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Abstract. This paper introduces a new method for clustering signals
using their temporal logic properties. Specifically, we propose a hierar-
chical clustering algorithm for efficiently processing a set of input signals.
The input data is unlabeled, that is, no further information about prop-
erties of the signals are available to the learning algorithm other than
the signals themselves. The algorithm produces a hierarchical structure
where the internal nodes test some temporal properties of the data, and
each terminal node contains a cluster (i.e., a group of similar signals).
Each cluster can be mapped to a Signal Temporal Logic (STL) formula
that describes its signals. The obtained formulae can be used directly
for monitoring purposes but also, more generally, to acquire knowledge
about the system under analysis. We present two case studies to illus-
trate the characteristics of our proposed algorithm. The first case study
is related to a maritime surveillance problem, and the second is a fault
classification problem in an automatic transmission system.

Keywords: Signal Temporal Logic · Specification mining · Clustering ·
Knowledge discovery · Formal methods · Unsupervised learning · Logic
inference

1 Introduction

In recent years, there has been a great interest in applying machine learning
based techniques to the formal methods field. In particular, some efforts have
been made on inferring formal descriptions of the behaviors of a system from
its execution traces [3,4,6,7,13,15–17]. The system behaviors can be described
using an appropriate temporal logic, such as Signal Temporal Logic (STL) [19].

This approach, named Temporal Logic Inference (TLI) in [17], while retaining
many qualities of traditional classifiers, presents several additional advantages.
In particular, classical machine learning methods are often overly specific to
the task. That is, they focus solely on solving the problem at hand and offer
no other understanding about the system where they have been applied. On
the contrary, temporal logic formulae have a precise meaning and allow for a
rich specification of the behaviors of a system that is interpretable by human
experts. In this research field, the initial work focused on finding the optimal
parameters for a formula when the formula structure has been fixed [3,15,16].
Later, some attempts were made to tackle the supervised two-class classification
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problem [4,6,7,13,17], where the goal is to build a discriminative formula given
a set of labeled traces (normal and anomalous).

In this paper, we turn our attention to the unsupervised clustering problem.
In this scenario, it is assumed that only a set of unlabeled signals is available, that
is, it is not known a priori if a signal exhibits a specific behavior or satisfies some
property, and the end goal is to group similar signals together, in a so-called
cluster, and to describe each cluster with a formula. We propose a hierarchical
clustering approach for partitioning the input signals. Our algorithm produces
a tree, where each internal node contains a formula that tests some temporal
logic property of the data. The terminal nodes, or leaves, are connected with the
actual clusters and each leaf can be mapped to an STL formula that describes
the respective cluster.

The hierarchical approach provides several advantages. First, the number of
signals to be processed at once decreases at each level of the hierarchy, and, more
importantly, the number of clusters does not need to be known beforehand. We
present a method for exploring the relationship between the number of clusters
and the diversity in the data explained by the induced tree. We argue that this
information provides useful insights on the trade-off between the complexity
of the formulae inferred and the clustering effectiveness. Moreover, we will show
that our unsupervised algorithm achieves classification performances on-par with
the supervised algorithm in [6] and better than [17] in a case study. The formulae
learned by our algorithm can be used as monitors directly during the deployment
phase of a system. However, the implications of this research are even broader.
The obtained formulae are in fact very useful for acquiring knowledge about the
system under analysis. That is, they provide the designers a formal description
of the possible behaviors of the system.

The paper is organized as follows. In Sect. 2, we briefly survey some previous
research contributions regarding the learning of temporal logic formulae from
data. In Sect. 3, we define the syntax and semantics of Signal Temporal Logic
(STL), describe its parameterized variant PSTL, and review some common dis-
tance measures used to asses the similarity between signals. The unsupervised
clustering problem of signals with STL formulae is discussed in Sect. 4 along with
a motivating maritime surveillance case study. In Sect. 5, we describe in detail
our hierarchical algorithm. We present an automotive case study in Sect. 6 and
analyze the results obtained with our method in Sect. 7, along with some com-
parisons with related work. We conclude in Sect. 8 with a brief review of the
work done and an outlook on future research directions.

2 Related Work

Attempts have been made in the recent years to learn temporal logic formulae
from data. In this field, the initial work has focused on finding the optimal para-
meters for a formula when a formula template is given [3,15,16]. This problem
is called parameter mining, and the parameters for the formula are selected so
that the resulting formula barely satisfies the input signals [15,16], or strongly
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satisfies them [3] (in the sense of the robustness degree). These approaches essen-
tially differ in the way the underlying optimization problem is formulated and
solved.

