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ABSTRACT

We develop optimal control strategies for Autonomous Vehicles

(AVs) that are required to meet complex specifications imposed by

traffic laws and cultural expectations of reasonable driving behavior.

We formulate these specifications as rules, and specify their priori-

ties by constructing a priority structure, called Total ORder over

eQuivalence classes (TORQ). We propose a recursive framework, in

which the satisfaction of the rules in the priority structure are iter-

atively relaxed based on their priorities. Central to this framework

is an optimal control problem, where convergence to desired states

is achieved using Control Lyapunov Functions (CLFs), and safety

is enforced through Control Barrier Functions (CBFs). We also

show how the proposed framework can be used for after-the-fact,

pass/fail evaluation of trajectories - a given trajectory is rejected

if we can find a controller producing a trajectory that leads to less

violation of the rule priority structure. We present case studies with

multiple driving scenarios to demonstrate the effectiveness of the

proposed framework.

CCS CONCEPTS

•Computer systems organization→Robotic control; •Hard-

ware→ Safety critical systems; • Computing methodologies→

Computational control theory.
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1 INTRODUCTION

With the development and integration of cyber physical and

safety critical systems in various engineering disciplines, there is

an increasing need for computational tools for verification and con-

trol of such systems according to rich and complex specifications.

A prominent example is autonomous driving, which received a lot

of attention during the last decade. Besides common objectives in

optimal control problems, such as minimizing the energy consump-

tion and travel time, and constraints on control variables, such as

maximum acceleration, autonomous vehicles (AVs) should follow

complex and possibly conflicting traffic laws with different prior-

ities. They should also meet cultural expectations of reasonable

driving behavior [5, 10, 17–19, 21, 24]. For example, an AV has to

avoid collisions with other road users (higher priority), maintain

longitudinal clearance with the lead car (lower priority), and drive

faster than the minimum speed limit (still lower priority). Inspired

by [4], we formulate these behavior specifications as a set of rules

with a priority structure that captures their importance [4].

To accommodate the rules, we formulate the AV control prob-

lem as an optimal control problem, in which the satisfaction of the

rules and some vehicle limitations are enforced by Control Barrier

Functions (CBF) [2], and convergence to desired states is achieved

through Control Lyapunov Functions (CLF)[8]. To minimize the vio-

lation of the rules, we formulate iterative rule relaxations according

to their priorities.

Control Lyapunov functions [3, 8] have been used to stabilize

systems to desired states. CBFs enforce set forward-invariance

[22, 26], and have been adopted to guarantee the satisfaction of

safety requirements [2, 12, 25]. In [2, 9], the constraints induced

by CBFs and CLFs were used to formulate quadratic programs

(QPs) that could be solved in real time to stabilize affine control

systems while optimizing quadratic costs and satisfying state and
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control constraints. The main limitation of this approach is that

the resulting QPs can easily become infeasible, especially when

bounds on control inputs are imposed in addition to the safety

specifications and the state constraints, or for constraints with high

relative degree [27]. Relaxations of the (hard) CLF [1, 2] and CBF

[27] constraints have been proposed to address this issue.

The approaches described above do not consider the (relative)

importance of the safety constraints during their relaxations. With

particular relevance to the application considered here, AVs often

deal with situations where there are conflicts among some of the

traffic laws or other requirements. For instance, consider a scenario

where a pedestrian walks to the lane in which the AV is driving -

it is impossible for the AV to avoid a collision with the pedestrian

or another vehicles, stay in lane, and drive faster than the mini-

mum speed limit at the same time. Given the relative priorities of

these specifications, a reasonable AV behavior would be to avoid a

collision with the pedestrian or other vehicles (high priority), and

instead violate low or medium priority rules, e.g., by reducing speed

to a value lower than the minimum speed limit, and/or deviating

from its lane. The maximum satisfaction and minimum violation of

a set of rules expressed in temporal logic were studied in [6, 23] and

solved by assigning positive numerical weights to formulas based

on their priorities [15, 23]. In [4], the authors proposed rulebooks, a
framework in which relative priorities were captured by a pre-order.

In conjunction with rule violation scores, rulebooks were used to

rank vehicle trajectories. These works do not consider the vehicle

dynamics, or assume very simple forms, such as finite transition

systems. The violation scores are example - specific, or are simply

the quantitative semantics of the logic used to formulate the rules.

In their current form, they capture worst case scenarios and are

non-differentiable, and cannot be used for generating controllers

for realistic vehicle dynamics.

In this paper, we draw inspiration from Signal Temporal Logic

(STL) [13] to formalize traffic laws and other driving rules and to

quantify the degree of violation of the rules by AV trajectories. We

build on the rulebooks from [4] to construct a rule priority structure,

called Total ORder over eQuivalence classes (TORQ). The main con-

tribution of this paper is an iterative procedure that uses TORQ to

determine a control strategy that minimizes rule violation globally.

We show how this procedure can be adapted to develop transparent

and reproducible rule-based pass/fail evaluation of AV trajectories

in test scenarios. Central to these approaches is an optimization

problem based on [27], which uses detailed vehicle dynamics, en-

sures the satisfaction of “hard" vehicle limitations (e.g., acceleration

constraints), and can accommodate rule constraints with high rel-

ative degree. Another key contribution of this work is the formal

definition of a speed dependent, optimal over-approximation of

a vehicle footprint that ensures differentiability of clearance-type

rules, which enables the use of powerful approaches based on CBF

and CLF. Finally, we use and test the proposed architecture and

algorithms were implemented in a user-friendly software tool in

various driving scenarios.

2 PRELIMINARIES

2.1 Vehicle Dynamics

Consider an affine control system given by:

Ûx = f (x) + д(x)u, (1)

where x ∈ X ⊂ Rn (X is the state constraint set),
Û() denotes differ-

entiation with respect to time, f : Rn → Rn and д : Rn → Rn×q

are globally Lipschitz, and u ∈ U ⊂ Rq , where U is the control

constraint set defined as:

U := {u ∈ Rq : umin ≤ u ≤ umax }, (2)

with umin,umax ∈ Rq , and the inequalities are interpreted compo-

nentwise. We use x(t) to refer to a trajectory of (1) at a specific time

t , and we use X to denote a whole trajectory starting at time 0 and

ending at a final time specified by a scenario. Note that most vehicle

dynamics, such as “traditional" dynamics defined with respect to

an inertial frame [2] and dynamics defined along a given reference

trajectory [20] (see (18)) are in the form (1). Throughout the paper,

we will refer to the vehicle with dynamics given by (1) as ego.

Definition 1. (Forward invariance [16]) A setC ⊂ Rn is forward
invariant for system (1) if x(0) ∈ C implies x(t) ∈ C, ∀t ≥ 0.

Definition 2. (Relative degree [16]) The relative degree of a (suffi-
ciently many times) differentiable function b : Rn → R with respect
to system (1) is the number of times it needs to be differentiated along
its dynamics (Lie derivatives) until the control u explicitly shows in
the corresponding derivative.

In this paper, since function b is used to define a constraint

b(x) ≥ 0, we will also refer to the relative degree of b as the relative

degree of the constraint.

2.2 High Order Control Barrier Functions

Definition 3. (Class K function [11]) A continuous function α :

[0,a) → [0,∞),a > 0 is said to belong to class K if it is strictly
increasing and α(0) = 0.

