
ScienceDirect
IFAC-PapersOnLine 48-27 (2015) 141–146

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.11.166

Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Temporal Logic Inference with Prior
Information: An Application to Robot Arm

Movements �

Zhe Xu ∗ Calin Belta ∗∗ Agung Julius ∗

∗ Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Email: xuz8,juliua2@rpi.edu.
∗∗ Department of Mechanical Engineering and the Division of Systems

Engineering, Boston University, Boston, MA 02215, USA.
Email: cbelta@bu.edu.

Abstract: Temporal logics are widely used to express (desired) system properties in controller
synthesis and verification. In linear temporal logics, the semantics of the formulae are defined
on the execution trajectories of the system. Recently, there have been a lot of interest in using
dense-time linear temporal logic, such as Signal Temporal Logic (STL) in characterizing system
trajectories. In this paper, we present a new method to derive an STL formula that characterizes
the motion of a robot arm. Our work generalizes earlier work in this area by (i) allowing the use
of polyhedral predicates, and (ii) incorporating a priori knowledge about the predicates. The
formula is defined by a set of parameters, whose values are determined by minimizing a cost
function that balances the trade-off between the formula’s match with the trajectories and the
the similarity between its predicate and an a priori known predicate. We apply our algorithm
on experimental trajectories generated using a PHANToM Omni robot.

Keywords: Signal Temporal Logic, Learning, Optimization

1. INTRODUCTION

Formal methods have been used in robotics because they
provide verification and synthesis tools for robotics control
systems (see Fainekos et al. (2005); Finucane et al. (2010);
Fainekos et al. (2007)). Temporal logic is an effective tool
to express complex high-level control specifications, for
which formal controller synthesis and verification can be
performed. Unlike traditional robot motion with a simple
specification such as “go from A to B while avoiding obsta-
cles”, temporal logic can express more complex specifica-
tions and precise temporal properties that often occur in
reality such as “Go to A and B and then C in different time
intervals. Don’t go to D and E in certain time intervals.”
There has been rich literature on how to design controllers
to meet temporal logic specifications (see Kress-Gazit et al.
(2009); Raman et al. (2012); Lin et al. (2002); Smith et al.
(2010); Ulusoy et al. (2011)). The temporal logic formulae
are typically predefined as a guideline for the behaviors of
the system.

Recently, there has been a growing interest in identifying
dense-time temporal logic formulae from system trajecto-
ries. Algorithms for this purpose are enabled by the robust
semantics of dense-time temporal logics. For example,
Fainekos and Pappas introduced a robust semantics for

� Corresponding Author: Zhe Xu. We acknowledge the support
of the National Science Foundation through grants number CNS-
0953976, CNS-1218109, and NRI-1426907, and the Office of Naval
Research through grant number N00014-14-1-0554 for the research
reported in this paper.

Metric Temporal Logic (MTL) based on how far a given
trajectory stands, in space and time, from satisfying or vio-
lating a temporal logic property (see Fainekos and Pappas
(2009)). With Signal Temporal Logic (STL), Donze and
Maler also defined several variants of robustness measures
(see Donzé and Maler (2010), and more details in Sec. 2).
They also presented a method to compute these robustness
measures as well as their sensitivity to the parameters
of the system or parameters appearing in the formula.
STL inference can be performed roughly in two stages
(see the work in Kong et al. (2014)). In the first stage,
the structure of the formula is chosen. The structure of
the formula refers to how the atomic propositions are
combined using temporal and logical operators. Kong et
al. showed that the formulae admit a partial order of
complexity, based on which the structure can be chosen.
Once the structure is chosen, the formula is characterized
by some parameters that modify the atomic predicates
and the temporal operators. In the second stage, these
parameters are determined using non-convex optimization.
In the context of specification mining for control systems,
Jin et al. (2013) also solved the problem of identifying
parameters for STL formulae from simulation traces.

In this paper, we present a new algorithm for STL for-
mula inference that takes into account a priori information
about the atomic predicates. The motivation for our work
is to enable robots to learn from human demonstrations
and generate temporal logic specifications from the demon-
stration data. We seek to infer STL formulae that classify
different robot arm movements, predict sequential robot

Preprints, 5th IFAC Conference on Analysis and Design of Hybrid
Systems
October 14-16, 2015. Georgia Tech, Atlanta, USA

Copyright © IFAC 2015 141

Temporal Logic Inference with Prior
Information: An Application to Robot Arm

Movements �

Zhe Xu ∗ Calin Belta ∗∗ Agung Julius ∗

∗ Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Email: xuz8,juliua2@rpi.edu.
∗∗ Department of Mechanical Engineering and the Division of Systems

Engineering, Boston University, Boston, MA 02215, USA.
Email: cbelta@bu.edu.

Abstract: Temporal logics are widely used to express (desired) system properties in controller
synthesis and verification. In linear temporal logics, the semantics of the formulae are defined
on the execution trajectories of the system. Recently, there have been a lot of interest in using
dense-time linear temporal logic, such as Signal Temporal Logic (STL) in characterizing system
trajectories. In this paper, we present a new method to derive an STL formula that characterizes
the motion of a robot arm. Our work generalizes earlier work in this area by (i) allowing the use
of polyhedral predicates, and (ii) incorporating a priori knowledge about the predicates. The
formula is defined by a set of parameters, whose values are determined by minimizing a cost
function that balances the trade-off between the formula’s match with the trajectories and the
the similarity between its predicate and an a priori known predicate. We apply our algorithm
on experimental trajectories generated using a PHANToM Omni robot.

Keywords: Signal Temporal Logic, Learning, Optimization

1. INTRODUCTION

Formal methods have been used in robotics because they
provide verification and synthesis tools for robotics control
systems (see Fainekos et al. (2005); Finucane et al. (2010);
Fainekos et al. (2007)). Temporal logic is an effective tool
to express complex high-level control specifications, for
which formal controller synthesis and verification can be
performed. Unlike traditional robot motion with a simple
specification such as “go from A to B while avoiding obsta-
cles”, temporal logic can express more complex specifica-
tions and precise temporal properties that often occur in
reality such as “Go to A and B and then C in different time
intervals. Don’t go to D and E in certain time intervals.”
There has been rich literature on how to design controllers
to meet temporal logic specifications (see Kress-Gazit et al.
(2009); Raman et al. (2012); Lin et al. (2002); Smith et al.
(2010); Ulusoy et al. (2011)). The temporal logic formulae
are typically predefined as a guideline for the behaviors of
the system.

Recently, there has been a growing interest in identifying
dense-time temporal logic formulae from system trajecto-
ries. Algorithms for this purpose are enabled by the robust
semantics of dense-time temporal logics. For example,
Fainekos and Pappas introduced a robust semantics for

� Corresponding Author: Zhe Xu. We acknowledge the support
of the National Science Foundation through grants number CNS-
0953976, CNS-1218109, and NRI-1426907, and the Office of Naval
Research through grant number N00014-14-1-0554 for the research
reported in this paper.