Later, work was performed within the so-called supervised two-class classifi-
cation problem [4,6,7,13,17]. In this setting, the goal is to build a temporal logic
formula, both the formula structure and its parameters, that can distinguish sig-
nals belonging to one of two possible classes. The dataset is given as a finite set
of pairs of signals and labels, where each label indicates whether the respective
signal exhibits some desired system behavior or not. The approaches to solve this
problem generally follow an iterative two-step procedure. In particular, [17] con-
struct the formula structure by exploring a fragment of STL that admits a partial
ordering, whereas the parameter optimization is performed using an SVM-like
objective function. In [4,7], the formula structure is additively constructed by
means of heuristics [7] or a genetic algorithm [4], while the parameter space is
explored through a Statistical Model Checking approach on the likelihood ratio
of two generative probabilistic models, which were previously fit to the available
data. Finally, a decision-tree based approach to solve the two-class problem has
been proposed in [6]. In this approach, a special binary tree is first constructed.
Afterward, this tree is mapped to an STL formula that is used for classification.

3 Preliminaries

A temporal logic is a system of rules and symbols used for reasoning about
propositions in terms of the flow of time. Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) are the most commonly used temporal logics [8].
Signal Temporal Logic (STL) has emerged recently as a generalization of LTL,
where time is continuous and the predicates can be defined over real values [19].
STL has found important applications in formal verification of hybrid systems
where it is used to state and monitor requirements. In this section, we briefly
review the syntax and the semantics of this logic.

Let R be the set of real numbers. For t ∈ R, we denote the interval [t,∞) by
R≥t. We use S = {s : R≥0 → R

n} with n ∈ N to denote the set of all continuous
parameterized curves in the n-dimensional Euclidean space R

n. In this paper,
an element of S is called a signal and its parameter is interpreted as time. Given
a signal s, the components of s are denoted by si, i ∈ {1, . . . , n}. The set F
contains the projection operators from a signal s to one of its components si,
that is F = {fi : Rn → R, fi(s) = si, i = {1, . . . , n}}.1 The suffix at time t ≥ 0
of a signal is denoted by s[t] ∈ S, and it represents the signal s shifted forward
in time by t time units, i.e., s[t](τ) = s(τ + t) for all τ ∈ R≥0.

The syntax of Signal Temporal Logic (STL) is defined as follows [19]:

φ ::= � | f(x) ∼ μ | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2

where � is the Boolean true constant (⊥ for false); f(x) ∼ μ is a predicate over
R

n defined by a function f ∈ F , a real number μ ∈ R, and an order relation
1 A more general definition of the set F is used in [19].
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∼∈ {≤, >}; ¬ and ∧ are the Boolean operators negation and conjunction; and
U[a,b) is the bounded temporal operator until.

The semantics of STL is defined over signals in S as [19]:

s[t] |= � ⇔ �
s[t] |= f(x) ∼ μ ⇔ f(s(t)) ∼ μ

s[t] |= ¬φ ⇔ ¬(s[t] |= φ)
s[t] |= (φ1 ∧ φ2) ⇔ (s[t] |= φ1) ∧ (s[t] |= φ2)

s[t] |= (φ1U[a,b)φ2) ⇔ ∃tu ∈ [t + a, t + b) s.t.
(
s[tu] |= φ2

)

∧ (∀t1 ∈ [t, tu) s[t1] |= φ1

)

A signal s ∈ S is said to satisfy an STL formula φ if and only if s[0] |= φ.
Other Boolean operations, such as disjunction, implication, and equivalence, are
defined in the usual way. The temporal operators eventually and globally are
defined respectively as

F[a,b)φ ≡ �U[a,b)φ , G[a,b)φ ≡ ¬F[a,b)¬φ

In addition to the Boolean semantics defined above, some quantitative seman-
tics have been proposed for STL [9,11]. These semantics are formalized through
the introduction of a real valued function called robustness, which quantifies the
degree of satisfaction of a signal with respect to a formula.

