}211.

Fu, J. -H. (1994). Lyapunov functions and stability criteria for nonlinear
systems with multiple critical modes.Mathematics of Control, Signal,
and Systems, 7, 255}278.

Gu, G., & Sparks, A. (1998). Stability analysis for multi-mode
Moore}Greitzer model., Proceedings of IEEE conference on decision
and control, Tampa, FL (pp. 2551}2556).

930 C. Belta et al. / Automatica 37 (2001) 921}931



Gu, G., Chen, X., Sparks, A., & Banda, S. (1999). Bifurcation stabiliz-
ation with local output feedback. SIAM Journal of Control and
Optimization, 37, 934}956.

Iooss, G., & Joseph, D. D. (1980). Elementary Stability and Bifurcation
Theory. New York: Springer.

Krstic, M., Protz, J. M., Paduano, J. D., & Kokotovic, P. V.
(1995). Backstepping designs for jet engine stall and surge control.
Proceedings of 34th IEEE conference on decision and control
(pp. 3049}3055).

Leonessa, A., Chellaboina, V.-S., & Haddad, W. M. (1997). Globally
stabilizing controllers for multi-mode axial #ow compressors via
equilibria dependent Lyapunov functions. Proceedings of 1997
American control conference (pp. 993}1002).

Liaw, D. -C., & Abed, E. H. (1996). Active control of compressor stall
inception: A bifurcation-theoretical approach. Automatica, 32,
109}116.

Mansoux, C. A., Setiawan, J. D., Gysling, D. L., & Paduano, J. D.
(1994). Distributed nonlinear modeling and stability analysis of
axial compressor stall and surge. Proceedings of 1994 American
control conference (pp. 2305}2316).

Moore, F. K., & Greitzer, E. M. (1986). A theory of post-stall transients
in axial compressors: Part I*development of the equations. ASME
Journal of Engineering for Gas Turbines and Power, 108, 68}76.

Paduano, J. D. (1992). Active control of rotating stall in axial compres-
sors. Ph.D. thesis, MIT.

Calin Belta received the B.S. and M.S.
degrees in control and computer science
from Technical University of Iasi in 1995
and 1996, as well as the M.S. in electrical
engineering from Louisiana State
University in 1999. He is currently pursu-
ing the Ph.D. degree in the General
Robotics, Automation, Sensing, and
Perception (GRASP) Laboratory at
University of Pennsylvania. His research
interests include rigid body motion genera-
tion, di!erential geometry, hybrid systems

and modelling of cellular networks.

Guoxiang Gu received his B.S. degree from
Chinese Textile University in 1981, and
M.S. and Ph.D. degrees from University of
Minnesota in 1985 and 1988, respectively,
all in electrical engineering. He was with
the Department of Electrical Enginee-
ring, Wright State University as a visiting
assistant professor from 1988 to 1990.
From 1990, he has been with the Depart-
ment of Electrical and Computer Engin-
eering where he is currently a professor. He
has been active in system identi"cation,

robust control, and nonlinear bifurcation stabilization with industrial
applications for the last decade. His current research interests include
robust adaptive control, and telecommunication.

Andrew Sparks received a B.S. and M.S. in
Mechanical Engineering from MIT in
1988 and a Ph.D. in Aerospace Engineer-
ing from the University of Michigan in
1995. He has been with the Air Force Re-
search Laboratory at Wright Patterson
Air Force Base since 1988, where he has
worked on systems and control theory and
its application to future Air Force air and
space systems. Speci"c projects have in-
cluded optimal and robust control design
techniques for aircraft #ight control sys-

tems, linear parameter varying control theory for use in gain scheduled
#ight control laws and application to tailless aircraft for full envelope
#ight control law design, nonlinear bifurcation control laws for rotating
stall and surge in gas turbine engine axial compressors, and microsatel-
lite trajectory optimization and formation control involving optimal
control of satellite cluster formation and recon"guration. He is a senior
member of AIAA and a member of IEEE.

Siva S. Banda received a B.S. degree in
Electrical Engineering from Regional
Engineering College, Warangal, India,
an M.E. degree in Aerospace Engineering
from Indian Institute of Science,
Bangalore, India, an M.S. degree in
Systems Engineering from Wright State
University, Dayton, OH, and the Ph.D.
degree in Aerospace Engineering from
University of Dayton, Dayton, OH. Dr.
Banda joined the Air Force Research
Laboratory in 1981 as an Aerospace

Research Engineer. His primary responsibility is the transition of basic
research results from control theory to the aerospace industry. He is
currently focusing his research e!orts on autonomous and cooperative
control of multiple unmanned air vehicles, guidance and control of
transatmospheric vehicles, aerodynamic #ow control and formation
control of microsatellite clusters.
Siva S. Banda is a Senior Scientist in the Air Vehicles Directorate, Air

Force Research Laboratory (AFRL), Wright-Patterson Air Force Base,
Ohio. He performs and directs research and development activities at
the AFRL Center of Excellence in Control Science. He has authored or
co-authoredmore than 160 publications applying multivariable control
theory to aerospace systems. He has received numerous awards from
the Air Force for scienti"c achievement, including the Air Force Chief
of Sta! Award from the Pentagon. He serves as technical advisor to the
Air Force O$ce of Scienti"c Research, O$ce of Naval Research,
National Aeronautics and Space Administration, National Science
Foundation, National Research Council and several leading academic
institutes worldwide. He is an Editor of the International Journal of
Robust and Nonlinear Control, and an Associate Editor of the IEEE
Transactions on Control Systems Technology. He is a past Associate
Editor of the Journal of Guidance, Control, and Dynamics. He is a Senior
Member of the IEEE, a Fellow of the AIAA, the Royal Aeronautical
Society, and the Air Force Research Laboratory.

C. Belta et al. / Automatica 37 (2001) 921}931 931