Metric Temporal Logic (MTL) based on how far a given
trajectory stands, in space and time, from satisfying or vio-
lating a temporal logic property (see Fainekos and Pappas
(2009)). With Signal Temporal Logic (STL), Donze and
Maler also defined several variants of robustness measures
(see Donzé and Maler (2010), and more details in Sec. 2).
They also presented a method to compute these robustness
measures as well as their sensitivity to the parameters
of the system or parameters appearing in the formula.
STL inference can be performed roughly in two stages
(see the work in Kong et al. (2014)). In the first stage,
the structure of the formula is chosen. The structure of
the formula refers to how the atomic propositions are
combined using temporal and logical operators. Kong et
al. showed that the formulae admit a partial order of
complexity, based on which the structure can be chosen.
Once the structure is chosen, the formula is characterized
by some parameters that modify the atomic predicates
and the temporal operators. In the second stage, these
parameters are determined using non-convex optimization.
In the context of specification mining for control systems,
Jin et al. (2013) also solved the problem of identifying
parameters for STL formulae from simulation traces.

In this paper, we present a new algorithm for STL for-
mula inference that takes into account a priori information
about the atomic predicates. The motivation for our work
is to enable robots to learn from human demonstrations
and generate temporal logic specifications from the demon-
stration data. We seek to infer STL formulae that classify
different robot arm movements, predict sequential robot

Preprints, 5th IFAC Conference on Analysis and Design of Hybrid
Systems
October 14-16, 2015. Georgia Tech, Atlanta, USA

Copyright © IFAC 2015 141

Temporal Logic Inference with Prior
Information: An Application to Robot Arm

Movements �

Zhe Xu ∗ Calin Belta ∗∗ Agung Julius ∗

∗ Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Email: xuz8,juliua2@rpi.edu.
∗∗ Department of Mechanical Engineering and the Division of Systems

Engineering, Boston University, Boston, MA 02215, USA.
Email: cbelta@bu.edu.

Abstract: Temporal logics are widely used to express (desired) system properties in controller
synthesis and verification. In linear temporal logics, the semantics of the formulae are defined
on the execution trajectories of the system. Recently, there have been a lot of interest in using
dense-time linear temporal logic, such as Signal Temporal Logic (STL) in characterizing system
trajectories. In this paper, we present a new method to derive an STL formula that characterizes
the motion of a robot arm. Our work generalizes earlier work in this area by (i) allowing the use
of polyhedral predicates, and (ii) incorporating a priori knowledge about the predicates. The
formula is defined by a set of parameters, whose values are determined by minimizing a cost
function that balances the trade-off between the formula’s match with the trajectories and the
the similarity between its predicate and an a priori known predicate. We apply our algorithm
on experimental trajectories generated using a PHANToM Omni robot.

Keywords: Signal Temporal Logic, Learning, Optimization

1. INTRODUCTION

Formal methods have been used in robotics because they
provide verification and synthesis tools for robotics control
systems (see Fainekos et al. (2005); Finucane et al. (2010);
Fainekos et al. (2007)). Temporal logic is an effective tool
to express complex high-level control specifications, for
which formal controller synthesis and verification can be
performed. Unlike traditional robot motion with a simple
specification such as “go from A to B while avoiding obsta-
cles”, temporal logic can express more complex specifica-
tions and precise temporal properties that often occur in
reality such as “Go to A and B and then C in different time
intervals. Don’t go to D and E in certain time intervals.”
There has been rich literature on how to design controllers
to meet temporal logic specifications (see Kress-Gazit et al.
(2009); Raman et al. (2012); Lin et al. (2002); Smith et al.
(2010); Ulusoy et al. (2011)). The temporal logic formulae
are typically predefined as a guideline for the behaviors of
the system.

Recently, there has been a growing interest in identifying
dense-time temporal logic formulae from system trajecto-
ries. Algorithms for this purpose are enabled by the robust
semantics of dense-time temporal logics. For example,
Fainekos and Pappas introduced a robust semantics for

� Corresponding Author: Zhe Xu. We acknowledge the support
of the National Science Foundation through grants number CNS-
0953976, CNS-1218109, and NRI-1426907, and the Office of Naval
Research through grant number N00014-14-1-0554 for the research
reported in this paper.

Metric Temporal Logic (MTL) based on how far a given
trajectory stands, in space and time, from satisfying or vio-
lating a temporal logic property (see Fainekos and Pappas
(2009)). With Signal Temporal Logic (STL), Donze and
Maler also defined several variants of robustness measures
(see Donzé and Maler (2010), and more details in Sec. 2).
They also presented a method to compute these robustness
measures as well as their sensitivity to the parameters
of the system or parameters appearing in the formula.
STL inference can be performed roughly in two stages
(see the work in Kong et al. (2014)). In the first stage,
the structure of the formula is chosen. The structure of
the formula refers to how the atomic propositions are
combined using temporal and logical operators. Kong et
al. showed that the formulae admit a partial order of
complexity, based on which the structure can be chosen.
Once the structure is chosen, the formula is characterized
by some parameters that modify the atomic predicates
and the temporal operators. In the second stage, these
parameters are determined using non-convex optimization.
In the context of specification mining for control systems,
Jin et al. (2013) also solved the problem of identifying
parameters for STL formulae from simulation traces.

In this paper, we present a new algorithm for STL for-
mula inference that takes into account a priori information
about the atomic predicates. The motivation for our work
is to enable robots to learn from human demonstrations
and generate temporal logic specifications from the demon-
stration data. We seek to infer STL formulae that classify
different robot arm movements, predict sequential robot

Preprints, 5th IFAC Conference on Analysis and Design of Hybrid
Systems
October 14-16, 2015. Georgia Tech, Atlanta, USA

Copyright © IFAC 2015 141

Temporal Logic Inference with Prior
Information: An Application to Robot Arm

Movements �

Zhe Xu ∗ Calin Belta ∗∗ Agung Julius ∗

∗ Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Email: xuz8,juliua2@rpi.edu.
∗∗ Department of Mechanical Engineering and the Division of Systems

Engineering, Boston University, Boston, MA 02215, USA.
Email: cbelta@bu.edu.

Abstract: Temporal logics are widely used to express (desired) system properties in controller
synthesis and verification. In linear temporal logics, the semantics of the formulae are defined
on the execution trajectories of the system. Recently, there have been a lot of interest in using
dense-time linear temporal logic, such as Signal Temporal Logic (STL) in characterizing system
trajectories. In this paper, we present a new method to derive an STL formula that characterizes
the motion of a robot arm. Our work generalizes earlier work in this area by (i) allowing the use
of polyhedral predicates, and (ii) incorporating a priori knowledge about the predicates. The
formula is defined by a set of parameters, whose values are determined by minimizing a cost
function that balances the trade-off between the formula’s match with the trajectories and the
the similarity between its predicate and an a priori known predicate. We apply our algorithm
on experimental trajectories generated using a PHANToM Omni robot.