Parametric Signal Temporal Logic (PSTL) was introduced in [2] as an exten-
sion of STL where formulae are parameterized. A PSTL formula is similar to
an STL formula, however all the time bounds in the time intervals associated
with temporal operators and all the constants in the inequality predicates are
replaced by free parameters. These two types of parameters are called time and
space parameters, respectively. If ψ is a PSTL formula, then every parameter
assignment θ ∈ Θ (where Θ is the parameter space of ψ) induces a corresponding
STL formula φ = ψ(θ), where all the space and time parameters of ψ have been
fixed according to θ. This assignment is also referred to as valuation θ of ψ. For
example, given ψ = F[a,b)(f1(x) > π) and θ = [1.1, 2.3, 3.7], we obtain the STL
formula ψ(θ) = F[1.1,2.3)(f1(x) > 3.7).

Even though STL is defined using a dense-time semantics and natively sup-
ports predicates over reals, its monitoring algorithms work in practice with sam-
pled signals and assume that the signals are piece-wise constant (or piece-wise
linearly interpolated) [9]. The sampling rate does not have to be constant.

To measure the similarity between two signals, a distance function is generally
used. Let s̄1 and s̄2 be two n-dimensional series of samples corresponding to the
signals s1 and s2 in S, respectively. The most straightforward distance function
is the familiar Euclidean distance, extended to the case of multi-dimensional
time-series. It is defined as:2

2 If the original sampling times of s1 and s2 are not the same, the signals can be
re-interpolated to obtain values for matching sampling times.
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d2(s1, s2) =
n∑

i=1

tf∑

t=t0

(
s̄1i (t) − s̄2i (t)

)2

where t0 and tf are the first and last sampling time, respectively.
In the last decade, Dynamic Time Warping (DTW) has emerged as another

popular distance measure for time series in various machine learning prob-
lems [20]. The core idea is to align two series by warping the time axis iteratively
until an optimal alignment is found. There exist two possible extensions of DTW
to the multi-dimensional signal case: (1) independent warping of each dimen-
sion (DTWI), or (2) coordinated/dependent warping along all signal dimensions
(DTWD). Refer to [22] for a formal definition. While Euclidean distance is very
sensitive to distortions in the time axis, DTW provides flexibility to match sig-
nals that are similar but locally out of phase [20]. Usually, a restriction on the
amount of allowed warping is imposed as percentage of the signal length and is
called the warping factor. The choice of the right distance function should reflect
the kind of similarity measure the user is interested in and it is often application
dependent.

4 Motivating Example and Problem Description

The motivating example and first case study is a maritime surveillance problem.
It is assumed that the routes of the ships can be tracked in an area of interest.
This surveillance problem, along with the related synthetic dataset, was initially
proposed in [17], based on the scenarios described in [18]. Some example trajec-
tories are show in Fig. 1a. In the first scenario, a vessel approaching from open
sea heads directly towards the harbor. This behavior is considered normal. In
the second scenario, a ship veers to the island first and then heads to the har-
bor. This behavior is compatible with human trafficking. In the third scenario,
a boat tries to approach other vessels in the passage between the peninsula and
the island and then veers back to the open sea. This scenario is compatible with
terrorist activity. The signals in this dataset are represented as 2D trajectories
with planar coordinates [x(t), y(t)] and were generated using a Dubins’ model
with additive Gaussian noise [17]. The dataset is made of 2000 total trajectories,
with 61 sample points per trace. There are 1000 normal trajectories, 500 human
trafficking trajectories, and 500 terrorist activity trajectories.

In [6,17], a supervised learning problem based on this surveillance dataset was
considered. Each training trajectory could be either normal, human trafficking,
or terrorist activity, and its type was known beforehand. This information, along
with the signals themselves, was exploited by the learning algorithm to construct
a formula that distinguishes normal and anomalous behaviors.

The major shortcoming of supervised methods is their need of labeled exam-
ples during training. In the vast majority of real applications, only unlabeled data
is available. For supervised algorithms to work, the raw trajectories have to be
manually analyzed by a human expert (e.g. the port authority), who partitions
and labels the data recorded. This generally is a time-consuming and error-prone
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Fig. 1. (a) Maritime surveillance dataset. The vessels behaving normally are shown
in green. The magenta and blue trajectories represent two types of anomalous routes:
human trafficking and terrorist activity, respectively. (b) Tree induced for the maritime
case study. The second cluster contains the normal trajectories. (Color figure online)

process. We wanted to develop an unsupervised algorithm that works directly
on raw recorded trajectories to discover and represent the possible behaviors of
the ships in the area. The algorithm should be able to partition the trajectories
into separate groups and devise formulae to describe and discriminate them.