Given b : Rn → R and a constraint b(x) ≥ 0 with relative

degree m, we define ψ0(x) := b(x) and a sequence of functions

ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi (x) := Ûψi−1(x) + αi (ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi (·), i ∈ {1, . . . ,m} denotes a (m − i)th order differentiable

class K function. We further define a sequence of sets Ci , i ∈

{1, . . . ,m} associated with (3) in the following form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 4. (High Order Control Barrier Function (HOCBF)
[27]) Let C1, . . . ,Cm be defined by (4) and ψ1(x), . . . ,ψm (x) be de-
fined by (3). A function b : Rn → R is a High Order Control Barrier
Function (HOCBF) of relative degreem for system (1) if there exist
(m − i)th order differentiable classK functions αi , i ∈ {1, . . . ,m − 1}

and a class K function αm such that

sup

u ∈U
[Lmf b(x) + LдL

m−1

f b(x)u + S(b(x))

+αm (ψm−1(x))] ≥ 0,
(5)

for all x ∈ C1∩, . . . ,∩Cm . Lmf (Lд ) denotes Lie derivatives along f

(д)m (one) times, and S(·) denotes the remaining Lie derivatives along
f with degree less than or equal tom − 1 (see [27] for more details).
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The HOCBF is a general form of the relative degree 1 CBF [2],

[9], [12] (settingm = 1 reduces the HOCBF to the common CBF

form in [2], [9], [12]), and is also a general form of the exponential

CBF [16].

Theorem 1. ([27]) Given a HOCBF b(x) from Def. 4 with the
associated sets C1, . . . ,Cm defined by (4), if x(0) ∈ C1∩, . . . ,∩Cm ,
then any Lipschitz continuous controller u(t) that satisfies (5) ∀t ≥ 0

renders C1∩, . . . ,∩Cm forward invariant for system (1).

Definition 5. (Control Lyapunov Function (CLF) [1]) A continu-
ously differentiable functionV : Rn → R≥0 is an exponentially stabi-
lizing control Lyapunov function (CLF) if there exist positive constants
c1 > 0, c2 > 0, c3 > 0 such that ∀x ∈ X , c1 | |x | |2 ≤ V (x) ≤ c2 | |x | |2,
the following holds:

inf

u ∈U
[Lf V (x) + LдV (x)u + c3V (x)] ≤ 0. (6)

Theorem 2 ([1]). Given a CLF as in Def. 5, any Lipschitz contin-
uous controller u(t),∀t ≥ 0 that satisfies (6) exponentially stabilizes
system (1) to the origin.

Recent works [2],[12],[16] combine CBFs and CLFs with qua-

dratic costs to formulate an optimization problem that stabilizes

a system using CLFs subject to safety constraints given by CBFs.

Time is discretized and CBFs and CLFs constraints are considered

at each discrete time step. Note that these constraints are linear

in control since the state value is fixed at the beginning of the dis-

cretization interval. Therefore, in every interval, the optimization

problem is a QP . The optimal control obtained by solving each QP

is applied at the current time step and held constant for the whole

interval. The next state is found by integrating the dynamics (1).

The usefulness of this approach is conditioned upon the feasibility

of the QP at every time step. In the case of constraints with high

relative degrees, which are common in autonomous driving, the

CBFs can be replaced by HOCBFs.

3 PROBLEM FORMULATION

For a vehicle with dynamics given by (1) and starting at a given

state x(0) = x0, consider an optimal control problem in the form:

min

u(t )

∫ T

0

J (| |u(t)| |)dt, (7)

where | | · | | denotes the 2-norm of a vector,T > 0 denotes a bounded

final time, and J is a strictly increasing function of its argument

(e.g., an energy consumption function J (| |u(t)| |) = | |u(t)| |2). We

consider the following additional requirements:

Trajectory tracking: We require the vehicle to stay as close

as possible to a desired reference trajectory Xr (e.g., middle of its

current lane).

State constraints: We impose a set of constraints (component-

wise) on the state of system (1) in the following form:

xmin ≤ x(t) ≤ xmax ,∀t ∈ [0,T ], (8)

where xmax := (xmax ,1, xmax ,2, . . . , xmax ,n ) ∈ R
n
and xmin :=

(xmin,1, xmin,2, . . . , xmin,n ) ∈ R
n
denote the maximum and mini-

mum state vectors, respectively. Examples of such constraints for

a vehicle include maximum acceleration, maximum braking, and

maximum steering rate.

Priority structure: We require the system trajectory X of (1)

starting at x(0) = x0 to satisfy a priority structure ⟨R,∼p , ≤p ⟩, i.e.:

X |= ⟨R,∼p , ≤p ⟩, (9)

where ∼p is an equivalence relation over a finite set of rules R
and ≤p is a total order over the equivalence classes. Our priority

structure, called Total ORder over eQuivalence classes (TORQ), is

related to the rulebooks from [4]. However, rather than allowing

for a partial order over the set of rules R, we require that any two

rules are either comparable or equivalent. Informally, (9) means

that X is the “best" trajectory that (1) can produce, considering

the violation metrics of the rules in R and the priorities captured

by ∼p and ≤p . A formal definition for a priority structure and its

satisfaction will be given in Sec. 4.2.

Control bounds: We impose control bounds as given in (2).

Examples include jerk and steering acceleration.

Formally, we can define the optimal control problem as follows:

Problem 1. Find a control policy for system (1) such that the
objective function in (7) is minimized, and the trajectory tracking,
state constraints (8), the TORQ priority structure ⟨R,∼p , ≤p ⟩, and
control bounds (2) are satisfied by the generated trajectory given x(0).

Our approach to Problem 1 can be summarized as follows: We

use CLFs for tracking the reference trajectory Xr and HOCBFs to

implement the state constraints (8). For each rule in R, we define
violation metrics. We show that satisfaction of the rules can be

written as forward invariance for sets described by differential

functions, and enforce them using HOCBFs. The control bounds

(2) are considered as constraints. We provide an iterative solution

to Problem 1, where each iteration involves solving a sequence of

QPs. In the first iteration, all the rules from R are considered. If the

corresponding QPs are feasible, then an optimal control is found.

Otherwise, we iteratively relax the satisfaction of rules from subsets

of R based on their priorities, and minimize the corresponding

relaxations by including them in the cost function.

4 RULES AND PRIORITY STRUCTURES

In this section, we extend the rulebooks from [4] by formalizing

the rules and defining violation metrics. We introduce the TORQ

priority structure, in which all rules are comparable, and it is par-

ticularly suited for the hierarchical control framework proposed in

Sec. 5.3.

4.1 Rules

In the definition below, an instance i ∈ Sp is a traffic participant or

artifact that is involved in a rule, where Sp is the set of all instances

involved in the rule. For example, in a rule to maintain clearance

from pedestrians, a pedestrian is an instance, and there can be many

instances encountered by ego in a given scenario. Instances can

also be traffic artifacts like the road boundary (of which there is

only one), lane boundaries, or stop lines.

Definition 6. (Rule) A rule is composed of a statement and three
violation metrics. A statement is a formula that is required to be
satisfied for all times. A formula is inductively defined as:

φ := µ |¬φ |φ1 ∧ φ2, (10)
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where φ,φ1,φ2 are formulas, µ := (h(x) ≥ 0) is a predicate on the
state vector x of system (1) with h : Rn → R. ∧,¬ are Boolean oper-
ators for conjunction and negation, respectively. The three violation
metrics for a rule r are defined as:

(1) instantaneous violation metric ϱr ,i (x(t)) ∈ [0, 1],

(2) instance violation metric ρr ,i (X) ∈ [0, 1], and
(3) total violation metric Pr (X) ∈ [0, 1],

where i is an instance, x(t) is a trajectory at time t and X is a whole
trajectory of ego. The instantaneous violation metric ϱr ,i (x(t)) quanti-
fies violation by a trajectory at a specific time t with respect to a given
instant i . The instance violation metric ρr ,i (X) captures violation
with respect to a given instance i over the whole time of a trajectory,
and is obtained by aggregating ϱr ,i (x(t)) over the entire time of a
trajectory X. The total violation metric Pr is the aggregation of the
instance violation metric ρr ,i (X) over all instances i ∈ Sp .