Keywords: Signal Temporal Logic, Learning, Optimization

1. INTRODUCTION

Formal methods have been used in robotics because they
provide verification and synthesis tools for robotics control
systems (see Fainekos et al. (2005); Finucane et al. (2010);
Fainekos et al. (2007)). Temporal logic is an effective tool
to express complex high-level control specifications, for
which formal controller synthesis and verification can be
performed. Unlike traditional robot motion with a simple
specification such as “go from A to B while avoiding obsta-
cles”, temporal logic can express more complex specifica-
tions and precise temporal properties that often occur in
reality such as “Go to A and B and then C in different time
intervals. Don’t go to D and E in certain time intervals.”
There has been rich literature on how to design controllers
to meet temporal logic specifications (see Kress-Gazit et al.
(2009); Raman et al. (2012); Lin et al. (2002); Smith et al.
(2010); Ulusoy et al. (2011)). The temporal logic formulae
are typically predefined as a guideline for the behaviors of
the system.

Recently, there has been a growing interest in identifying
dense-time temporal logic formulae from system trajecto-
ries. Algorithms for this purpose are enabled by the robust
semantics of dense-time temporal logics. For example,
Fainekos and Pappas introduced a robust semantics for

� Corresponding Author: Zhe Xu. We acknowledge the support
of the National Science Foundation through grants number CNS-
0953976, CNS-1218109, and NRI-1426907, and the Office of Naval
Research through grant number N00014-14-1-0554 for the research
reported in this paper.

Metric Temporal Logic (MTL) based on how far a given
trajectory stands, in space and time, from satisfying or vio-
lating a temporal logic property (see Fainekos and Pappas
(2009)). With Signal Temporal Logic (STL), Donze and
Maler also defined several variants of robustness measures
(see Donzé and Maler (2010), and more details in Sec. 2).
They also presented a method to compute these robustness
measures as well as their sensitivity to the parameters
of the system or parameters appearing in the formula.
STL inference can be performed roughly in two stages
(see the work in Kong et al. (2014)). In the first stage,
the structure of the formula is chosen. The structure of
the formula refers to how the atomic propositions are
combined using temporal and logical operators. Kong et
al. showed that the formulae admit a partial order of
complexity, based on which the structure can be chosen.
Once the structure is chosen, the formula is characterized
by some parameters that modify the atomic predicates
and the temporal operators. In the second stage, these
parameters are determined using non-convex optimization.
In the context of specification mining for control systems,
Jin et al. (2013) also solved the problem of identifying
parameters for STL formulae from simulation traces.

In this paper, we present a new algorithm for STL for-
mula inference that takes into account a priori information
about the atomic predicates. The motivation for our work
is to enable robots to learn from human demonstrations
and generate temporal logic specifications from the demon-
stration data. We seek to infer STL formulae that classify
different robot arm movements, predict sequential robot

Preprints, 5th IFAC Conference on Analysis and Design of Hybrid
Systems
October 14-16, 2015. Georgia Tech, Atlanta, USA

Copyright © IFAC 2015 141

142	 Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146

arm movements and achieve multi-goals while avoiding
different obstacles during different time intervals. For these
purposes, it is natural to assume that a priori information
about (some of) the atomic predicates involved in the
formulae is available. For example, we can naturally assign
a subset of the state-space to the predicate “the arm is
stretched upright”. By including such prior information in
the inference process, we can ensure that the STL formula
are composed of atomic predicates with a priori assigned
meaning.

The rest of this paper is structured as follows. Section
2 reviews the framework of Signal Temporal Logic and
the robustness degree. Section 3 describes the types of
temporal logic inference tasks that we consider in this
paper. Section 4 outlines the algorithms that we propose
to complete the tasks mentioned above. Section 5 describes
the implementation of the algorithms on trajectories gen-
erated using the PHANToM Omni haptic device. Finally,
some conclusions are presented in Section 6.

2. SIGNAL TEMPORAL LOGIC (STL)

In this section, we briefly review the Signal Temporal Logic
(STL) (see Donzé and Maler (2010)). We start with the
Boolean semantics of STL. The state of the system we are
studying is described by a set of n variables that can be
written as a vector x = [x1, x2, . . . , xn]

T . The domain of
x is denoted by X = X1 × X2 × · · · × Xn. The domain
B = {True,False} is the Boolean domain and the time
set is T = R�0. With a slight abuse of notation, we define
trajectory (or signal or behavior) x describing an evolution
of the system as a function from T to X. Therefore, xi

refers to both the name of the i-th state variable and
its valuation in X. A set Π = {π1, π2, . . . πn} is a set of
atomic propositions, each of which can be either true or
false. The atomic propositions can express properties such
as “the robot is inside the safe area 1”, or “the robot arm
is lifting”. The syntax of STL is defined recursively as
follows:

φ := � | π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1UIφ2

where � stands for the Boolean constant True, π is
an atomic proposition, ¬ (negation), ∧(conjunction), ∨
(disjunction) are standard Boolean connectives, U is a
temporal operator representing “until”, I is an interval
of the form I = (i1, i2), (i1, i2], [i1, i2) or [i1, i2](i1, i2 ∈
T). We can also derive two useful temporal operators
from “until”(U), which are “eventually”�φ = �Uφ and
“always”�φ = ¬�¬φ.
We use (x, t) to represent the trajectory x at time t;
(x, t) |= π means the trajectory x satisfies π at time t,
π ∈ Π = {π1, π2, . . . πn}, or equivalently, if p ⊂ X is the
predicate of the proposition π, i.e. the set of states that
satisfy the proposition π, x(t) ∈ p.

The rest of the Boolean semantics of STL are defined
recursively as follows:

(x, t) |= ¬φ iff (x, t) � φ

(x, t) |= φ1 ∧ φ2 iff (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 iff (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= φ1U[a,b)φ2 iff ∃t′ ∈ [t+ a, t+ b)

s.t.(x, t′) |= φ2, (x, t
′′) |= φ1

∀t′′ ∈ [t+ a, t′)

The robustness degree of a trajectory x with respect to an
STL formula φ at time t is given as r(x, φ, t), where r can
be calculated recursively via the quantitative semantics
(see Donzé and Maler (2010)). It should be noted that
in computing the robustness degree with a computer, the
data is actually time-stamped. So only the time-stamped
points are used for calculation.

r(x, xi ≥ b, t) = xi(t)− b,

r(x, xi < b, t) = b− xi(t),

r(x,¬φ, t) = −(r(x, φ, t)),

r(x, φ1 ∧ φ2, t) = min(r(x, φ1, t), r(x, φ2, t)),

r(x, φ1 ∨ φ2, t) = max(r(x, φ1, t), r(x, φ2, t)),

r(x,�[τ1,τ2)φ, t) = min
t+τ1≤t′<t+τ2

r(x, φ, t′),

r(x,�[τ1,τ2)φ, t) = max
t+τ1≤t′<t+τ2

r(x, φ, t′).