More formally, given a set of unlabeled signals, i.e., where the class (or type)
of each signal is not known, the algorithm should: (1) partition the input data
into separate groups, where each group contains only similar signals, and (2)
associate each group of signals with an STL formula. In machine learning, the
problem of grouping together similar objects is know as clustering. In our specific
application, the objects are signals, and our objective is not just to partition
similar signals into clusters but also to describe each cluster, that is, each type
of behavior of the system, with an STL formula.

5 Hierarchical Clustering with STL

In literature, many algorithms have been proposed to solve clustering problems,
such as K-means or DBSCAN [5]. Each approach has advantages and disadvan-
tages, often depending on the particular application at hand. For our specific
problem, we chose to design a divisive hierarchical clustering algorithm, which
does not require the user to pre-assign the number of clusters beforehand (like
K-means) and does not impose a probabilistic model on the data (like Gaussian
Mixture Models). In general, these methods produce a hierarchy of clusters where
the initial node contains the complete dataset and subgroups with more similar
objects are present as one moves down the hierarchy. Our aim is to construct the
hierarchy with a special structure so that every node can also be associated with
a corresponding STL formula that represents it. To this end, we will expand the
connection between STL formulae and trees as introduced in [6].

Given a set of unlabeled signals, our algorithm constructs a binary tree,
where each internal node contains a simple formula that tests some temporal
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logic property of the signals. This formula is chosen from a set of formulae,
called primitives, so that the signals in the resulting children nodes are more
homogeneous, that is, they contain signals overall more similar to each other
than their parent. The terminal nodes, or leaves, of the tree are connected with
the final clusters, and each leaf is mapped to an STL formula that describes
its respective cluster. Figure 1b shows a tree induced by our algorithm for the
maritime surveillance case study. Two internal nodes partition the signals in
three clusters.

This section is organized as follows. In Sect. 5.1, we first describe how binary
trees can be connected with a fragment of STL by means of PSTL primitives
in the nodes. In Sect. 5.2, we define some suitable homogeneity measures used
during the optimization process to select the best primitive at each node. Finally,
in Sect. 5.3 we describe our hierarchical clustering algorithm, and we conclude
in Sect. 5.4 with some comments on the evaluation of its results and address the
problem of choosing the appropriate number of clusters.

5.1 STL Formulae and Decision Trees

In a tree, we define: the root as the initial node; the depth of a node as the length
of the path from the root to that node; the parent of a node as the neighbor
whose depth is one less; the children of a node as the neighbors whose depths
are one more. A node with no children is called a leaf, and all other nodes are
called non-terminal nodes. We focus on binary trees, where every non-terminal
node has exactly two children and every leaf contains a cluster.

In [6], it was proposed to split the signals reaching a node using a simple
formula, chosen from a finite set of PSTL template formulae, called primitives.
Trivially, the signals satisfying the node’s primitive are routed to the left child
while the signals violating the node’s primitive are routed to the right child. A
tree-structured sequence of questions such as this is referred to as decision tree.
In this work, we use the following set of primitives.

Definition 1 (PSTL Primitives). Let S be the set of signals with values in
R

n, we define

P =
{
F[τ1,τ2](fi(x) ∼ μ) or G[τ1,τ2](fi(x) ∼ μ) | i ∈ {1, . . . , n}, ∼∈ {≤, >}}

The parameters for the PSTL formulae in P are (μ, τ1, τ2] and the space of
parameters is Θ = {(a, b, c) | a ∈ R, b < c, b, c ∈ R≥0}.
The primitive F[τ1,τ2](fi(x) ∼ μ) is used to express that the predicate fi(x) ∼ μ
must be true for at least one time instance in the interval [τ1, τ2], while the
primitive G[τ1,τ2](fi(x) ∼ μ) expresses that fi(x) ∼ μ must be true for all time
in the interval.

Every leaf of a tree with this structure can be mapped to an equivalent
STL formula that describes the signals falling in that leaf. Starting from a leaf
of interest and backtracking to the root of the tree, the STL formula can be
recursively obtained by (1) conjunction with the parent node’s primitive if the
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current node is its left child; or (2) conjunction with the negation of the parent
node’s primitive if the current node is its right child. For example, in the naval
surveillance case study, the formula corresponding to the cluster that contains
the normal trajectories is (Fig. 1b)

φnorm = F[16.3,280](x ≤ 24.832) ∧ G[0,262](y > 20.66) (1)

Notice also the insight we can gain from the plain English translation of this
formula: “The normal ship x coordinate is eventually below 24.83 in the time
interval [16.3, 280]”, i.e., it eventually approaches the port, and “the normal ship
y coordinate is always above 20.66”, i.e., it never approaches the island.