The aggregations in the above definitions can be implemented

through selection of a maximum or a minimum, integration over

time, summation over instances, or by using general Lp norms. A

zero value for a violation score shows satisfaction of the rule. A

strictly positive value denotes violation - the larger the score, the

more ego violates the rule. Throughout the paper, for simplicity, we

use ϱr and ρr instead of ϱr ,i and ρr ,i if there is only one instance.

Examples of rules (statements and violations metrics and scores)

are given in Sec. 6 and in the Appendix.

We divide the set of rules into two categories: (1) clearance rules
- safety relevant rules enforcing that ego maintains a minimal dis-

tance to other traffic participants and to the side of the road or

lane (2) non-clearance rules - rules that are not contained in the

first category, such as speed limit rules. In Sec. 5.2, we provide

a general methodology to express clearance rules as inequalities

involving differentiable functions, which will allow us to enforce

their satisfaction using HOCBFs.

Remark 1. The violation metrics from Def. 6 are inspired from
Signal Temporal Logic (STL) robustness [7, 13, 14], which quantifies
how a signal (trajectory) satisfies a temporal logic formula. In this
paper, we focus on rules that we aim to satisfy for all times. Therefore,
the rules in (10) can be seen as (particular) STL formulas, which all
start with an “always" temporal operator (omitted here).

4.2 Priority Structure

The pre-order rulebook from [4] defines a “base" pre-order that

captures relative priorities of some (comparable) rules, which are

often similar in different states and countries. A pre-order rulebook

can be made more precise for a specific legislation by adding rules

and/or priority relations through priority refinement, rule aggrega-

tion and augmentation. This can be done through empirical studies

or learning from local data to construct a total order rulebook. To

order trajectories, authors of [4] enumerated all the total orders

compatible with a given pre-order. In this paper, motivated by the

hierarchical control framework described in Sec. 5.3, we require

that any two rules are in a relationship, in the sense that they are

either equivalent or comparable with respect to their priorities.

Definition 7 (TORQ Priority Structure). A Total ORder over
eQuivalence classes (TORQ) priority structure is a tuple ⟨R,∼p , ≤p ⟩,
where R is a finite set of rules, ∼p is an equivalence relation over R,

and ≤p is a total order over the set of equivalence classes determined
by ∼p .

Equivalent rules (i.e., rules in the same class) have the same

priority. Given two equivalence classes O1 and O2 with O1 ≤p O2,

every rule r1 ∈ O1 has lower priority than every rule r2 ∈ O2. Since

≤p is a total order, any two rules r1, r2 ∈ R are comparable, in the

sense that exactly one of the following three statements is true: (1)

r1 and r2 have the same priority, (2) r1 has higher priority than r2,

and (3) r2 has higher priority than r1. Given a TORQ ⟨R,∼p , ≤p ⟩,
we can assign numerical (integer) priorities to the rules. We assign

priority 1 to the equivalence class with the lowest priority, priority

2 to the next one and so on. The rules inside an equivalence class

inherit the priority from their equivalence class. Given a priority

structure ⟨R,∼p , ≤p ⟩ and violation scores for the rules in R, we can
compare trajectories:

Definition 8 (Trajectory Comparison). A trajectory X1 is said
to be better (less violating) than another trajectory X2 if the highest
priority rule(s) violated by X1 has a lower priority than the highest
priority rule(s) violated byX2. If both trajectories violate an equivalent
highest priority rule(s), then the one with the smaller (maximum)
total violation score is better. In this case, if the trajectories have equal
violation scores, then they are equivalent.

It is easy to see that, by following Def. 8, given two trajectories,

one can be better than the other, or they can be equivalent (i.e., two

trajectories cannot be incomparable).

Example 1. Consider the driving scenario from Fig. 1(a) and
TORQ ⟨R,∼p , ≤p ⟩ in Fig. 1(b), where R = {r1, r2, r3, r4}, and r1:
“No collision”, r2: “Lane keeping”, r3: “Speed limit” and r4: “Comfort”.
There are 3 equivalence classes given by O1 = {r4}, O2 = {r2, r3}

and O3 = {r1}. Rule r4 has priority 1, r2 and r3 have priority 2, and
r1 has priority 3. Assume the instance (same as total, as there is only
one instance for each rule) violation scores of rules ri , i = 1, 2, 3, 4 by
trajectories a,b, c are given by ρi = (ρi (a), ρi (b), ρi (c)) as shown in
Fig. 1(b). Based on Def. 8, trajectory b is better (less violating) than
trajectory a since the highest priority rule violated by b (r2) has a
lower priority than the highest priority rule violated by a (r1). The
same argument holds for trajectories a and c , i.e., c is better than a. The
highest priority rules violated by trajectoriesb and c have the same pri-
orities. Since the maximum violation score of the highest priority rules
violated by b is smaller than that for c , i.e., max(ρ2(b), ρ3(b)) = 0.1,
max(ρ2(c), ρ3(c)) = 0.4, trajectory b is better than c .

Definition 9. (TORQ satisfaction) A trajectory X of system (1)
starting at x(0) satisfies a TORQ ⟨R,∼p , ≤p ⟩ (i.e., X |= ⟨R,∼p , ≤p ⟩),
if there are no better trajectories of (1) starting at x(0).

Def. 9 is central to our solution to Problem 1 (see Sec. 5.3), which

is based on an iterative relaxation of the rules according to their

satisfaction of the TORQ.

5 RULE-BASED OPTIMAL CONTROL

In this section, we present our approach to solve Problem 1.

5.1 Trajectory Tracking

As discussed in Sec. 2.1, (1) can define “traditional" vehicle dy-

namics with respect to an inertial reference frame [2], or dynamics
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(a) Possible trajectories

(b) TORQwith instance violation scores

(the colors for the scores correspond to

the colors of the trajectories. The rect-

angles show the equivalence classes.

Figure 1: An autonomous driving scenario with three possi-

ble trajectories, 4 rules, and 3 equivalence classes

defined along a given reference trajectory [20] (see (18)). The case

study considered in this paper falls in the second category (the

middle of ego’s current lane is the default reference trajectory). We

use the model from [20], in which part of the state of (1) captures

the tracking errors with respect to the reference trajectory. The

tracking problem then becomes stabilizing the error states to 0.

Suppose the error state vector is y ∈ Rn0 ,n0 ≤ n (the components

iny are part of the components in x ). We define a CLFV (x) = | |y | |2

(c3 = ϵ > 0 in Def. 5). Any control u that satisfies the relaxed CLF

constraint [2] given by:

Lf V (x) + LдV (x)u + ϵV (x) ≤ δe , (11)

exponentially stabilizes the error states to 0 if δe (t) = 0,∀t ∈ [0,T ],
where δe > 0 is a relaxation variable that compromises between

stabilization and feasibility. Note that the CLF constraint (11) only

works forV (x)with relative degree 1. If the relative degree is larger

than 1, we can use input-to-state linearization and state feedback

control [11] to reduce the relative degree to one [29].