The robustness degree of the entire trajectory ω is denoted
as

r(x,�[τ1,τ2)φ) = min
τ1≤t<τ2

r(x, φ, t)

r(x,�[τ1,τ2)φ) = max
τ1≤t<τ2

r(x, φ, t)

In this paper, we consider atomic predicates that are
polyhedra, i.e. not necessarily rectangular sets as in Jin
et al. (2013); Kong et al. (2014). For this purpose, we
extend the quantitative semantics of STL by defining

r(x, aTx > b, t) = aTx− b, a ∈ Rn, b ∈ R. (1)

The set of states for each predicate p that we consider
in this paper is expressed as a conjunction of linear
inequalities

p :

(
x ∈ X |

(
m∧

k=1

aTk x > bk

))
, ak ∈ Rn, bk ∈ R, (2)

where the vector ak and number bk are parameters that
define the predicate, and m is the number of linear
inequalities in the predicate. As, for example, the formulae
(x1+2x2 > 4) and (2x1+4x2 > 8) are essentially the same,
in order to reduce redundancy and expedite the searching
process, we constraint ‖ak‖2 = 1.

3. PROBLEM DESCRIPTION

In this paper, we intend to infer STL formulae to achieve
the following three kinds of tasks. The first two tasks are
also considered in the paper (Kong et al. (2014)):

Task 1: Classification of different movements. Given
two sets of trajectories A and B, we seek to find an STL
formula φ of the form �[τ1,τ2]π or �[τ3,τ4]π that is satisfied
by the trajectories in A and violated by the trajectories in
B.

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

142

	 Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146	 143

arm movements and achieve multi-goals while avoiding
different obstacles during different time intervals. For these
purposes, it is natural to assume that a priori information
about (some of) the atomic predicates involved in the
formulae is available. For example, we can naturally assign
a subset of the state-space to the predicate “the arm is
stretched upright”. By including such prior information in
the inference process, we can ensure that the STL formula
are composed of atomic predicates with a priori assigned
meaning.

The rest of this paper is structured as follows. Section
2 reviews the framework of Signal Temporal Logic and
the robustness degree. Section 3 describes the types of
temporal logic inference tasks that we consider in this
paper. Section 4 outlines the algorithms that we propose
to complete the tasks mentioned above. Section 5 describes
the implementation of the algorithms on trajectories gen-
erated using the PHANToM Omni haptic device. Finally,
some conclusions are presented in Section 6.

2. SIGNAL TEMPORAL LOGIC (STL)

In this section, we briefly review the Signal Temporal Logic
(STL) (see Donzé and Maler (2010)). We start with the
Boolean semantics of STL. The state of the system we are
studying is described by a set of n variables that can be
written as a vector x = [x1, x2, . . . , xn]

T . The domain of
x is denoted by X = X1 × X2 × · · · × Xn. The domain
B = {True,False} is the Boolean domain and the time
set is T = R�0. With a slight abuse of notation, we define
trajectory (or signal or behavior) x describing an evolution
of the system as a function from T to X. Therefore, xi

refers to both the name of the i-th state variable and
its valuation in X. A set Π = {π1, π2, . . . πn} is a set of
atomic propositions, each of which can be either true or
false. The atomic propositions can express properties such
as “the robot is inside the safe area 1”, or “the robot arm
is lifting”. The syntax of STL is defined recursively as
follows:

φ := � | π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1UIφ2

where � stands for the Boolean constant True, π is
an atomic proposition, ¬ (negation), ∧(conjunction), ∨
(disjunction) are standard Boolean connectives, U is a
temporal operator representing “until”, I is an interval
of the form I = (i1, i2), (i1, i2], [i1, i2) or [i1, i2](i1, i2 ∈
T). We can also derive two useful temporal operators
from “until”(U), which are “eventually”�φ = �Uφ and
“always”�φ = ¬�¬φ.
We use (x, t) to represent the trajectory x at time t;
(x, t) |= π means the trajectory x satisfies π at time t,
π ∈ Π = {π1, π2, . . . πn}, or equivalently, if p ⊂ X is the
predicate of the proposition π, i.e. the set of states that
satisfy the proposition π, x(t) ∈ p.

The rest of the Boolean semantics of STL are defined
recursively as follows:

(x, t) |= ¬φ iff (x, t) � φ

(x, t) |= φ1 ∧ φ2 iff (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1 ∨ φ2 iff (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= φ1U[a,b)φ2 iff ∃t′ ∈ [t+ a, t+ b)

s.t.(x, t′) |= φ2, (x, t
′′) |= φ1

∀t′′ ∈ [t+ a, t′)

The robustness degree of a trajectory x with respect to an
STL formula φ at time t is given as r(x, φ, t), where r can
be calculated recursively via the quantitative semantics
(see Donzé and Maler (2010)). It should be noted that
in computing the robustness degree with a computer, the
data is actually time-stamped. So only the time-stamped
points are used for calculation.

r(x, xi ≥ b, t) = xi(t)− b,

r(x, xi < b, t) = b− xi(t),

r(x,¬φ, t) = −(r(x, φ, t)),

r(x, φ1 ∧ φ2, t) = min(r(x, φ1, t), r(x, φ2, t)),

r(x, φ1 ∨ φ2, t) = max(r(x, φ1, t), r(x, φ2, t)),

r(x,�[τ1,τ2)φ, t) = min
t+τ1≤t′<t+τ2

r(x, φ, t′),

r(x,�[τ1,τ2)φ, t) = max
t+τ1≤t′<t+τ2

r(x, φ, t′).

The robustness degree of the entire trajectory ω is denoted
as

r(x,�[τ1,τ2)φ) = min
τ1≤t<τ2

r(x, φ, t)

r(x,�[τ1,τ2)φ) = max
τ1≤t<τ2

r(x, φ, t)

In this paper, we consider atomic predicates that are
polyhedra, i.e. not necessarily rectangular sets as in Jin
et al. (2013); Kong et al. (2014). For this purpose, we
extend the quantitative semantics of STL by defining

r(x, aTx > b, t) = aTx− b, a ∈ Rn, b ∈ R. (1)

The set of states for each predicate p that we consider
in this paper is expressed as a conjunction of linear
inequalities

p :

(
x ∈ X |

(
m∧

k=1

aTk x > bk

))
, ak ∈ Rn, bk ∈ R, (2)

where the vector ak and number bk are parameters that
define the predicate, and m is the number of linear
inequalities in the predicate. As, for example, the formulae
(x1+2x2 > 4) and (2x1+4x2 > 8) are essentially the same,
in order to reduce redundancy and expedite the searching
process, we constraint ‖ak‖2 = 1.

3. PROBLEM DESCRIPTION

In this paper, we intend to infer STL formulae to achieve
the following three kinds of tasks. The first two tasks are
also considered in the paper (Kong et al. (2014)):

Task 1: Classification of different movements. Given
two sets of trajectories A and B, we seek to find an STL
formula φ of the form �[τ1,τ2]π or �[τ3,τ4]π that is satisfied
by the trajectories in A and violated by the trajectories in
B.