Remark 1. It is important to stress that the set of primitives P in Eq. 1 is not
the only possible set. A user may define other primitives, for instance generic
primitives using nested temporal operators (such as G[τ1,τ2]F[0,τ3](fi(x) ∼ μ)),
or specific ones, guided by the particular nature of the learning problem at
hand. For space restrictions, we do not investigate other primitives in this paper.
However, the proposed algorithm works without modifications using other sets of
primitives. The fragment of STL that is mapped with decision trees corresponds
to the Boolean closure of the valuations from P [6].

5.2 Homogeneity Measures

The previous section describes how an STL formula can be associated to each
leaf of a tree that contains primitives of P in its nodes. It is also necessary to
define a criterion with which to select the primitive that best splits the data at
each node. Our goal is to divide the signals so that the resulting two groups are
more homogeneous. This means that each child produced contains signals more
similar with each other and more different from the signals in the other child.
To formalize this concept, we need to define (1) a measure of homogeneity for
a set of signals and (2) a measure of the increase in homogeneity obtained by
splitting the signals using a certain formula.

Definition 2 (Inertia-based Homogeneity Measure I). Let S be a finite
set of signals in S, we define

I(S) =
1
2

1
|S|2

|S|∑

i=1

|S|∑

j=1

d2(si, sj)

where d(·, ·) is a suitable distance function between two signals, such as the
Euclidean Distance or Dynamic Time Warping (See Sect. 3).

I(S) is the average squared distance of the signals in set S and, intuitively, a
set is homogeneous when this quantity is low, i.e., the signals are close to each
other.
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Remark 2. As the name suggests, the Inertia-based homogeneity measure in
Definition 2 recalls the moment of inertia concept in physics. When the distance
function d(·, ·) is Euclidean, this measure is also related to the variance con-
cept [1,21]. For brevity, we only present one homogeneity measure. However,
others are possible, for instance by exploiting the various linkage criteria (i.e.,
single-linkage, complete-linkage, etc.) from the agglomerative clustering litera-
ture [1,5].

Definition 3 (Homogeneity Gain HG). Let S be a finite set of signals and
φ an STL formula, the Homogeneity Gain is defined as

HG(S, φ) = I(S) −
[ |S�|

|S| ·I(S�) +
|S⊥|
|S| ·I(S⊥)

]
(2)

where S� = {si ∈ S | si |= φ} and S⊥ = {si ∈ S | si �|= φ} are the subsets of
signals from S satisfying and not satisfying the formula φ, respectively.

Intuitively, a positive value of HG(S, φ) means that by splitting the set S with
the formula φ, we obtain two sets S� and S⊥ with a reduced overall diversity
or, equivalently, we gained homogeneity. The homogeneity gain in Definition 3 is
connected to the so-called Ward’s criterion in the clustering literature [1,21].

The defined homogeneity gain guides the primitive selection and parameter
optimization process. In particular, given a set of primitives P and a set of signals
S, we select the primitive ψ∗ ∈ P, and its optimal parameters θ∗ ∈ Θ, so that
the resulting STL formula ψ∗(θ∗) maximizes the homogeneity gain:

ψ∗, θ∗ = arg maxψ∈P,θ∈ΘHG(S, ψ(θ)) (3)

This problem is decomposed into |P| optimization problems over a small number
of real-valued parameters (|Θ|), which can be solved using any global non-linear
optimization algorithm.

Remark 3. To solve the parameter optimization problem in Eq. (3) we used Sim-
ulated Annealing with satisfactory results. However, we feel there is room for
improvement. In the future, we plan to investigate alternative optimization rou-
tines, such as Differential Evolution, and try to exploit the monotonic property
of some PSTL formulae to speed up the optimization process [2,16].