5.2 Clearance and Optimal Disk Coverage

Satisfaction of a priority structure can be enforced by formu-

lating real-time constraints on ego state x(t) that appear in the

violation metrics. Satisfaction of the non-clearance rules can be

easily implemented using HOCBFs (See Sec. 5.3, Sec. A). For clear-

ance rules, we define a notion of clearance region around ego and

around the traffic participants in Sp that are involved in the rule

(e.g., pedestrians and other vehicles). The clearance region for ego

is defined as a rectangle with tunable speed-dependent lengths (i.e.,

we may choose to have a larger clearance from pedestrians when

ego is driving with higher speeds) and defined based on ego foot-

print and functions hf (x),hb (x),hl (x),hr (x) that determine the

front, back, left, and right clearances as illustrated in Fig. 2, where

hf ,hb ,hl ,hr : Rn → R≥0. The clearance regions for participants

(instances) are defined such that they comply with their geometry

and cover their footprints, e.g., (fixed-length) rectangles for other

vehicles and (fixed-radius) disks for pedestrians, as shown in Fig. 2.

To satisfy a clearance rule involving traffic participants, we need

to avoid any overlaps between the clearance regions of ego and

traffic participants. We define a function dmin (x,xi ) : Rn+ni → R

to determine the signed distance between the clearance regions of

ego and participant i ∈ Sp (xi ∈ Rni denotes the state of participant
i), which is negative if the clearance regions overlap. Therefore, sat-

isfaction of a clearance rule can be imposed by having a constraint

on dmin (x,xi ) to be non-negative. For the clearance rules “stay

in lane" and “stay in drivable area", we require that ego clearance

region be within the lane and the drivable area, respectively.

However, finding dmin (x,xi ) can be computationally expensive.

For example, the distance between two rectangles could be from

corner to corner, corner to edge, or edge to edge. Since each rec-

tangle has 4 corners and 4 edges, there are 64 possible cases. More

importantly, this computation leads to a non-smooth dmin (x,xi )
function, which cannot be used to enforce clearance using a CBF

approach. To address these issues, we propose an optimal coverage

of the rectangles with disks, which allows to map the satisfaction of

the clearance rules to a set of smooth HOCBF constraints (i.e., there

will be one constraint for each pair of centers of disks pertaining

to different traffic participants).

We use l > 0 andw > 0 to denote the length and width of ego’s

footprint, respectively. Assume we use z ∈ N disks with centers

located on the center line of the clearance region to cover it (see Fig.

3). Since all the disks have the same radius, the minimum radius to

fully cover ego’s clearance region, denoted by r > 0, is given by:

r =

√(
w + hl (x) + hr (x)

2

)
2

+

(
l + hf (x) + hb (x)

2z

)2

. (12)

The minimum radius ri of the rectangular clearance region for

a traffic participant i ∈ Sp with disks number zi is defined in a

similar way using the length and width of its footprint and setting

hl ,hr ,hb ,hf = 0.

Figure 2: The clearance regions and their coverage with

disks: the clearance region and the disks are speed depen-

dent for ego and fixed for the other vehicle and the pedes-

trian. We consider the distances between all the possible

pairs of disks from ego and other traffic participants (e.g.,

pedestrians, parked vehicles). There are 12 distance pairs in

total, andwe only show two of themw.r.t. the pedestrian and

another vehicle, respectively.

Assume the center of the disk j ∈ {1, . . . , z} for ego, and the

center of the diskk ∈ {1, . . . , zi } for the instance i ∈ Sp are given by

(xe , j ,ye , j ) ∈ R
2
and (xi ,k ,yi ,k ) ∈ R

2
, respectively (See Appendix

B). To avoid any overlap between the corresponding disks of ego
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Figure 3: The optimal disk coverage of a clearance region.

and the instance i ∈ Sp , we impose the following constraints:√
(xe , j − xi ,k )

2 + (ye , j − yi ,k )
2 ≥ r + ri ,

∀j ∈ {1, . . . , z},∀k ∈ {1, . . . , zi }.
(13)

Since disks fully cover the clearance regions, enforcing (13) also

guarantees that dmin (x,xi ) ≥ 0. For the clearance rules “stay in

lane" and “stay in drivable area", we can get similar constraints as

(13) to make the disks that cover ego’s clearance region stay within

them (e.g., we can consider hl ,hr ,hb ,hf = 0 and formulate (13)

such that the distance between ego disk centers and the line in the

middle of ego’s current lane be less than
wl
2

− r, where wl > 0

denotes the lane width). Thus, we can formulate satisfaction of all

the clearance rules as continuously differentiable constraints (13),

and implement them using HOCBFs.

To efficiently formulate the proposed optimal disk coverage ap-

proach, we need to find the minimum number of the disks that

fully cover the clearance regions as it determines the number of

constraints in (13). Moreover, we need to minimize the lateral ap-

proximation error since large errors imply overly conservative

constraint (See Fig. 3). This can be formally defined as an optimiza-

tion problem, and solved offline to determine the numbers and radii

of the disks in (13) (the details are provided in Appendix B).

5.3 Optimal Control

In this section, we present our complete framework to solve

Problem 1. We propose a recursive algorithm to iteratively relax

the satisfaction of the rules in the priority structure ⟨R,∼p , ≤p ⟩ (if
needed) based on the total order over the equivalence classes.

Let RO be the set of equivalence classes in ⟨R,∼p , ≤p ⟩, and NO

be the cardinality of RO . We construct the power set of equivalence

classes denoted by S = 2
RO , and incrementally (from low to high

priority) sort the sets in S based on the highest priority of the

equivalence classes in each set according to the total order and

denote the sorted set by Ssor ted = {S1, S2, . . . , S
2
NO

}, where S1 =

{∅}. We use this sorted set in our optimal control formulation to

obtain satisfaction of the higher priority classes, even at the cost of

relaxing satisfaction of the lower priority classes. Therefore, from

Def. 9, the solution of the optimal control will satisfy the priority

structure.

Example 2. Reconsider Exm. 1. We define RO = {O1,O2,O3}.
Based on the given total order O1 ≤p O2 ≤p O3, we can write the
sorted power set as Ssor ted = { {∅}, {O1}, {O2}, {O1,O2}, {O3},

{O1,O3}, {O2,O3}, {O1,O2,O3}}.

In order to find a trajectory that satisfies a given TORQ, we

first assume that all the rules are satisfied. Starting from S1 = {∅}

in the sorted set Ssor ted , we solve Problem 1 given that no rules

are relaxed, i.e., all the rules must be satisfied. If the problem is

infeasible, we move to the next set S2 ∈ Ssor ted , and relax all the

rules of all the equivalence classes in S2 while enforcing satisfaction

of all the other rules in the equivalence class set denoted by RO \S2.