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

142

Task 2: Identification of sequential movements The
formula �[τ1,τ2]π1 ⇒ �[τ3,τ4]π2 reads “If π1 is always true
in the time interval [τ1, τ2] then eventually π2 is true in
the time interval [τ3, τ4]”. In the context of robotics, such
formula can be naturally interpreted as a prescription for
a sequential movement. In this task, we seek to identify
formulae with this structure from the trajectories. As
�[τ1,τ2]π1 ⇒ �[τ3,τ4]π2 is equivalent to ¬

(
�[τ1,τ2]π1

)
∨

�[τ3,τ4]π2, by searching for the formula with this structure,
the implication relationship can be obtained.

Task 3: Identification of goals and obstacles In the
context of robotics, the formula �[τ1,τ2]¬π1 ∧ �[τ3,τ4]π2 ∧
�[τ5,τ6]π3 expresses the property that the robot will even-
tually reach π2 during the time interval of [τ3, τ4], and
eventually reach π3 during the time interval of [τ5, τ6],
and it must avoid π1 during the time interval of [τ1, τ2].
Thus, we can naturally interpret π1 as an obstacle, and
π2,3 as (sub)goals of the motion. In this task, we seek to
identify formulae of this structure. That is, the goal areas
or obstacles can be characterized by formulae of the form
�[τ1,τ2]¬π1 and �[τ3,τ4]π2, respectively.

In addition to the description of the tasks above, we also
have alternative version in which the computed predicate
is required to be close to an a priori defined predicate. The
notion of distance between two predicates are expressed as
the Hausdorff distance between them, as explained in the
next section.

Note that Task 1 is fundamentally different from Tasks 2
and 3. Task 1 is essentially a supervised learning problem
for classification, where the identified STL formula φ is
required to separate a priori known sets A and B. In
Tasks 2 and 3, the objective is to identify a formula φ
that matches a set of trajectories A optimally. Unlike in
Task 1, there is not a second set of trajectories that needs
to be separated from A.

4. SOLUTION

The core of our proposed method is a non-convex op-
timization problem for finding the best parameters that
describe the formula. Denote all parameters that define

the formula as α. Take the case of �[τ1,τ2](
m∧

k=1

aTk x > bk)

for example. As ‖ak‖2 = 1, aTk x can be represented as
cos(θk,1)x1 + sin(θk,1) cos(θk,2)x2 + sin(θk,1) sin(θk,2)x3 +
. . . . Thus, one simple way to represent ak is to use the
trigonometric parameters θk,1, θk,2, For each atomic
proposition, τ1, τ2, θk,1, θk,2, will be the elements of α.
The lower bound and upper bound of the angles are set to
be [−π, π].

4.1 Classification Problem

To complete Task 1, we essentially follow the approach
given in Jin et al. (2013); Kong et al. (2014). Mathe-
matically, Task 1 can be expressed as follows. Suppose
that a formula with a given structure is parameterized
by α as discussed above. We denote the formula as φ(α).
Given two sets of trajectories A = {ω1, · · · , ωNA

} and
B = {ωNA+1, · · · , ωN}, find α that minimizes the following
cost function:

J1(α) =

NA∑
i=1

g(r(ωi, φ(α))) +

N∑
i=NA+1

g(−r(ωi, φ(α))), (3)

where r(ωi, φ(α) is the robustness degree of the formula
φ(α) for the i-th trajectory. The function g(·) is a penalty
function defined as

g(x) �

{
ε− x if x ≤ ε ,

0 if x > ε.
(4)

The parameter ε is an appropriate positive number, which
is chosen so as to avoid overly specific formula.

4.2 Identification Problem

Mathematically, the identification problem in Tasks 2 and
3 can be expressed as follows. Given a set of trajectories
A = {ω1, · · · , ωNA

}, find α that minimizes the following
cost function:

J2(α) =

NA∑
i=1

f(r(ωi, φ(α))). (5)

f(x) �

{
ρ if x ≤ ε ,

x2 if x > ε.
(6)

The parameter ε is an appropriate positive number which
is chosen so as to avoid overly specific formula and the
parameter ρ is a large positive number to penalize negative
robustness degrees. Intuitively, f(·) is designed to penalize
cases where the robustness degree is (i) negative (corre-
sponding to misclassification), (ii) positive but less than
ε (corresponding to overly specific formula that can only
represent the given trajectories without much robustness
to disturbances, or (iii) positive and very large (corre-
sponding to overly general formula that may overlook
essential features of the trajectories). As explained in the
previous section, the cost function essentially penalizes
misclassification, overfitting, and underfitting. The iden-
tified formula φ(α∗), where α∗ minimizes J2, is essentially
the formula that describes the trajectories in A. If φ(α) is
designed to have certain structures, as explain in Sec. 3,
then we can complete Tasks 2 and 3, accordingly.

4.3 Incorporating a priori Predicates

Suppose that the predicate in φ(α) is denoted by the
set p(α) ⊂ X, and we are given a priori predicates
X1, · · · , Xp ⊂ X. We want to associate p(α) with one of the
predicates in X1,··· ,p. To do so, we define a cost function

J3(α, k) =

NA∑
i=1

f(r(ωi, φ(α))) + λ dH(Xk, p(α)), (7)

where dH(Xk, p(α)) is the Hausdorff distance between the
a priori predicate region Xk and p(α), and λ is a positive
weighting factor. Larger value of λ means more emphasis
in keeping p(α) close to Xk. If (α

∗, k∗) minimizes J3, then
φ(α∗) is the formula that best describes the trajectories
in A, and the predicate p(α∗) in it is associated with the
predicate Xk∗ .

The Hausdorff distance is an important tool to measure the
similarity between two sets of points (see Atallah (1983)).
It is defined as the largest distance from any point in one
of the sets, to the closest point in the other set. Let X

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

143

144	 Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146

and Y be two non-empty subsets of a metric space (X, d).
Their Hausdorff distance dH(X,Y) is defined as follows

dH(X,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

The expression sup
x∈X

inf
y∈Y

d(x, y) when both X and Y are

polyhedra can be performed as follows:

Step 1: Calculate all vertices of the polyhedron X. Denote
them as ψ1, ψ2, · · · , ψNX

.

Step 2: Calculate the distance between ψi to Y for each
i ∈ {1, · · · , NX}. This is a convex quadratic optimization
problem.

Step 3: Find the maximum of the distances calculated in
Step 2.

We use Particle Swarm Optimization (PSO) (see Zhang
et al. (2013)) to optimize the cost functions defined above.
In each iteration, the parameter α is updated as a swarm
of particles move in the parameter space to find the global
minimum. Upon convergence of the PSO algorithm, the
optimal α is set to be the steady-state global best.