5.3 Clustering Algorithm

In Algorithm 1 we show our parameterized clustering procedure with a high-
level object oriented notation. The meta-parameters of Algorithm 1 are: (1) a
set of PSTL primitives P; (2) a set of stopping criteria stop; and (3) three
measure functions d(), I(), HG() (distance, homogeneity, and homogeneity gain,
respectively) described in the previous sections. The algorithm is iterative and
takes as input argument a set of unlabeled training signals Str. At the beginning,
an empty tree is created. This tree has a single leaf, which is also the root, that
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Algorithm 1. Hierarchical Clustering Algorithm - HClustSTL()
Parameter: P – set of PSTL primitives
Parameter: stop – set of stopping criteria
Parameter: d, I, HG – distance, homogeneity, and homogeneity gain measures
Input: Str – set of training signals
Output: T – a Tree

1 T ← createEmptyTree(Str)
2 while stop()==false do
3 L ← T .selectDivLeaf()
4 ψ∗, θ∗ ← arg maxψ∈P,θ∈Θ HG(L.S, ψ(θ))

5 T .nonTerminal(L, ψ∗(θ∗))
6 S∗

�, S∗
⊥ ← partition(L.S, ψ∗(θ∗))

7 T .createLeftLeaf(L, S∗
�)

8 T .createRightLeaf(L, S∗
⊥)

9 return T

contains all the input signals (line 1). At each iteration, the least homogeneous
leaf is selected for further processing (line 3). This is the leaf L that contains
the most diverse signals L.S according to the homogeneity measure I(). The
algorithm proceeds to find the optimal STL formula, among all the valuations
of PSTL formulae from the set of primitives P, to split the signals in L (line
4). The goal here is to get more homogeneous children, and the optimality is
assessed using the homogeneity gain measure HG() according to Eqs. (2)–(3).
Next, the leaf L is converted to a non-terminal node, and it is associated with the
formula ψ∗(θ∗) (line 5). The induced partition of the signals S∗

�, S∗
⊥ is computed

(line 6), and for each outcome of the split, a corresponding child leaf is created
(lines 7–8). The stopping conditions are checked at every iteration (line 2), and
the constructed tree T is returned when they are met. Several stopping criteria
can be set for Algorithm 1. The most common strategy is to stop if the tree has
reached a certain prespecified depth. Another strategy is to stop when the leaves’
diversity is below a certain threshold. As we will discuss in the next section, it
is generally good practice to use permissive stopping conditions and then assess
the quality of the induced hierarchy using other tools.

Remark 4. We implemented and tested Algorithm 1 using MATLAB. The only
computationally expensive step of the algorithm is the optimization in line 4.
This problem becomes easier as the depth of the tree increases because fewer
signals need to be processed. Aside from the optimization routine itself (see
Remark 3), the computation of the objective function HG(S, ψ(θ)) implicitly
requires the construction of the partition S�, S⊥ induced by ψ(θ) and the com-
putation of the distances among the signals in S. To speed up the execution, we
precompute and store a distance matrix that contains the distances, taken pair-
wise, of the signals in the dataset Str. Moreover, since the distance computations
involve multi-dimensional signals, normalizing the dataset before the execution
of the algorithm has proven to be useful.
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5.4 Clustering Evaluation

Evaluating the quality of clustering results is a difficult task [1]. If independent
labeled data is available, it is possible to assess how similar the returned clusters
are to the predetermined classes, treating the latter as a gold standard during
the evaluation. Several performance metrics used for classification tasks can be
adapted for this purpose, such as the misclassification rate (MCR). However,
there is no unanimous agreement that this is an adequate way of assessing the
performance of a clustering algorithm [12]. Specifically, manually assigned labels
only represent one possible partitioning of the dataset, which does not imply that
there are no other, equal or more meaningful, partitions. Moreover, in general,
labeled data is not available at all, and clustering algorithms should be inter-
preted more as exploratory and knowledge discovery tools [1,21] that assist the
human user who is the ultimate (and subjective) judge. In this context, cluster-
ing is a trial and error process and may involve several attempts. Our algorithm,
with explicit support for meta-parameters, e.g., different distance measures, is
well suited for this task.

An important related issue is deciding the number of clusters. One of the
major advantages of hierarchical clustering algorithms is that the number of
clusters does not have to be prefixed before the execution of the algorithm.
Given a constructed hierarchy of clusters, some methods have been proposed in
literature to help the user decide the appropriate number of clusters without
requiring explicit data labeling [1]. We used the so-called elbow method. The
core idea is to explore the relationship between the number of clusters and the
remaining diversity in the clusters. The latter is quantified with the percentage of
unexplained diversity defined as the ratio between the weighted sum of inhomo-
geneity in the clusters and the initial inhomogeneity of the whole dataset. The
percentage of unexplained diversity is plotted against the number of clusters.
Generally, the first splits of the tree explain a lot of diversity in the data, but at
some point the marginal decrease will drop, giving an angle in the graph (hence
the elbow name). This information can be exploited to stop the algorithm, if
a satisfactory solution has been found, or to prune the tree in order to remove
unnecessary clusters. Moreover, since there is a direct connection in our method
between depth of induced tree, number of clusters, and length of the formulae
representing the clusters, this analysis provides insights on the trade-off between
formulae complexity and clustering effectiveness.