This procedure is done recursively until we find a feasible solution

of Problem 1. Formally, at k = 1, 2 . . . , 2NO for Sk ∈ Ssor ted , we
relax all the rules i ∈ O for all the equivalence classes O ∈ Sk and

reformulate Problem 1 as the following optimal control problem:

min

u ,δe ,δi ,i∈O,O∈Sk

∫ T

0

J (| |u | |) + peδ
2

e +
∑

i ∈O,O∈Sk

piδ
2

i dt (14)

subject to:

dynamics (1), control bounds (2), CLF constraint (11),

L
mj
f bj (x) + LдL

mj−1

f bj (x)u + S(bj (x))

+αmj (ψmj−1(x)) ≥ 0,∀j ∈ O,∀O ∈ RO \ Sk ,
(15)

Lmi
f bi (x) + LдL

mi−1

f bi (x)u + S(bi (x))

+αmi (ψmi−1(x)) ≥ δi ,∀i ∈ O,∀O ∈ Sk ,
(16)

L
ml
f bl (x) + LдL

ml−1

f bl im,l (x)u + S(bl im,l (x))

+αml (ψml−1(x)) ≥ 0,∀l ∈ {1, . . . , 2n},
(17)

where pe > 0 and pi > 0, i ∈ O,O ∈ Sk assign the trade-off be-

tween the the CLF relaxation δe (used for trajectory tracking) and

the HOCBF relaxations δi .mi ,mj ,ml denotes the relative degree of

bi (x),bj (x),bl im,l (x), respectively. The functions bi (x) and bj (x)
are HOCBFs for the rules in ⟨R,∼p , ≤p ⟩, and are implemented di-

rectly from the rule statement for non-clearance rules or by using

the optimal disk coverage framework for clearance rules. At relax-

ation step k , HOCBFs corresponding to the rules in O, ∀O ∈ Sk
are relaxed by adding pi > 0, i ∈ O,O ∈ Sk in (16), while for other

rules in R in (15) and the state constraints (17), regular HOCBFs are

used. We assign pi , i ∈ O,O ∈ Sk according to their relative priori-

ties, i.e., we choose a larger pi for the rule i that belongs to a higher
priority class. The functions bl im,l (x), l ∈ {1, . . . , 2n} are HOCBFs
for the state limitations (8). The functionsψmi (x),ψmj (x),ψml (x)
are defined as in (3). αmi ,αmj ,αml can be penalized to improve the

feasibility of the problem above [27, 28].

If the above optimization problem is feasible for all t ∈ [0,T ],
we can specifically determine which rules (within an equivalence

class) are relaxed based on the values of δi , i ∈ O,O ∈ Sk in the

optimal solution (i.e., if δi (t) = 0,∀t ∈ {0,T }, then rule i does not
need to be relaxed). This procedure is summarized in Alg. 1.

Remark 2 (Complexity). The optimization problem (14) is solved
using QPs introduced in Sec. 2. The complexity of the QP is O(y3),
where y ∈ N is the dimension of decision variables. It usually takes
less than 0.01s to solve each QP in Matlab. The total time for each
iteration k ∈ {1, . . . , 2NO } depends on the final timeT and the length
of the reference trajectory Xr . The computation time can be further
improved by running the code in parallel over multiple processors.
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5.4 Pass/Fail Evaluation

As an extension to Problem 1, we formulate and solve a pass/fail

(P/F) procedure, in which we are given a vehicle trajectory, and the

goal is to accept (pass, P) or reject (fail, F) it based on the satisfaction

of the rules. Specifically, given a candidate trajectory Xc of system

(1), and given a TORQ ⟨R,∼p , ≤p ⟩, we pass (P) Xc if we cannot find
a better trajectory according to Def. 8. Otherwise, we fail (F) Xc .

We proceed as follows: We find the total violation scores of the

rules in ⟨R,∼p , ≤p ⟩ for the candidate trajectory Xc . If no rules in R
are violated, then we pass the candidate trajectory. Otherwise, we

investigate the existence of a better (less violating) trajectory. We

take the middle of ego’s current lane as the reference trajectory Xr
and re-formulate the optimal control problem in (14) to recursively

relax rules such that if the optimization is feasible, the generated

trajectory is better than the candidate trajectory Xc . Specifically,

assume that the highest priority rule(s) that the candidate trajectory

Xc violates belongs to OH , H ∈ N. Let RH ⊆ RO denote the set of

equivalence classes with priorities not larger than H , and NH ∈ N

denote the cardinality of RH . We construct a power set SH = 2
RH

,

and then apply Alg. 1, in which we replace RO by RH .

Remark 3. The procedure described above would fail a candidate
trajectory Xc even if only a slightly better alternate trajectory (i.e.,
violating rules of the same highest priority but with slightly smaller
violation scores) can be found by solving the optimal control problem.
In practice, this might lead to an undesirably high failure rate. One
way to deal with this, which we will consider in future work (see Sec.
7), is to allow for more classification categories, e.g., “Provisional Pass"
(PP), which can then trigger further investigation of Xc .

Example 3. Reconsider Exm. 1 and assume trajectory b is a can-
didate trajectory which violates rules r2, r4, thus, the highest pri-
ority rule that is violated by trajectory b belongs to O2. We con-
struct RH = {O1,O2}. The power set SH = 2

RH is then defined as
SH = {{∅}, {O1}, {O2}, {O1,O2}}, and is sorted based on the total
order as SHsor ted = {{∅}, {O1}, {O2}, {O1,O2}}.

6 CASE STUDY

In this section, we apply the methodology developed in this

paper to specific vehicle dynamics and various driving scenarios.

Ego dynamics (1) are defined with respect to a reference trajectory

[20], which measures the along-trajectory distance s ∈ R and the

lateral distance d ∈ R of the vehicle Center of Gravity (CoG) with

respect to the closest point on the reference trajectory as follows:

Ûs
Ûd
Ûµ
Ûv
Ûa
Ûδ
Ûω

︸ ︷︷ ︸
Ûx

=



v cos(µ+β )
1−dκ

v sin(µ + β)
v
lr

sin β − κ
v cos(µ+β )

1−dκ
a
0

ω
0

︸                             ︷︷                             ︸
f (x )

+



0 0

0 0

0 0

0 0

1 0

0 0

0 1

︸      ︷︷      ︸
д(x )

[
ujerk
usteer

]
︸        ︷︷        ︸

u

,

(18)

where µ is the vehicle local heading error determined by the differ-

ence of the global vehicle heading θ ∈ R in (33) and the tangent

angle ϕ ∈ R of the closest point on the reference trajectory (i.e.,

Algorithm 1: Recursive relaxation algorithm for finding

optimal trajectory

Input: System (1) with x(0), cost function (7), control

bound (2), state constraint (8), TORQ ⟨R,∼p , ≤p ⟩,
reference trajectory Xr

Output: Optimal ego trajectory and set of relaxed rules

1. Construct the power set of equivalence classes S = 2
RO ;

2. Sort the sets in S based on the highest priority of the

equivalence classes in each set according to the total order

and get Ssor ted = {S1, S2, . . . , S
2
NO

};

3. k = 0;

while k + + ≤ 2
NO do

Solve (14) s.t. (1), (2), (11), (16), (15) and (17);

if the above problem is feasible for all t ∈ [0,T ] then
Generate the optimal trajectory X∗

from (1);

Construct relaxed set Rr elax = {i : i ∈ O,O ∈ Sk };

if δi (t) = 0,∀t ∈ [0,T ] then
Remove i from Rr elax ;

end

break;

end

end

4. Return X∗
and Rr elax ;

θ = ϕ + µ); v , a denote the vehicle linear speed and acceleration;

δ , ω denote the steering angle and steering rate, respectively; κ is

the curvature of the reference trajectory at the closest point; lr is
the length of the vehicle from the tail to the CoG; and ujerk , usteer
denote the two control inputs for jerk and steering acceleration as

shown in Fig. 4. β = arctan

(
lr

lr+lf
tanδ

)
where lf is the length of

the vehicle from the head to the CoG.

Figure 4: Coordinates of ego w.r.t a reference trajectory.