5. IMPLEMENTATION

We apply the proposed method on trajectories generated
from a PHANToM Omni haptic device. PHANToM Omni
devices have been used in many applications, such as en-
tertainment, teleoperation and medical applications of di-
agnostic and rehabilitation (see Sansanayuth et al. (2012);
Silva et al. (2009)). We use three degrees of freedom of the
robot arm, and record the 3D position of the end effector.

x

z

y

θ1

θ3

θ2

L1

L0

L2

O1

O0

O2

O3

OT

Fig. 1. PHANToM Omni haptic device

The kinematics chain of the PHANToM Omni haptic
devices and its representation of variables and constants is
shown in Figure 1. The zero configuration is set as O2O3

perpendicular to O0O1 and O3OT perpendicular to O2O3.
Using the forward kinematics model, the position of the
end effector OT can be obtained as

x = −L1 sin(θ1) cos(θ2)− L2 sin(θ1) sin(θ2 + θ3);

y = L1 cos(θ1) cos(θ2) + L2 cos(θ1) sin(θ2 + θ3);

z = L0 + L1 sin(θ2)− L2 cos(θ2 + θ3);

where L0 = 133.35mm, L1 = 133.35mm, L2 = 133.35mm.
The variables θ1,2,3 are the joint angles. As we move the
robot arm in a certain manner, the time-stamped location
and velocity data of the trajectories can be recorded.

By discretizing the continuous-time location values, the
velocities of the end-effector can be obtained as follows:[

vx
vy
vz

]
(k) =

1

∆T

([
x
y
z

]
(k + 1)−

[
x
y
z

]
(k)

)
. (8)

where [x y z]T (k) and [vx vy vz]
T (k) are the location vector

and velocity vector at time instant k, respectively, and ∆T
is the sampling period.

Example 1: Classification Problem In the first example,
we intend to classify two kinds of robot arm movements. In
its zero configuration, the robot arm is described as folded.
We steer the robot arm manually to follow two kinds
of trajectories with some small variations each time. We
demonstrate first by lifting the folded arm(as the desired
movement) 10 times and then lifting while extending the
arm (as the undesired movement) 10 times 1 . In this
manner, we generate 10 trajectories for both the desired
movement and the undesired movement. We search for a
classifying STL formula of the form �[τ1,τ2]π or �[τ3,τ4]π,

where π corresponds to a polyhedral predicate in [x y z]T

or [vx vy vz]
T as discussed in the previous section. The best

two formulae that we found are as follows:

�[0.01,4)0.90254 ∗ y − 0.43061 ∗ z > −17.6699

�[1.56,4)z < 255.2673

(a) (b) (c)
0 1 2 4 3

-15

-10

-5

0

 5

100

140

160

80

120

50

100

150

200

250

 300

 350

0 -20 60
0 1 2 4 3 0 1 2 4 3

s s s

mm mm mm

Fig. 2. Trajectories in the first example(red dots for
the desired movement, blue dots for the undesired
movement): (a)x coordinate values; (b)y coordinate
values;(c)z coordinate values

The x, y and z coordinate values of the two kinds of
movements are depicted in Figure 2. It can be seen that
indeed the y and z coordinate values are the ones that can
best differentiate the two kinds of movements.
Similarly, we can classify the two kinds of robot arm
movements from the velocity perspective and obtain the
following formulae:

�[0.76,2.12]vz < 102.3272

�[0.01,2.91]0.76756 ∗ vx + 0.64097 ∗ vz < 9.1841

Thus, the velocity classification provides an alternative
way to differentiate between the two kinds of movements.

Example 2: Identification Problem In the second exam-
ple, in order to discover sequential movements, we generate
10 trajectories by steering the robot arm to first stretch,
and then yaw, and then lift with some small variations
each time.

We search for an STL formula with the structure of
¬
(
�[τ1,τ2]π1

)
∨�[τ3,τ4]π2, where π1,2 are polyhedral pred-

icates in [x y z]T . The following formula is obtained,

�[4,5]0.3329 ∗ x+ 0.94296 ∗ z < 199.9623 ⇒
�[5,10.66]0.2758 ∗ x− 0.4516 ∗ y + 0.8485 ∗ z > 127.393

1 Demostration videos of Example 1, 2 and 3 can be found at https:
//www.youtube.com/watch?v=g8U3ZjwhvPs&feature=youtu.be

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

144

	 Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146	 145

and Y be two non-empty subsets of a metric space (X, d).
Their Hausdorff distance dH(X,Y) is defined as follows

dH(X,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

The expression sup
x∈X

inf
y∈Y

d(x, y) when both X and Y are

polyhedra can be performed as follows:

Step 1: Calculate all vertices of the polyhedron X. Denote
them as ψ1, ψ2, · · · , ψNX

.

Step 2: Calculate the distance between ψi to Y for each
i ∈ {1, · · · , NX}. This is a convex quadratic optimization
problem.

Step 3: Find the maximum of the distances calculated in
Step 2.

We use Particle Swarm Optimization (PSO) (see Zhang
et al. (2013)) to optimize the cost functions defined above.
In each iteration, the parameter α is updated as a swarm
of particles move in the parameter space to find the global
minimum. Upon convergence of the PSO algorithm, the
optimal α is set to be the steady-state global best.

5. IMPLEMENTATION

We apply the proposed method on trajectories generated
from a PHANToM Omni haptic device. PHANToM Omni
devices have been used in many applications, such as en-
tertainment, teleoperation and medical applications of di-
agnostic and rehabilitation (see Sansanayuth et al. (2012);
Silva et al. (2009)). We use three degrees of freedom of the
robot arm, and record the 3D position of the end effector.

x

z

y

θ1

θ3

θ2

L1

L0

L2

O1

O0

O2

O3

OT

Fig. 1. PHANToM Omni haptic device

The kinematics chain of the PHANToM Omni haptic
devices and its representation of variables and constants is
shown in Figure 1. The zero configuration is set as O2O3

perpendicular to O0O1 and O3OT perpendicular to O2O3.
Using the forward kinematics model, the position of the
end effector OT can be obtained as

x = −L1 sin(θ1) cos(θ2)− L2 sin(θ1) sin(θ2 + θ3);

y = L1 cos(θ1) cos(θ2) + L2 cos(θ1) sin(θ2 + θ3);

z = L0 + L1 sin(θ2)− L2 cos(θ2 + θ3);

where L0 = 133.35mm, L1 = 133.35mm, L2 = 133.35mm.
The variables θ1,2,3 are the joint angles. As we move the
robot arm in a certain manner, the time-stamped location
and velocity data of the trajectories can be recorded.

By discretizing the continuous-time location values, the
velocities of the end-effector can be obtained as follows:[

vx
vy
vz

]
(k) =

1

∆T

([
x
y
z

]
(k + 1)−

[
x
y
z

]
(k)

)
. (8)

where [x y z]T (k) and [vx vy vz]
T (k) are the location vector

and velocity vector at time instant k, respectively, and ∆T
is the sampling period.