For the maritime surveillance case study, we obtained excellent results with
the classical Euclidean norm. Algorithm 1 was set to run until a tree of depth 4
was constructed. The elbow analysis in Fig. 2 shows that the last major drop in
unexplained diversity happens when there are three leaves, and this corresponds
to the tree shown in Fig. 1b. In this case, each cluster can be mapped with one
of the original scenarios of the dataset.
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Fig. 2. Maritime surveillance case study - elbow analysis

6 Automotive Case Study

The second case study is a fault classification problem in an automatic transmis-
sion system. We constructed this dataset for the purposes of this investigation
by modifying a built-in Simulink model [23]. We selected this model because it
includes all the complexities of real world industrial models, such as continuous
and discrete blocks, look-up tables, and Stateflow charts. Moreover, this model
was proposed as a benchmark for the Hybrid Systems community in [14] and
variations of the base scheme have been used as case studies in some recent
formal methods papers [10,16,24].

In this section, we briefly describe the base model and our modifications.
Consider the closed-loop vehicle model with four speeds and an automatic trans-
mission controller of [23]. The transmission subsystem allows the internal com-
bustion engine to run at appropriate rotational speeds in order to provide a
range of speeds and torques necessary for the vehicle to move and maneuver
effectively. The goal of the controller is to automatically change gear, freeing
the driver from having to shift gears manually. The system has two inputs: the
throttle opening and the brake. The throttle can take any value between 0 (fully
closed) and 100 (fully open). The brake can also take values between 0 and 100,
and it is used to model the variable load on the engine, such as the vehicle
going uphill or downhill. The system has two continuous and one discrete state
variables. The continuous state variables are the engine speed (in rpm) and the
vehicle speed (in mph). The discrete state variable is the gear, which takes an
integer value between 1 and 4. The engine speed and the vehicle speed are also
used as outputs of the system.

For the simulation, we consider the vehicle starting from rest and subse-
quently performing a surpass maneuver. Specifically, the vehicle starts with zero
speed, engine at 1000 RPM, and with throttle at 50%. The surpass maneuver
begins at a random time, between 15 and 25 s, when the driver steps the throt-
tle to 90%. The overall simulation time is 50 s. Noise has also been injected in
the system. In particular, independent Gaussian random noise was added to the
engine speed, the transmission speed, and the vehicle’s speed sensor.
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In this case study, three types of faults have been simulated. The first type of
fault models a malfunction in the vehicle’s speed sensor. The fault can manifest
at anytime during the execution and the readings of the sensor are substituted
with a random (erratic) value between 0 and 100 mph. The second and third
types of faults are obtained by tampering with the gear shifting logic, which is
implemented with a Stateflow chart in the Simulink model. In the second type of
fault, the Stateflow chart is modified so that the vehicle is unable to engage the
fourth gear. For the third type of fault, the Stateflow chart is modified so that
the automatic transmission switches directly from second gear to fourth gear,
and vice versa, by skipping the third gear altogether.

We performed 1500 total simulations with different settings. In detail, we
obtained: 750 traces where the system was working normally; 250 traces with a
fault in the vehicle’s speed sensor (Type 1 fault); 250 traces with an unable to
engage the fourth gear fault (Type 2 fault); 250 traces with a skip the third gear
fault (Type 3 fault). For every trace, we collected the system’s output values,
that is, the speed of the engine (variable x1) and the speed of the vehicle (variable
x2). Some sample traces are shown in Fig. 3a.
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Fig. 3. Automatic transmission - (a) Example trajectories: Normal in blue, anomalous
in black (Type 1-sensor fault), red (Type 2-no 4th), and green (Type 3-skip 3rd).
(b) Two qualitatively different normal scenarios: (1) shift sequence 4th-3rd-4th with a
solid line, and (2) stay in 4th gear with a dashed line. (Color figure online)

7 Results

For the automotive case study, we executed Algorithm 1 with the aim of recon-
structing the different types of faults and the normal conditions present in the
dataset. We obtained the best results using the dependent multi-dimensional
dynamic time-warping distance (DTWD) with 0.2 warping factor. This is due to
the fact that the components of each signal come from the same system and share
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the same clock. Moreover, the signals in the dataset can be shifted and distorted
in time due to the varying input throttle and the noise injected. Algorithm1
was set to run until a tree of depth 4 was constructed. The elbow analysis in
this case shows that there is not much gain after six clusters have been created
(Fig. 4b). This corresponds to the tree shown in Fig. 4a.