We consider the cost function in (14) as:

min

ujerk (t ),usteer (t )

∫ T

0

[
u2

jerk (t) + u
2

steer (t)
]
dt . (19)

The reference trajectory Xr is the middle of ego’s current lane,

and is assumed to be given as an ordered sequence of points p1,

p2, . . . , pNr , where pi ∈ R2, i = 1, . . . ,Nr (Nr denotes the num-

ber of points). We can find the reference point pi(t ), i : [0,T ] →
{1, . . . ,Nr } at time t as:
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i(t) =

{
i(t) + 1 | |p(t) − pi(t ) | | ≤ γ ,

j ∃j ∈ {1, 2, . . . ,Nr } : | |p(t)−pi(t ) | | ≥ | |p(t)−pj | |,

(20)

where p(t) ∈ R2
denotes ego’s location. γ > 0, and i(0) = k for

a k ∈ {1, 2, . . . ,Nr } is chosen such that | |p(0) − pj | | ≥ | |p(0) −
pk |,∀j ∈ {1, 2, Nr }. Once we get pi(t ), we can update the progress

s , the error states d, µ and the curvature κ in (18). The trajectory

tracking in this case is to stabilize the error states d, µ (y = (d, µ)
in (11)) to 0, as introduced in Sec. 5.1. We also wish ego to achieve

a desired speed vd > 0 (otherwise, ego may stop in curved lanes).

We achieve this by re-defining the CLF V (x) in (11) as V (x) =
| |y | |2 + c0(v −vd )

2, c0 > 0. As the relative degree ofV (x) w.r.t. (18)
is larger than 1, as mentioned in Sec. 5.1, we use input-to-state

linearization and state feedback control [11] to reduce the relative

degree to one [29]. For example, for the desired speed part in the

CLFV (x) ( (18) is in linear form fromv toujerk , so we don’t need to
do linearization), we can find a desired state feedback acceleration

â = −k1(v − vd ),k1 > 0. Then we can define a new CLF in the

formV (x) = | |y | |2 +c0(a − â)2 = | |y | |2 +c0(a +k1(v −vd ))
2
whose

relative degree is just one w.r.t. ujerk in (18). We proceed similarly

for driving d, µ to 0 in the CLF V (x) as the relative degrees of d, µ
are also larger than one.

The control bounds (2) and state constraints (8) are given by:

speed constraint: vmin ≤ v(t) ≤ vmax,

acceleration constraint: amin ≤ a(t) ≤ amax,

jerk control constraint: uj ,min ≤ ujerk (t) ≤ uj ,max,

steering angle constraint: δmin ≤ δ (t) ≤ δmax,

steering rate constraint: ωmin ≤ ω(t) ≤ ωmax,

steering control constraint: us ,min ≤ usteer (t) ≤ us ,max,

(21)

We consider the TORQ ⟨R,∼p , ≤p ⟩ from Fig. 5, with rules R =
{r1, r2, r3, r4, r5, r6, r7, r8}, where r1 is a pedestrian clearance rule;

r2 and r3 are clearance rules for staying in the drivable area and

lane, respectively; r4 and r5 are non-clearance rules specifying

maximum and minimum speed limits, respectively; r6 is a comfort

non-clearance rule; and r7 and r8 are clearance rules for parked and

moving vehicles, respectively. The formal rule definitions (state-

ments, violation metrics) are given in Appendix A. These metrics

are used to compute the scores for all the trajectories in the three

scenarios below. The optimal disk coverage from Sec. 5.2 is used to

compute the optimal controls for all the clearance rules, which are

implemented using HOCBFs.

Figure 5: TORQ priority structure for case study.

In the following, we consider three common driving scenarios in

our tool (See Appendix C). For each of them, we solve the optimal

control Problem 1 and perform pass/fail evaluation. In all three

scenarios, in the pass/fail evaluation, an initial candidate trajectory

is drawn “by hand" using the tool described in the Appendix.We use

CLFs to generate a feasible trajectoryXc which tracks the candidate

trajectory subject to the vehicle dynamics (1), control bounds (2)

and state constraints (8).

6.1 Scenario 1

Assume there is an active vehicle, a parked (inactive) vehicle and

a pedestrian, as shown in Fig. 6.

Optimal control:We solve the optimal control problem (14) by

starting the rule relaxation from S1 = {∅} (i.e., without relaxing

any rules). This problem is infeasible in the given scenario since

ego cannot maintain the required distance between both the active

and the parked vehicles as the clearance rules are speed-dependent.

Therefore, we relaxed the next lowest priority equivalence class set

in Ssor ted , i.e., the minimum speed limit rule in S2 = {{r5}}, for

which we were able to find a feasible trajectory as illustrated in Fig.

6. By checking δi for r5 from (14), we found it is positive in some

time intervals in [0,T ], and thus, r5 is indeed relaxed. The total

violation score for rule r5 from (26) for the generated trajectory

is 0.539, and all other rules in R are satisfied. Thus, by Def. 9, the

generated trajectory satisfies ⟨R,∼p , ≤p ⟩ in Fig. 5.

Figure 6: Optimal control for Scenario 1: the subset of opti-

mal ego trajectory violating r5 is shown in blue.

Pass/Fail: The candidate trajectory Xc is shown in Fig. 7. This

candidate trajectory only violates rule r5 with total violation score

0.682. Following Sec. 5.4, we can either relax r5 or do not relax any

rules to find a possibly better trajectory. As shown in the above

optimal control problem for this scenario, we cannot find a feasible

solution if we do not relax rule r5. However, since the violation

of r5 by the candidate trajectory is larger than that of the optimal

trajectory in Fig. 6, we fail the candidate trajectory.

6.2 Scenario 2

Assume there is an active vehicle, two parked (inactive) vehicles

and two pedestrians, as shown in Fig. 8.

Optimal control: Similar to Scenario 1, the optimal control

problem (14) starting from S1 = {∅} (without relaxing any rules in

R) is infeasible. We relax the next lowest priority rule set in Ssor ted ,
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Figure 7: Pass/Fail for Scenario 1: the subset of candidate tra-

jectory violating r5 is shown in blue; the alternative trajec-

tory in this scenario is the same as in Fig. 6.

i.e., the minimum speed rule in S2 = {{r5}}, for which we are able

to find a feasible trajectory as illustrated in Fig. 8. Again, the δi for
r5 is positive in some time intervals in [0,T ], and thus, r5 is indeed

relaxed. The total violation score of the rule r5 for the generated

trajectory is 0.646, and all the other rules in R are satisfied.

Figure 8: Optimal control for Scenario 2: the subset of opti-

mal ego trajectory violating r5 is shown in blue.

Pass/Fail: The candidate trajectory Xc shown in red dashed

line in Fig. 9 (left) violates rules r1, r3 and r8 with total violation

scores 0.01, 0.23, 0.22 found from (22), (24), (29), respectively. In

this scenario, we know that ego can change lane (where the lane

keeping rule r3 is in a lower priority equivalence class than r1) to

get a reasonable trajectory. Thus, we show the case of relaxing

the rules in the equivalence classes O2 = {r3, r6} and O1 = {r5}

to find a feasible trajectory that is better than the candidate one.