Example 1: Classification Problem In the first example,
we intend to classify two kinds of robot arm movements. In
its zero configuration, the robot arm is described as folded.
We steer the robot arm manually to follow two kinds
of trajectories with some small variations each time. We
demonstrate first by lifting the folded arm(as the desired
movement) 10 times and then lifting while extending the
arm (as the undesired movement) 10 times 1 . In this
manner, we generate 10 trajectories for both the desired
movement and the undesired movement. We search for a
classifying STL formula of the form �[τ1,τ2]π or �[τ3,τ4]π,

where π corresponds to a polyhedral predicate in [x y z]T

or [vx vy vz]
T as discussed in the previous section. The best

two formulae that we found are as follows:

�[0.01,4)0.90254 ∗ y − 0.43061 ∗ z > −17.6699

�[1.56,4)z < 255.2673

(a) (b) (c)
0 1 2 4 3

-15

-10

-5

0

 5

100

140

160

80

120

50

100

150

200

250

 300

 350

0 -20 60
0 1 2 4 3 0 1 2 4 3

s s s

mm mm mm

Fig. 2. Trajectories in the first example(red dots for
the desired movement, blue dots for the undesired
movement): (a)x coordinate values; (b)y coordinate
values;(c)z coordinate values

The x, y and z coordinate values of the two kinds of
movements are depicted in Figure 2. It can be seen that
indeed the y and z coordinate values are the ones that can
best differentiate the two kinds of movements.
Similarly, we can classify the two kinds of robot arm
movements from the velocity perspective and obtain the
following formulae:

�[0.76,2.12]vz < 102.3272

�[0.01,2.91]0.76756 ∗ vx + 0.64097 ∗ vz < 9.1841

Thus, the velocity classification provides an alternative
way to differentiate between the two kinds of movements.

Example 2: Identification Problem In the second exam-
ple, in order to discover sequential movements, we generate
10 trajectories by steering the robot arm to first stretch,
and then yaw, and then lift with some small variations
each time.

We search for an STL formula with the structure of
¬
(
�[τ1,τ2]π1

)
∨�[τ3,τ4]π2, where π1,2 are polyhedral pred-

icates in [x y z]T . The following formula is obtained,

�[4,5]0.3329 ∗ x+ 0.94296 ∗ z < 199.9623 ⇒
�[5,10.66]0.2758 ∗ x− 0.4516 ∗ y + 0.8485 ∗ z > 127.393

1 Demostration videos of Example 1, 2 and 3 can be found at https:
//www.youtube.com/watch?v=g8U3ZjwhvPs&feature=youtu.be

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

144

Example 3: Identification Problem with A Priori Predi-
cates In the third example,the robot arm is intentionally
steered to reach different a priori regions and avoids certain
regions that are set as obstacles. The goals and obstacles
predicates, as well as the temporal properties are to be
identified. However, we also want to be able to match these
predicates with a priori predicates, which are depicted in
Figure 3. We call these a priori predicates Regions 1 to 6.
To make the formula more specific in different separate
time frames, we divide the time frame into three time
intervals, the search process is conducted in these three
time intervals consecutively. To obtain predicates that
have the shape of bounded polyhedra, at least 4 linear
inequalities are needed for each of them, so we set m = 4
in (2). Besides, outer boundaries are given to guarantee
that the sets associated to the predicates are bounded.

We run the experiment twice with different values of λ in
the cost function J3. In the first experiment, λ = 1. In the
second one, λ = 100. Essentially, we expect to see that
the higher λ results in predicates that are close to the a
priori ones. The search process takes about 700 seconds
on a laptop computer. For λ = 1, we obtain the following
formula:

�[0.01,4]¬((0.9992∗y+0.040015∗z > 266.8318)∧(0.42688∗
x+ 0.88941 ∗ y + 0.16349 ∗ z < 276.8318) ∧ (0.98106 ∗ x+
(−0.10825)∗y+(−0.16062)∗z > −43.6728)∧(0.57956∗x+
(−0.69056)∗y+0.43271∗z < 3.7659))∧�[4.05,7]¬((0.9921∗
x+ 0.11232 ∗ y + (−0.055925) ∗ z > −222.63) ∧ (0.99817 ∗
x+0.023393∗y+0.05585∗z < −212.63)∧((−0.33752)∗y+
(−0.94132) ∗ z > −221.5122)∧ (0.86946 ∗ x+(−0.48563) ∗
y+(−0.090522)∗ z < 32.3959))∧�[9.76,10.91]¬((0.048447∗
x+ 0.84246 ∗ y + 0.53658 ∗ z > 234.7687) ∧ ((−0.36106) ∗
y + (−0.93254) ∗ z < 276.8318) ∧ (z > 266.8318) ∧ ((−1) ∗
z < 276.8318)) ∧ �[0.01,3.98]((0.031996 ∗ y + 0.99949 ∗
z > −222.63) ∧ (0.079656 ∗ x+ (−0.81569) ∗ y + 0.57297 ∗
z < 276.8318)∧ (0.82275∗x+(−0.5684)∗z > −28.0976)∧
(0.67792∗x+(−0.73514)∗z < 15.8572))∧�[4,7]((0.86698∗
x + 0.059055 ∗ y + 0.49483 ∗ z > −222.63) ∧ (0.90751 ∗
x + 0.25487 ∗ y + 0.33388 ∗ z < 7.631) ∧ (0.96411 ∗ y +
0.2655 ∗ z > −18.9939) ∧ (0.5444 ∗ x + 0.83883 ∗ y <
−5.9479))∧�[7,10.24]((0.78801∗x+0.61546∗y+0.015727∗
z > −73.2865) ∧ ((−1) ∗ z < 210.343) ∧ (z > 266.8318) ∧
(0.31673 ∗ x+ 0.086968 ∗ y + 0.94452 ∗ z < 276.8318))

After matching with the a priori predicates, the matched
formula can be expressed as:

�[0.01,4](¬obtained region4) ∧�[4.05,7](¬obtained
region5) ∧�[9.76,10.91](¬obtained region6)

∧�[0.01,3.98](obtained region1) ∧�[4,7](obtained region2)

∧�[7,10.24](obtained region3).

The comparisons of the a priori regions and the obtained
regions can be seen in Figure 3. The obtained predicates
have different shapes and sizes from those of the a priori
predicates, therefore they can provide new knowledge and
help modify our a priori knowledge about the regions.