Type 1 and Type 2 faults are mapped with a cluster each. Type 3 faults are
mapped with two clusters, and there are also two separate clusters containing
normal signals. This happens because, when the surpassing maneuver starts, two
scenarios are possible. In the first scenario, the transmission downshifts from the
fourth gear to the third gear and the engine jumps from about 2500 RPM to
about 4000 RPM. The engine torque is thus increased and so is the mechanical
advantage of the transmission. With continued heavy throttle, the vehicle accel-
erates and eventually shifts back to the forth gear (Fig. 3b - solid line). In the
second scenario, the automatic transmission deems the gear change not neces-
sary, according to the shift schedule, and the vehicle stays in the forth gear for
the whole time (Fig. 3b - dashed line). Using a simple disjunction, we can obtain
a single formula that overall describes the normal conditions (it encompasses the
signals contained in both clusters):

φnorm =
G[33.1,45.9]x1 ≤ 4609.8 ∧ ((G[31.6,45.3]x2 > 110.02 ∧ F[20.8,46]x1 > 4266.1)
∨ (F[31.6,45.3]x2 ≤ 110.02 ∧ (F[46.3,46.7]x2 > 111.18 ∧ G[4.41,5.88]x1 > 2517.2)))

Since labeled data is available for this case study, we tested the classification
performance of this formula using an independent test set and achieved a mis-
classification rate of 0.031.

Fig. 4. Automatic transmission results

We return to the maritime surveillance case study for some final remarks.
This case study was also investigated in [17], with their SVM-based approach,
and in [6], using a decision-tree based algorithm. Both these works tackle the
supervised two-class classification problem. Even though the problem settings are
quite different, we can still try to make some comparisons since our algorithm
was able to recover the same class structure of the original dataset (as shown in
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Fig. 1). In terms of classification performance, the formula in Eq. (1) achieves a
misclassification rate of 0.0079 on an independent test set. This outperforms the
results obtained in [17], improving the misclassification rate by a factor of 20, and
is on par with the results of the supervised algorithm in [6]. This result is quite
impressive considering that our algorithm does not use labeled examples and
yet it is able to achieve similar accuracy. For the naval case study, the execution
time of Algorithm 1 was 283 s, which is still far better than [17] but roughly three
times slower with respect to [6].3 The difference with [6] is due to two main
factors: (1) the computation of distances, which are not needed in supervised
algorithms, and (2) the greater depth at which the tree is initially induced, since
labels are not available to guide the algorithm termination. Moreover, it must
be noted that the exploratory nature of clustering generally requires more than
one execution.

8 Conclusion

We introduced a novel method for learning signal classifiers in the form of STL
formulae from raw data. Specifically, we tackled the clustering problem. In this
challenging scenario, no labels are available for the signals, and the end goal is to
cluster similar signals together and represent each cluster with an STL formula.

We exploited the connection between binary trees and STL formulae intro-
duced in [6] and constructed an hierarchical clustering algorithm that partitions
signals using PSTL primitives to test simple temporal logic properties of the
data. The best primitives, along with their parameters, are chosen by optimiz-
ing some appropriately defined homogeneity measures, which capture how well
a formula splits the signals according to their similarity. Finally, each leaf of the
tree is associated with a cluster and can be mapped to an STL formula that
describes it. Both the formula structure and its parameters are derived from the
input data.

This work is in line with the recent interest in learning temporal specification
from data and is motivated by the need to construct formulae that provide good
clustering performance while being interpretable. This allows the designers to
acquire some knowledge over the derived clusters and the specific application
domain. Moreover, the inferred formulae can be used in other contexts, such
as system monitoring. The proposed algorithm has been tested on two case
studies in the maritime surveillance and automotive fields. We showed that the
algorithm is able to capture relevant characteristics of the signals in both cases
and achieves solid classification accuracy.

In the future, we plan to investigate other homogeneity measures, especially
some measures derived from information theory, and then perform a comparative
study of the behavior of the proposed algorithm for each measure. Future work
also includes improving the local optimization procedure, which will speed up
the overall performance of the algorithm.

3 We ran our experiments on a Windows PC with an Intel 5920K CPU.
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