The optimal control problem (14) generates a trajectory as the red-

solid curve shown in Fig. 9, and only the δi for r6 is 0 for all [0,T ].
Thus, r6 does not need to be relaxed. The generated trajectory

violates rules r3 and r5 with total violation scores 0.124 and 0.111,

respectively, but satisfies all the other rules including the highest

priority rule r1. According to Def. 8 for the given ⟨R,∼p , ≤p ⟩ in
Fig. 5, the new generated trajectory is better than the candidate

one, thus, we fail the candidate trajectory. Note that although this

trajectory violates the lane keeping rule, it has a smaller violation

score for r5 compared to the trajectory obtained from the optimal

control in Fig. 8 (0.111 v.s. 0.646), i.e., the average speed of ego in

the red-solid trajectory in Fig. 9 is larger.

Figure 9: Pass/Fail for Scenario 2: the subsets of the candi-

date trajectory (left) violating r8, r3, r1 are shown in green,

magenta and blue, respectively; the subsets of alternative

trajectory (right) violating r5, r3 are shown in yellow andma-

genta, respectively.

6.3 Scenario 3

Assume there is an active vehicle, a parked vehicle and two

pedestrians (one just gets out of the parked vehicle), as shown in

Fig. 10.

Optimal control: Similar to Scenario 1, the optimal control

problem (14) starting from S1 = {∅} (without relaxing any rules in

R) is infeasible. We relax the lowest priority rule set in Ssor ted , i.e.,
the minimum speed rule S2 = {{r5}}, and solve the optimal control

problem. In the (feasible) generated trajectory, ego stops before the

parked vehicle, which satisfies all the rules in R except r5. Thus,

by Def. 9, the generated trajectory satisfies the TORQ ⟨R,∼p , ≤p ⟩.
However, this might not be a desirable behavior, thus, we further

relax the lane keeping r3 and comfort r6 rules and find the feasible

trajectory shown in Fig. 10. δi for r6 is 0 for all [0,T ], and, therefore,
r6 does not need to be relaxed. The total violation scores for the

rules r3 and r5 are 0.058 and 0.359, respectively, and all other rules

in R are satisfied.

Figure 10: Optimal control for Scenario 3: the subsets of op-

timal ego trajectory violating r5, r3 are shown in blue and

green, respectively.
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Pass/Fail: The candidate trajectory Xc shown as the red-dashed

curve in Fig. 11 violates rules r3 and r8 with total violation scores

0.025 and 0.01, respectively. In this scenario, from the optimal

control in Fig. 10 we know that ego can change lane (where the

lane keeping rule is in a lower priority equivalence class than r8).

We show the case of relaxing the rules in the equivalence classes

O2 = {r3, r6} and O1 = {r5} (all have lower priorities than r8). The

optimal control problem (14) generates the red-solid curve shown in

Fig. 11. By checking δi for r6, we found that r6 is indeed not relaxed.

The generated alternative trajectory violates rules r3 and r5 with

total violation scores 0.028 and 0.742, respectively, but satisfies all

other rules including r8. According to Def. 8 and Fig. 5, the new

generated trajectory (although violates r3 more than the candidate

trajectory, it does not violate r8 which has a higher priority) is better

than the candidate one. Thus, we fail the candidate trajectory.

Figure 11: Pass/Fail for Scenario 3: the subsets of the candi-

date trajectory (left) violating r8, r3 are shown in green and

blue, respectively; the subsets of the alternative trajectory

(right) violating r5, r3 are shown inmagenta and blue, respec-

tively.

7 CONCLUSIONS AND FUTUREWORK

We developed a framework to design optimal control strategies

for autonomous vehicles that are required to satisfy a set of traffic

rules with a given priority structure, while following a reference tra-

jectory and satisfying control and state limitations. We showed that,

for commonly used traffic rules, by using control barrier functions

and control Lyapunov functions, the problem can be cast as an iter-

ation of optimal control problems, where each iteration involves a

sequence of quadratic programs. We also showed that the proposed

algorithms can be used to pass/fail possible autonomous vehicle

behaviors against prioritized traffic rules. We presented multiple

case studies for an autonomous vehicle with realistic dynamics and

conflicting rules. Future work will be focused on learning prior-

ity structures from data, improving the feasibility of the control

problems, and refinement of the pass/fail procedure.
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APPENDIX

A RULE DEFINITIONS

Here we give definitions for the rules used in Sec. 6. According

to Def. 6, each rule statement should be satisfied for all times.

r1 : Maintain clearance with pedestrians

Statement: dmin,f p (x,xi ) ≥ d1 +v(t)η1,∀i ∈ Sped

ϱr ,i (x(t)) = max(0,
d1 +v(t)η1 − dmin,f p (x,xi )

d1 +vmaxη1

)2,

ρr ,i (X) = max

t ∈[0,T ]
ϱr ,i (x(t)), Pr =

√√
1

nped

∑
i ∈Sped

ρr ,i .

(22)

where dmin,f p : Rn+ni → R denotes the distance between foot-

prints of ego and pedestrian i , and dmin,f p (·, ·) < 0 denotes the

footprint overlap. The clearance threshold is given based on a fixed

distance d1 ≥ 0 and increases linearly by η1 > 0 based on ego speed

v(t) ≥ 0 (d1 and η1 are determined empirically). Sped denotes the

index set of all pedestrians, and xi ∈ Rni denotes the state of

pedestrian i . vmax is the maximum feasible speed of the vehicle

and is used to define the normalization term in ϱr ,i , which assigns

a violation score (based on a L-2 norm) if formula is violated by

x(t). ρr ,i defines the instance violation score as the most violating

instant over X. Pr aggregates the instance violations over all units

(pedestrians), where nped ∈ N denotes the number of pedestrians.

r2 : Stay in the drivable area

Statement: dlef t (x(t)) + dr iдht (x(t)) = 0

ϱr (x(t)) =

(
dlef t (x(t)) + dr iдht (x(t))

2dmax

)2

,

ρr (X) =

√
1

T

∫ T

0

ϱr (x(t))dt, Pr = ρr .

(23)

where dlef t : Rn → R≥0,dr iдht : Rn → R≥0
denote the left

and right infringement distances of ego footprint into the non-

drivable areas, respectively, R≥0
denotes a non-negative real scalar.

dmax > 0 denotes the maximum infringement distance and is used

to normalize the instantaneous violation score defined based on a

L-2 norm, and ρr is the aggregation over trajectory duration T .

r3 : Stay in lane

Statement: dlef t (x(t)) + dr iдht (x(t)) = 0

ϱr (x(t)) =

(
dlef t (x(t)) + dr iдht (x(t))

2dmax

)2

,

ρr (X) =

√
1

T

∫ T

0

ϱr (x(t))dt, Pr = ρr .

(24)

where dlef t : Rn → R≥0,dr iдht : Rn → R≥0
denote the left

and right infringement distances of ego footprint into the left and

right lane boundaries, respectively. The violation scores are defined

similar to rule r2.

r4 : Satisfy the maximum speed limit

Statement: v(t) ≤ vmax ,s

ϱr (x(t)) = max(0,
v(t) −vmax ,s

vmax
)2,

ρr (X) =

√
1

T

∫ T

0

ϱr (x(t))dt, Pr = ρr .

(25)

where vmax ,s > 0 denotes the maximum speed in a scenario s and
varies for different road types (e.g., highway, residential, etc.).

r5 : Satisfy the minimum speed limit

Statement: v(t) ≥ vmin,s

ϱr (x(t)) = max(0,
vmin,s −v(t)

vmin,s
)2,

ρr (X) =

√
1

T

∫ T

0

ϱr (x(t))dt, Pr = ρr .