For λ = 100, the obtained formula is as follows:

�[0.01,3.95]¬((0.70848 ∗ x+ (−0.70573) ∗ z > −182.5494) ∧
((−1) ∗ z < −172.5494) ∧ (y > 182.2917) ∧ (0.76453 ∗ x+
(0.64458)∗z < 225.1621))∧�[4,7]¬(((−1)∗z > −90.4979)∧
(x < 177.494)∧((−1)∗y > −144.543)∧(x < −131.0609))∧
�[8.27,10.08]¬((x > −94.6454)∧ ((−1) ∗ z < 43.1152)∧ (z >
168.9758) ∧ (y < 188.4168)) ∧ �[0.01,4]((y > 100.8097) ∧
(z < 110.8097) ∧ (x > −47.7208) ∧ ((−1) ∗ z < 46.576)) ∧
�[4,7](((−1) ∗ z > −196.5922)∧ (x < −186.5922)∧ ((−1) ∗
y > −136.9438) ∧ (y < 276.8318)) ∧ �[7.22,11]((z >
234.1874)∧ (0.86995∗y+0.49313∗z < 276.8318)∧ ((−1)∗
y > −222.63) ∧ (x < −112.5924))

After matching with the obtained formula, the matched
formula is

�[0.01,3.95](¬obtained region4) ∧�[4,7](¬obtained
region5) ∧�[8.27,10.08](¬obtained region6)

∧�[0.01,4](obtained region1) ∧�[4,7](obtained region2)

∧�[7.22,11](obtained region3)

It can be seen from Figure 3 that with a larger λ, the
obtained predicates in the formula are closer to the a priori
ones, as expected.

6. CONCLUSION

In this paper, we presented a method for finding Signal
Temporal Logic formulae that describe a set of given sys-
tem trajectories. Our work generalizes earlier work in this
area by (i) allowing the use of polyhedral predicates and
(ii) incorporating a priori knowledge about the predicates.
We apply the method on trajectories describing the motion
of the end effector of a robot arm. We consider three tasks,
(i) finding a formula that classifies two sets of trajectories,
(ii) identifying a formula that describes sequential motion,
and (iii) identifying a formula that describes a Reach-
Avoid type of motion. The formula is defined by a set of
parameters, whose values are determined by minimizing a
non-convex cost function. The cost function is generally
based on the robustness degree of the formula and the
similarity between the a priori predicates and the obtained
predicates in the formula. We apply the method on exper-
imental trajectories generated with a PHANToM Omni
robot. We demonstrate that the algorithm can identify
STL formulae for each of the tasks above. In robotics, our
results are potentially useful in deriving the temporal logic
formula that specified a task from human demonstration
or human defined trajectories.

REFERENCES

Atallah, M.J. (1983). A linear time algorithm for the haus-
dorff distance between convex polygons. Information
Processing Letters, 17(4), 207 – 209. doi:http://dx.doi.
org/10.1016/0020-0190(83)90042-X.

Donzé, A. and Maler, O. (2010). Robust satisfaction of
temporal logic over real-valued signals. In Proceedings
of the 8th International Conference on Formal Modeling
and Analysis of Timed Systems, FORMATS’10, 92–106.
Springer-Verlag, Berlin, Heidelberg.

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

145

146	 Zhe Xu et al. / IFAC-PapersOnLine 48-27 (2015) 141–146

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 3. A priori regions and obtained regions with λ being 1 and 100: (a) a priori region 1; (b) obtained region 1 (λ=1);
(c) obtained region 1 (λ=100); (d) a priori region 2; (e) obtained region 2 (λ=1); (f) obtained region 2 (λ=100);
(g) a priori region 3; (h) obtained region 3 (λ=1); (i) obtained region 3 (λ=100); (j) a priori region 4; (k) obtained
region 4 (λ=1); (l) obtained region 4 (λ=100); (m) a priori region 5; (n) obtained region 5 (λ=1); (o) obtained
region 5 (λ=100); (p) a priori region 6; (q) obtained region 6 (λ=1); (r) obtained region 6 (λ=100);

Fainekos, G.E. and Pappas, G.J. (2009). Robustness of
temporal logic specifications for continuous-time signals.
Theoretical Computer Science, 410(42), 4262–4291.

Fainekos, G., Kress-Gazit, H., and Pappas, G. (2005).
Hybrid controllers for path planning: A temporal logic
approach. In Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC ’05. 44th
IEEE Conference on, 4885–4890. doi:10.1109/CDC.
2005.1582935.

Fainekos, G.E., Girard, A., Kress-Gazit, H., and Pappas,
G.J. (2007). Temporal logic motion planning for dy-
namic robots.

Finucane, C., Jing, G., and Kress-Gazit, H. (2010). Ltl-
mop: Experimenting with language, temporal logic
and robot control. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on,
1988–1993. doi:10.1109/IROS.2010.5650371.

Jin, X., Donze, A., Deshmukh, J.V., and Seshia, S.A.
(2013). Mining requirements from closed-loop control
models. In Proc. Int. Conf. Hybrid Systems: Computa-
tion and Control, 43–52.

Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E.,
and Belta, C. (2014). Temporal logic inference for
classification and prediction from data. In Proceedings
of the 17th International Conference on Hybrid Systems:
Computation and Control, HSCC ’14, 273–282. ACM,
New York, NY, USA. doi:10.1145/2562059.2562146.

Kress-Gazit, H., Fainekos, G., and Pappas, G. (2009).
Temporal-logic-based reactive mission and motion plan-
ning. Robotics, IEEE Transactions on, 25(6), 1370–
1381. doi:10.1109/TRO.2009.2030225.

Lin, K.H., Lam, K.M., and Siu, W.C. (2002). A new ap-
proach using modified hausdorff distances with eigenface

for human face recognition. In Control, Automation,
Robotics and Vision, 2002. ICARCV 2002. 7th Inter-
national Conference on, volume 2, 980–984 vol.2. doi:
10.1109/ICARCV.2002.1238557.

Raman, V., Finucane, C., and Kress-Gazit, H. (2012).
Temporal logic robot mission planning for slow and fast
actions. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, 251–256. doi:
10.1109/IROS.2012.6385935.

Sansanayuth, T., Nilkhamhang, I., and Tungpimolrat, K.
(2012). Teleoperation with inverse dynamics control
for phantom omni haptic device. In SICE Annual
Conference (SICE), 2012 Proceedings of, 2121–2126.

Silva, A., Ramirez, O., Vega, V., and Oliver, J. (2009).
Phantom omni haptic device: Kinematic and manipu-
lability. In Electronics, Robotics and Automotive Me-
chanics Conference, 2009. CERMA ’09., 193–198. doi:
10.1109/CERMA.2009.55.

Smith, S., Tumova, J., Belta, C., and Rus, D. (2010).
Optimal path planning under temporal logic con-
straints. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, 3288–
3293. doi:10.1109/IROS.2010.5650896.

Ulusoy, A., Smith, S., Ding, X.C., Belta, C., and Rus, D.
(2011). Optimal multi-robot path planning with tempo-
ral logic constraints. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on,
3087–3092. doi:10.1109/IROS.2011.6094884.

Zhang, F., Cao, J., and Xu, Z. (2013). An improved
particle swarm optimization particle filtering algorithm.
In Communications, Circuits and Systems (ICCCAS),
2013 International Conference on, volume 2, 173–177.
doi:10.1109/ICCCAS.2013.6765312.

2015 IFAC ADHS
October 14-16, 2015. Atlanta, USA

146