(26)

where vmin,s > 0 denotes the minimum speed in a scenario s ,
which is dependent on the road type.

r6 : Drive smoothly

Statement: |a(t)| ≤ amax ,s ∧ |alat (t)| ≤ alat ,s

ϱr (x(t)) =

(
max(0,

amax ,s − |a(t)|

amax
) +max(0,

alat ,s − |alat (t)|

alatm
)

)
2

,

ρr (X) =

√
1

T

∫ T

0

ϱr (x(t))dt, Pr = ρr .

(27)

where alat (t) = κv2(t) denotes the lateral acceleration at time

instant t ; amax ,s > 0, alat ,s > 0 denote the maximum and the

allowed lateral acceleration in a scenario s , respectively; and amax
and alatm > 0 denote the maximum feasible acceleration and

maximum feasible lateral acceleration of the vehicle, respectively.

r7 : Maintain clearance with parked vehicles

Statement: dmin,f p (x,xi ) ≥ d7 +v(t)η7,∀i ∈ Spveh

ϱr ,i (x(t)) = max(0,
d7 +v(t)η7 − dmin,f p (x,xi )

d7 +vmaxη7

)2,

ρr ,i (X) = max

t ∈[0,T ]
ϱi (x(t)), Pr =

√√
1

npveh

∑
i ∈Spveh

ρr ,i

(28)

where dmin,f p : Rn+ni → R denotes the distance between foot-

prints of ego and the parked vehicle i , d7 ≥ 0, η7 > 0, and violation

scores are defined similar to r1, Spveh and npveh ∈ N denote the

index set and number of parked vehicles, respectively, and xi ∈ Rni

denotes the state of parked vehicle i .
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r8 : Maintain clearance with active vehicles

Statement: dmin,l (x,xi ) ≥ d
8,l +v(t)η8,l

∧ dmin,r (x,xi ) ≥ d8,r +v(t)η8,r

∧ dmin,f (x,xi ) ≥ d
8,f +v(t)η8,f ,∀i ∈ Saveh

ϱr ,i (x(t)) =
1

3

(max(0,
d

8,l +v(t)η8,l − dmin,l (x,xi )

d
8,l +vmaxη8,l

)2

+max(0,
d8,r +v(t)η8,r − dmin,r (x,xi )

d8,r +vmaxη8,r
)2

+max(0,
d

8,f +v(t)η8,f − dmin,f (x,xi )

d
8,f +vmaxη8,f

)2),

ρr ,i (X) =
1

T

∫ T

0

ϱr ,i (x(t))dt, Pr =

√√
1

naveh − 1

∑
i ∈Saveh\eдo

ρr ,i

(29)

wheredmin,l : Rn+ni → R,dmin,r : Rn+ni → R,dmin,f : Rn+ni →
R denote the distance between footprints of ego and active vehicle

i on the left, right and front, respectively; d
8,l ≥ 0,d8,r ≥ 0,d

8,f ≥

0,η
8,l > 0,η8,r > 0,η

8,f > 0 are defined similarly as in r1. Saveh
and naveh ∈ N denote the index set and number of active vehicles,

and xi ∈ Rni denotes the state of active vehicle i . Similar to Fig. 2,

we show in Fig. 12 how r8 is defined based on the clearance region

and optimal disk coverage proposed in Sec. B.

Figure 12: Formulation of r8 with the optimal disk coverage

approach: r8 is satisfied since clearance regions of ego and

the active vehicle i ∈ Sp do not overlap.

B OPTIMAL DISK COVERAGE

To construct disks to fully cover the clearance regions, we need to

find their number and radius. From Fig. 3, the lateral approximation

error σ > 0 is given by:

σ = r −
w + hl (x) + hr (x)

2

. (30)

Since σ for ego depends on its state x (speed-dependent), we con-

sider the accumulated lateral approximation error for all possible

x ∈ X . This allows us to determine z and r such that the disks

fully cover ego clearance region for all possible speeds in x . Let
¯hi = supx ∈X hi (x),hi = infx ∈X hi (x), i ∈ { f ,b, l, r }. We can for-

mally formulate the construction of the approximation disks as an

optimization problem:

min

z
z+β

∫ ¯hf

hf

∫ ¯hb

hb

∫ ¯hl

hl

∫ ¯hr

hr
σdhf (x)dhb (x)dhl (x)dhr (x) (31)

subject to

z ∈ N, (32)

where β ≥ 0 is a trade-off between minimizing the number of the

disks (so as to minimize the number of constraints considered with

CBFs) and the coverage approximation error. The above optimiza-

tion problem is solved offline. A similar optimization is formulated

for construction of disks for instances in Sp (we remove the integrals

due to speed-independence). Note that for the driving scenarios

studied in this paper, we omit the longitudinal approximation er-

rors in the front and back. The lateral approximation errors are

considered in the disk formulation since they induce conservative-

ness in the lateral maneuvers of ego required for surpassing other

instances (such as parked car, pedestrians, etc.), see Sec. 6.

Let (xe ,ye ) ∈ R
2
be the center of ego and (xi ,yi ) ∈ R

2
be the

center of instance i ∈ Sp . The center of disk j for ego (xe , j ,ye , j ), j ∈
{1, . . . , z} is determined by:

xe , j = xe + cosθe (−
l

2

− hb (x) +
l + hf (x) + hb (x)

2z
(2j − 1))

ye , j = ye + sinθe (−
l

2

− hb (x) +
l + hf (x) + hb (x)

2z
(2j − 1))

(33)

where j ∈ {1, . . . , z} and θe ∈ R denotes the heading angle of ego.

The center of disk k for instance i ∈ Sp denoted by (xi ,k ,yi ,k ),k ∈

{1, . . . , zi }, can be defined similarly.

Theorem 3. If the clearance regions of ego and instance i ∈ Sp
are covered by the disks constructed by solving (31), then the clearance
regions of ego and instance i do not overlap if (13) is satisfied.

Proof. Let z and zi be the disks with minimum radius r and ri
from (12) associated with the clearance regions of ego and instance

i ∈ Sp , respectively. The constraints in (13) guarantee that there is

no overlap of the disks between vehicle i ∈ Sp and instance j ∈ Sp .
Since the clearance regions are fully covered by these disks, we

conclude that the clearance regions do not overlap. �

C SOFTWARE TOOL AND SIMULATION

PARAMETERS

We implemented the computational procedure described in this

paper as a user-friendly software tool in Matlab. The tool allows

to load a map represented by a .json file and place vehicles and

pedestrians on it. It provides an interface to generate smooth ref-

erence/candidate trajectories and it implements our proposed op-

timal control and P/F frameworks; the quadproд optimizer was

used to solve the QPs (solve time < 0.01s for each QP) and ode45

to integrate the vehicle dynamics (18). All the computation in

this paper was performed on a Intel(R) Core(TM) i7-8700 CPU

@ 3.2GHz×2. The simulation parameters are considered as follows:

vmax = 10m/s,amax = −amin = 3.5m/s2,uj ,max = −uj ,min =

4m/s3, δmax = −δmin = 1rad,ωmax = −ωmin = 0.5rad/s,us ,max =

−us ,min = 2rad/s2,w = 1.8m, l = 4m, lf = lr = 2m,d1 = 1m,η1 =

0.067s,vmax ,s = 7m/s,vmin,s = 3m/s,amax ,s = 2.5m/s2,alatm =

3.5m/s2,alat ,s = 1.75m/s2,d7 = 0.3m,η7 = 0.13s,d
8,l = d8,r =

0.5m,d
8,f = 1m,η8,r = η8,l = 0.036s,η

8,f = 2s,vd = 4m/s, β = 2

in (31).
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